메뉴 건너뛰기




Volumn 450-451, Issue , 2012, Pages 293-307

Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data

Author keywords

Artificial intelligent techniques; Cause effect models; Combined models; Daily and hourly; Lumped and distributed data; Time series models

Indexed keywords

ARTIFICIAL INTELLIGENT; CAUSE-EFFECT; COMBINED MODEL; DAILY AND HOURLY; DISTRIBUTED DATA; TIME SERIES MODELS;

EID: 84862673732     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2012.04.045     Document Type: Article
Times cited : (78)

References (84)
  • 1
    • 33947572974 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and neuro-fuzzy in continuous modelling of the daily and hourly behaviour of runoff
    • Aqil M., Kita I., Yano A., Nishiyama S. A comparative study of artificial neural networks and neuro-fuzzy in continuous modelling of the daily and hourly behaviour of runoff. Journal of Hydrology 2007, 337(1-2):22-34.
    • (2007) Journal of Hydrology , vol.337 , Issue.1-2 , pp. 22-34
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 2
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology I: Preliminary concepts
    • ASCE Task Committee
    • ASCE Task Committee Artificial neural networks in hydrology I: Preliminary concepts. Journal of Hydrologic Engineering, ASCE 2000, 5(2):115-123.
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , Issue.2 , pp. 115-123
  • 3
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology II: Hydrologic applications
    • ASCE Task committee
    • ASCE Task committee Artificial neural networks in hydrology II: Hydrologic applications. Journal of Hydrologic Engineering, ASCE 2000, 5(2):124-137.
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , Issue.2 , pp. 124-137
  • 4
    • 43149114256 scopus 로고    scopus 로고
    • An application of artificial intelligence for rainfall-runoff modelling
    • Aytek A., Alp M. An application of artificial intelligence for rainfall-runoff modelling. Journal of Earth System Sciences 2008, 117(2):145-155.
    • (2008) Journal of Earth System Sciences , vol.117 , Issue.2 , pp. 145-155
    • Aytek, A.1    Alp, M.2
  • 5
    • 0002158924 scopus 로고    scopus 로고
    • Genetic programming as model induction engine
    • Babovic V., Keijzer M. Genetic programming as model induction engine. Journal of Hydroinformatics 2000, 2(1):35-60.
    • (2000) Journal of Hydroinformatics , vol.2 , Issue.1 , pp. 35-60
    • Babovic, V.1    Keijzer, M.2
  • 6
    • 35248836624 scopus 로고    scopus 로고
    • A generalized feedforward neural network architecture and its training using two stochastic search methods
    • Springer, Verlag Berlin Heidelberg, E. Cantu-Paz (Ed.) GECCO
    • Bouzerdoum A., Mueller R. A generalized feedforward neural network architecture and its training using two stochastic search methods. LNCS 2723 2003, 742-753. Springer, Verlag Berlin Heidelberg. E. Cantu-Paz (Ed.).
    • (2003) LNCS 2723 , pp. 742-753
    • Bouzerdoum, A.1    Mueller, R.2
  • 8
    • 33845580770 scopus 로고    scopus 로고
    • On Linear Genetic Programming
    • Ph.D. Thesis, University of Dortmund, Germany
    • Brameier, M., 2004. On Linear Genetic Programming. Ph.D. Thesis, University of Dortmund, Germany.
    • (2004)
    • Brameier, M.1
  • 11
    • 84862660492 scopus 로고    scopus 로고
    • SYSGP-AC++ Library of Different GP Variants. Technical Report CI-98/48, Collaborative Research Centre 531, University of Dortmund, Germany
    • Brameier, M., Kantschik, W., Dittrich, P., Banzhaf, W., 1998. SYSGP-AC++ Library of Different GP Variants. Technical Report CI-98/48, Collaborative Research Centre 531, University of Dortmund, Germany.
    • (1998)
    • Brameier, M.1    Kantschik, W.2    Dittrich, P.3    Banzhaf, W.4
  • 13
    • 84862665808 scopus 로고
    • CDO
    • Government of Maharashtra, Central Design Office, Irrigation Department, India
    • CDO Final Report on Revised Flood Study for Koyna Dam 1992, Government of Maharashtra, Central Design Office, Irrigation Department, India.
