-
1
-
-
0345257361
-
Short-term water level prediction using neural networks and neuro-fuzzy approach
-
Bazartseren B., Hildebrandt G., and Holz K.-P. Short-term water level prediction using neural networks and neuro-fuzzy approach. Neurocomputing 55 (2003) 439-450
-
(2003)
Neurocomputing
, vol.55
, pp. 439-450
-
-
Bazartseren, B.1
Hildebrandt, G.2
Holz, K.-P.3
-
2
-
-
33746834358
-
Identification of support vector machines for runoff modeling
-
Bray M., and Han D. Identification of support vector machines for runoff modeling. Journal of Hydroinformatics 6 4 (2004) 265-280
-
(2004)
Journal of Hydroinformatics
, vol.6
, Issue.4
, pp. 265-280
-
-
Bray, M.1
Han, D.2
-
3
-
-
0037428019
-
Estuary water-stage forecasting by using radial basis function neural network
-
Chang F.-J., and Chen Y.-C. Estuary water-stage forecasting by using radial basis function neural network. Journal of Hydrology 270 (2003) 158-166
-
(2003)
Journal of Hydrology
, vol.270
, pp. 158-166
-
-
Chang, F.-J.1
Chen, Y.-C.2
-
4
-
-
33746891141
-
-
Chang, C.-C., Lin, C.-J., 2001. LIBSVM: A Library for Support Vector Machines (Version 2.71, November 2004). Software available at: .
-
-
-
-
5
-
-
9444222028
-
River stage forecasting with particle swarm optimization
-
Chau K. River stage forecasting with particle swarm optimization. Lecture Notes in Computer Science 3029 (2004) 1166-1173
-
(2004)
Lecture Notes in Computer Science
, vol.3029
, pp. 1166-1173
-
-
Chau, K.1
-
6
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
Cherkassky V., and Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 17 (2004) 113-126
-
(2004)
Neural Networks
, vol.17
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.2
-
7
-
-
1642578192
-
Modelling of river discharges and rainfall using radial basis function networks based on support vector regression
-
Choy K.Y., and Chan C.W. Modelling of river discharges and rainfall using radial basis function networks based on support vector regression. International Journal of Systems Science 34 14-15 (2003) 763-773
-
(2003)
International Journal of Systems Science
, vol.34
, Issue.14-15
, pp. 763-773
-
-
Choy, K.Y.1
Chan, C.W.2
-
8
-
-
0035398081
-
Model induction with support vector machines: introduction and applications
-
Dibike Y.B., Velickov S., Solomatine D., and Abbott M.B. Model induction with support vector machines: introduction and applications. Journal of Computing in Civil Engineering 15 3 (2001) 208-216
-
(2001)
Journal of Computing in Civil Engineering
, vol.15
, Issue.3
, pp. 208-216
-
-
Dibike, Y.B.1
Velickov, S.2
Solomatine, D.3
Abbott, M.B.4
-
10
-
-
0028667768
-
A flood routing Muskingum type simulation and forecasting model based on level data alone
-
Franchini M., and Lamberti P. A flood routing Muskingum type simulation and forecasting model based on level data alone. Water Resources Research 30 7 (1994) 2183-2196
-
(1994)
Water Resources Research
, vol.30
, Issue.7
, pp. 2183-2196
-
-
Franchini, M.1
Lamberti, P.2
-
11
-
-
33746914260
-
Support vector machines identification for runoff modeling
-
Liong S.Y., Phoon K.K., and Babovic V. (Eds). Singapore, 21-24 June 2004, World Scientific Publishing Co., Singapore
-
Han D., and Cluckie I. Support vector machines identification for runoff modeling. In: Liong S.Y., Phoon K.K., and Babovic V. (Eds). Proceedings of the Sixth International Conference on Hydroinformatics. Singapore, 21-24 June 2004 (2004), World Scientific Publishing Co., Singapore
-
(2004)
Proceedings of the Sixth International Conference on Hydroinformatics
-
-
Han, D.1
Cluckie, I.2
-
12
-
-
33746908452
-
-
Hsu, C.-W., Chang, C.-C., Lin, C.-J., 2003. A Practical Guide to Support Vector Classification. Available at: .
-
-
-
-
13
-
-
0033865072
-
Precipitation uncertainty processor for probabilistic river stage forecasting
-
Kelly K.S., and Krzysztofowicz R. Precipitation uncertainty processor for probabilistic river stage forecasting. Water Resources Research 36 9 (2000) 2643-2653
-
(2000)
Water Resources Research
, vol.36
, Issue.9
, pp. 2643-2653
-
-
Kelly, K.S.1
Krzysztofowicz, R.2
-
14
-
-
0035425901
-
Integrator of uncertainties for probabilistic river stage forecasting: precipitation-dependent model
-
Krzysztofowicz R. Integrator of uncertainties for probabilistic river stage forecasting: precipitation-dependent model. Journal of Hydrology 249 (2001) 69-85
-
(2001)
Journal of Hydrology
, vol.249
, pp. 69-85
-
-
Krzysztofowicz, R.1
-
15
-
-
0036846999
-
Bayesian system for probabilistic river stage forecasting
-
Krzysztofowicz R. Bayesian system for probabilistic river stage forecasting. Journal of Hydrology 268 (2002) 16-40
-
(2002)
Journal of Hydrology
, vol.268
, pp. 16-40
-
-
Krzysztofowicz, R.1
-
16
-
-
0035425631
-
Hydrologic uncertainty processor for probabilistic river stage forecasting: Precipitation-dependent model
-
Krzysztofowicz R., and Herr H.D. Hydrologic uncertainty processor for probabilistic river stage forecasting: Precipitation-dependent model. Journal of Hydrology 249 (2001) 46-68
-
(2