    • (1992) Final Report on Revised Flood Study for Koyna Dam
  • 14
    • 0036719845 scopus 로고    scopus 로고
    • Real-time recurrent learning neural network for stream-flow forecasting
    • Chang F.J., Chang L.C., Huang H.L. Real-time recurrent learning neural network for stream-flow forecasting. Hydrological Processes 2002, 16(13):2577-2588.
    • (2002) Hydrological Processes , vol.16 , Issue.13 , pp. 2577-2588
    • Chang, F.J.1    Chang, L.C.2    Huang, H.L.3
  • 15
    • 28444489651 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
    • Chang F.J., Chang Y.T. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advances in Water Resources 2006, 29:1-10.
    • (2006) Advances in Water Resources , vol.29 , pp. 1-10
    • Chang, F.J.1    Chang, Y.T.2
  • 16
    • 0842349306 scopus 로고    scopus 로고
    • A two-step-ahead recurrent neural network for stream flow forecasting
    • Chang L.C., Chang F.J., Chiang Y.M. A two-step-ahead recurrent neural network for stream flow forecasting. Hydrological Processes 2004, 18(1):81-92.
    • (2004) Hydrological Processes , vol.18 , Issue.1 , pp. 81-92
    • Chang, L.C.1    Chang, F.J.2    Chiang, Y.M.3
  • 17
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several flood forecasting models in Yangtze river
    • Chau K.W., Wu C.L., Li Y.S. Comparison of several flood forecasting models in Yangtze river. Journal of Hydrological Engineering. ASCE 2005, 10(6):485-491.
    • (2005) Journal of Hydrological Engineering. ASCE , vol.10 , Issue.6 , pp. 485-491
    • Chau, K.W.1    Wu, C.L.2    Li, Y.S.3
  • 18
    • 33646075449 scopus 로고    scopus 로고
    • The strategy building a flood forecast model by neuro-fuzzy network
    • Chen S.H., Lin H.Y., Chang L.C., Chang F.J. The strategy building a flood forecast model by neuro-fuzzy network. Hydrological Processes 2006, 20(7):1525-1540.
    • (2006) Hydrological Processes , vol.20 , Issue.7 , pp. 1525-1540
    • Chen, S.H.1    Lin, H.Y.2    Chang, L.C.3    Chang, F.J.4
  • 19
    • 65949120718 scopus 로고    scopus 로고
    • Developing a hybrid multi-model for peak flood forecasting
    • Chidthong Y., Tanaka H., Supharatid S. Developing a hybrid multi-model for peak flood forecasting. Hydrological Processes 2009, 23(12):1725-1738.
    • (2009) Hydrological Processes , vol.23 , Issue.12 , pp. 1725-1738
    • Chidthong, Y.1    Tanaka, H.2    Supharatid, S.3
  • 20
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly P., Anctil F., Bobee B. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. Journal of Hydrology 2000, 230(3-4):244-257.
    • (2000) Journal of Hydrology , vol.230 , Issue.3-4 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 21
    • 78049241576 scopus 로고    scopus 로고
    • Application of ANN and ANFIS models on dry land precipitation (Case study: Yazd in Central Iran)
    • Dastorani M.T., Afkhami H., Sharifidarani H., Dastorani M. Application of ANN and ANFIS models on dry land precipitation (Case study: Yazd in Central Iran). Journal of Applied Sciences 2010, 10(20):2387-2394.
    • (2010) Journal of Applied Sciences , vol.10 , Issue.20 , pp. 2387-2394
    • Dastorani, M.T.1    Afkhami, H.2    Sharifidarani, H.3    Dastorani, M.4
  • 22
    • 23744444467 scopus 로고    scopus 로고
    • Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation
    • de Vos N.J., Rientjes T.H.M. Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation. Hydrology Earth System Sciences 2005, 9:111-126.
    • (2005) Hydrology Earth System Sciences , vol.9 , pp. 111-126
    • de Vos, N.J.1    Rientjes, T.H.M.2
  • 25
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J.L. Finding structure in time. Cognitive Science 1990, 14:179-211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 26
    • 77958199170 scopus 로고    scopus 로고
    • Experimental investigations of the predictive capabilities of data driven modelling techniques in hydrology - Part 2: Application
    • Elshorbagy A., Corzo G., Srinivasulsu S., Solomatine D.P. Experimental investigations of the predictive capabilities of data driven modelling techniques in hydrology - Part 2: Application. Hydrology Earth System Sciences 2010, 14:1943-1961.
    • (2010) Hydrology Earth System Sciences , vol.14 , pp. 1943-1961
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulsu, S.3    Solomatine, D.P.4
  • 27
    • 77958183722 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: Concepts and methodology
    • Elshorbagy A., Corzo G., Srinivasulu S., Solomatine D.P. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: Concepts and methodology. Hydrology Earth System Sciences 2010, 14:1931-1941.
    • (2010) Hydrology Earth System Sciences , vol.14 , pp. 1931-1941
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 28
    • 38849167375 scopus 로고    scopus 로고
    • Comparison of artificial intelligence techniques for river flow forecasting
    • Firat M. Comparison of artificial intelligence techniques for river flow forecasting. Hydrology and Earth System Sciences 2008, 12(1):123-139.
    • (2008) Hydrology and Earth System Sciences , vol.12 , Issue.1 , pp. 123-139
    • Firat, M.1
  • 29
    • 46449123911 scopus 로고    scopus 로고
    • Hydrological time-series modelling using an adaptive neuro-fuzzy inference system
    • Firat M., Gungor M. Hydrological time-series modelling using an adaptive neuro-fuzzy inference system. Hydrological Processes 2008, 22(13):2122-2132.
    • (2008) Hydrological Processes , vol.22 , Issue.13 , pp. 2122-2132
    • Firat, M.1    Gungor, M.2
  • 30
    • 0346214077 scopus 로고    scopus 로고
    • Review: discipulus: a commercial genetic programming system
    • Foster J.A. Review: discipulus: a commercial genetic programming system. Genetic Programming and Evolvable Machines 2001, 2(2):201-203.
    • (2001) Genetic Programming and Evolvable Machines , vol.2 , Issue.2 , pp. 201-203
    • Foster, J.A.1
  • 31
    • 84862646190 scopus 로고    scopus 로고
    • Discipulus Lite™ Owner's Manual, Version 4.0. Register Machine Learning Technologies, Inc
    • Francone, F., 2004. Discipulus Lite™ Owner's Manual, Version 4.0. Register Machine Learning Technologies, Inc.
    • (2004)
    • Francone, F.1
  • 32
    • 78449236407 scopus 로고    scopus 로고
    • Reservoirs trap efficiency estimation using artificial neural networks and genetic programming
    • Garg V., Jothiprakash V. Reservoirs trap efficiency estimation using artificial neural networks and genetic programming. Journal of Hydrologic Engineering ASCE 2010, 12(15):1001-1015.
    • (2010) Journal of Hydrologic Engineering ASCE , vol.12 , Issue.15 , pp. 1001-1015
    • Garg, V.1    Jothiprakash, V.2
  • 35
    • 70349753109 scopus 로고    scopus 로고
    • Linear genetic programming for time-series modelling of daily flow rate
    • Guven A. Linear genetic programming for time-series modelling of daily flow rate. Journal of Earth System Science 2009, 118(2):137-146.
    • (2009) Journal of Earth System Science , vol.118 , Issue.2 , pp. 137-146
    • Guven, A.1
  • 36
    • 79751525117 scopus 로고    scopus 로고
    • Daily pan evaporation modeling using linear genetic programming technique
    • Guven A., Kisi O. Daily pan evaporation modeling using linear genetic programming technique. Irrigation Science 2011, 29(2):135-145.
    • (2011) Irrigation Science , vol.29 , Issue.2 , pp. 135-145
    • Guven, A.1    Kisi, O.2
  • 37
    • 77957763447 scopus 로고    scopus 로고
    • Rainfall forecasting models using focused time-delay neural networks
    • 11-12 may, Kuala Lumpur, Malaysia 978-1-4244-6235-3/10© IEEE
    • Htike, K.W., Khalifa, O.O., 2010. Rainfall forecasting models using focused time-delay neural networks. In: International Conference on Computer and Communication Engineering (ICCCE), 11-12 may, Kuala Lumpur, Malaysia 978-1-4244-6235-3/10© IEEE.
    • (2010) International Conference on Computer and Communication Engineering (ICCCE)
    • Htike, K.W.1    Khalifa, O.O.2
  • 38
  • 39
    • 0037340658 scopus 로고    scopus 로고
    • Comparative analysis of event based rainfall-runoff modelling techniques - deterministic, statistical and artificial neural networks
    • Jain A., Indurthy S.K.V.P. Comparative analysis of event based rainfall-runoff modelling techniques - deterministic, statistical and artificial neural networks. Journal of Hydrologic Engineering, ASCE 2003, 8(2):93-98.
    • (2003) Journal of Hydrologic Engineering, ASCE , vol.8 , Issue.2 , pp. 93-98
    • Jain, A.1    Indurthy, S.K.V.P.2
  • 41
    • 79951559879 scopus 로고    scopus 로고
    • Improving the performance of data-driven techniques through data pre-processing for modelling daily reservoir inflow
    • Jothiprakash V., Kote A.S. Improving the performance of data-driven techniques through data pre-processing for modelling daily reservoir inflow. Hydrological Sciences Journal 2010, 56(1):168-186.
    • (2010) Hydrological Sciences Journal , vol.56 , Issue.1 , pp. 168-186
    • Jothiprakash, V.1    Kote, A.S.2
  • 42
    • 84862701609 scopus 로고    scopus 로고
    • Lumped and distributed data rainfall-runoff models using artificial neural network for an intermittent river
    • Jothiprakash V., Magar R.B., Kalkutki S. Lumped and distributed data rainfall-runoff models using artificial neural network for an intermittent river. Journal of Flood Engineering 2010, 1(2):159-173.
    • (2010) Journal of Flood Engineering , vol.1 , Issue.2 , pp. 159-173
    • Jothiprakash, V.1    Magar, R.B.2    Kalkutki, S.3
  • 45
    • 38549138689 scopus 로고    scopus 로고
    • Long-lead seasonal rainfall forecasting using time-delay recurrent neural networks: a Case study
    • Karamouz M., Razavi S., Araghinejad S. Long-lead seasonal rainfall forecasting using time-delay recurrent neural networks: a Case study. Hydrological Processes 2008, 22:229-241.
    • (2008) Hydrological Processes , vol.22 , pp. 229-241
    • Karamouz, M.1    Razavi, S.2    Araghinejad, S.3
  • 46
    • 33746832391 scopus 로고    scopus 로고
    • Adaptive neural-based fuzzy inference system (ANFIS) approaches for modelling hydrological time-series
    • Keskin M.E., Taylan D., Terzi O. Adaptive neural-based fuzzy inference system (ANFIS) approaches for modelling hydrological time-series. Hydrological Sciences Journal 2006, 51(4):588-598.
    • (2006) Hydrological Sciences Journal , vol.51 , Issue.4 , pp. 588-598
    • Keskin, M.E.1    Taylan, D.2    Terzi, O.3
  • 47
    • 77956821935 scopus 로고    scopus 로고
    • Evapotranspiration modeling using linear genetic programming technique
    • Kisi O., Guven A. Evapotranspiration modeling using linear genetic programming technique. Journal of Irrigation and Drainage Engineering, ASCE 2010, 136(10):715-723.
    • (2010) Journal of Irrigation and Drainage Engineering, ASCE , vol.136 , Issue.10 , pp. 715-723
    • Kisi, O.1    Guven, A.2
  • 48
    • 84859778319 scopus 로고    scopus 로고
    • Stochastic and artificial neural network models for reservoir inflow prediction
    • Kote A.S., Jothiprakash V. Stochastic and artificial neural network models for reservoir inflow prediction. Journal of Institution of Engineers (India) 2009, 90(18):25-33.
    • (2009) Journal of Institution of Engineers (India) , vol.90 , Issue.18 , pp. 25-33
    • Kote, A.S.1    Jothiprakash, V.2
  • 51
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • Luk K.C., Ball J.E., Sharma A. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. Journal of Hydrology 2000, 227:56-65.
    • (2000) Journal of Hydrology , vol.227 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 52
    • 84555208766 scopus 로고    scopus 로고
    • Intermittent reservoir daily-inflow prediction using lumped and distributed data multi-linear regression models
    • Magar R.B., Jothiprakash V. Intermittent reservoir daily-inflow prediction using lumped and distributed data multi-linear regression models. Journal of Earth System Sciences 2011, 120(6):1067-1084.
    • (2011) Journal of Earth System Sciences , vol.120 , Issue.6 , pp. 1067-1084
    • Magar, R.B.1    Jothiprakash, V.2
  • 53
    • 84862646189 scopus 로고    scopus 로고
    • Real-Time Reservoir Inflow Prediction Using Soft Computing Techniques
    • Ph.D thesis Report, Indian Institute of Technology Bombay, Mumbai
    • Magar, R. B., 2011. Real-Time Reservoir Inflow Prediction Using Soft Computing Techniques. Ph.D thesis Report, Indian Institute of Technology Bombay, Mumbai.
    • (2011)
    • Magar, R.B.1
  • 54
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the predictions and forecasting of water resources variables: review of modelling issues and applications
    • Maier H., Dandy G. Neural networks for the predictions and forecasting of water resources variables: review of modelling issues and applications. Environmental Modelling and Software 2000, 15:101-124.
    • (2000) Environmental Modelling and Software , vol.15 , pp. 101-124
    • Maier, H.1    Dandy, G.2
  • 55
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
    • Maier H.R., Jain A., Dandy G.C., Sudheer K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environmental Modelling and Software 2010, 25(8):891-909.
    • (2010) Environmental Modelling and Software , vol.25 , Issue.8 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 56
    • 40849130727 scopus 로고    scopus 로고
    • Short-term streamflow forecasting with global climate change implications - a comparative study between genetic programming and neural network models
    • Makkeasorn A., Chang N.B., Zhou X. Short-term streamflow forecasting with global climate change implications - a comparative study between genetic programming and neural network models. Journal of Hydrology 2008, 352(3-4):336-354.
    • (2008) Journal of Hydrology , vol.352 , Issue.3-4 , pp. 336-354
    • Makkeasorn, A.1    Chang, N.B.2    Zhou, X.3
  • 57
    • 33750442194 scopus 로고    scopus 로고
    • Parameter estimation of an ARMA model for river flow forecasting using goal programming
    • Mohammadi K., Eslami H.R., Kahawita R. Parameter estimation of an ARMA model for river flow forecasting using goal programming. Journal of Hydrology 2006, 331(1-2):293-299.
    • (2006) Journal of Hydrology , vol.331 , Issue.1-2 , pp. 293-299
    • Mohammadi, K.1    Eslami, H.R.2    Kahawita, R.3
  • 59
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models. A discussion of principles
    • Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models. A discussion of principles. Journal of Hydrology 1970, 10(3):282-290.
    • (1970) Journal of Hydrology , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 60
    • 14844352523 scopus 로고    scopus 로고
    • Fuzzy computing based rainfall-runoff model for real time flood forecasting
    • Nayak P.C., Sudheer K.P., Ramasastri K.S. Fuzzy computing based rainfall-runoff model for real time flood forecasting. Hydrological Processes 2005, 19:955-968.
    • (2005) Hydrological Processes , vol.19 , pp. 955-968
    • Nayak, P.C.1    Sudheer, K.P.2    Ramasastri, K.S.3
  • 61
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modelling hydrological time series
    • Nayak P.C., Sudheer K.P., Rangan D.M., Ramasastri K.S. A neuro-fuzzy computing technique for modelling hydrological time series. Journal of Hydrology 2004, 291(1-2):52-66.
    • (2004) Journal of Hydrology , vol.291 , Issue.1-2 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 62
    • 26444612035 scopus 로고    scopus 로고
    • A comparison of several linear genetic programming techniques
    • Oltean M., Grosan C. A comparison of several linear genetic programming techniques. Complex-Systems 2003, 14(4):285-313.
    • (2003) Complex-Systems , vol.14 , Issue.4 , pp. 285-313
    • Oltean, M.1    Grosan, C.2
  • 64
    • 58149181821 scopus 로고    scopus 로고
    • Reservoir inflow modelling using temporal neural networks with forgetting factor approach
    • Razavi S.R., Araghinejad S. Reservoir inflow modelling using temporal neural networks with forgetting factor approach. Water Resources Management 2009, 23(1):39-55.
    • (2009) Water Resources Management , vol.23 , Issue.1 , pp. 39-55
    • Razavi, S.R.1    Araghinejad, S.2
  • 68
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches
    • Sivakumar B., Jayawardena A.W., Fernando T.M.K.G. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. Journal of Hydrology 2002, 265(1-4):225-245.
    • (2002) Journal of Hydrology , vol.265 , Issue.1-4 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 70
    • 0027503733 scopus 로고
    • Calibration of rainfall-runoff models: application of global optimization to the Sacramento soil moisture accounting model
    • Sorooshian S., Duan Q., Gupta V.K. Calibration of rainfall-runoff models: application of global optimization to the Sacramento soil moisture accounting model. Water Resources Research 1993, 29(4):1185-1194.
    • (1993) Water Resources Research , vol.29 , Issue.4 , pp. 1185-1194
    • Sorooshian, S.1    Duan, Q.2    Gupta, V.K.3
  • 71
    • 33644636765 scopus 로고    scopus 로고
    • A comparative analysis of training methods for artificial neural network rainfall-runoff models
    • Srinivasulu S., Jain A. A comparative analysis of training methods for artificial neural network rainfall-runoff models. Applied Soft Computing 2006, 6(3):295-306.
    • (2006) Applied Soft Computing , vol.6 , Issue.3 , pp. 295-306
    • Srinivasulu, S.1    Jain, A.2
  • 73
    • 0001855442 scopus 로고
    • Mathematical synthesis of streamflow sequences for the analysis of river basins by simulation
    • Harvard University Press, Cambridge, USA: Mass, (Chapter 12), A. Maass (Ed.)
    • Thomas H.A., Fiering M.B. Mathematical synthesis of streamflow sequences for the analysis of river basins by simulation. Design of Water Resources Systems 1962, 459-493. Harvard University Press, Cambridge, USA: Mass, (Chapter 12). A. Maass (Ed.).
    • (1962) Design of Water Resources Systems , pp. 459-493
    • Thomas, H.A.1    Fiering, M.B.2
  • 74
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • Tokar A.S., Markus M. Precipitation-runoff modeling using artificial neural networks and conceptual models. Journal of Hydrologic Engineering, ASCE 2000, 5(2):156-161.
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 75
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks
    • Tokar A.S., Johnson P.A. Rainfall-runoff modelling using artificial neural networks. Journal of Hydrologic Engineering ASCE 1999, 4(3):232-239.
    • (1999) Journal of Hydrologic Engineering ASCE , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 76
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of short-term rainfall prediction models for real-time flood forecasting
    • Toth E., Brath A., Montanari A. Comparison of short-term rainfall prediction models for real-time flood forecasting. Journal of Hydrology 2000, 239(1-4):132-147.
    • (2000) Journal of Hydrology , vol.239 , Issue.1-4 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, A.3
  • 79
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang W., Chau K.W., Chang C.T., Qui L. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology 2009, 374(3-4):294-306.
    • (2009) Journal of Hydrology , vol.374 , Issue.3-4 , pp. 294-306
    • Wang, W.1    Chau, K.W.2    Chang, C.T.3    Qui, L.4
  • 80
    • 79952006341 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis
    • Wu C.L., Chau K.W. Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis. Journal of Hydrology 2011, 399:394-409.
    • (2011) Journal of Hydrology , vol.399 , pp. 394-409
    • Wu, C.L.1    Chau, K.W.2
  • 81
    • 0035105632 scopus 로고    scopus 로고
    • Modelling rainfall-runoff relationship using genetic programming
    • Whigham P.A., Crapper P.F. Modelling rainfall-runoff relationship using genetic programming. Mathematical and Computer Modelling 2001, 33(6-7):707-721.
    • (2001) Mathematical and Computer Modelling , vol.33 , Issue.6-7 , pp. 707-721
    • Whigham, P.A.1    Crapper, P.F.2
  • 82
    • 0022268780 scopus 로고
    • Reservoir management and operation models: a state-of-the art review
    • Yeh W.W.-G. Reservoir management and operation models: a state-of-the art review. Water Resources Research 1985, 21(12):1797-1818.
    • (1985) Water Resources Research , vol.21 , Issue.12 , pp. 1797-1818
    • Yeh, W.W.-G.1
  • 83
    • 0003332137 scopus 로고
    • Fluctuations of wet and dry years, Research data assembly and mathematical models
    • Colorado State University Hydrology Paper 1, (Available from Department of Earth Resources, Colorado State University, Fort Collins, CO 80523).
    • Yevjevich, V.M., 1963. Fluctuations of wet and dry years, Part I, Research data assembly and mathematical models. Colorado State University Hydrology Paper 1, 55 pp. (Available from Department of Earth Resources, Colorado State University, Fort Collins, CO 80523).
    • (1963) , Issue.PART 1 , pp. 55
    • Yevjevich, V.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.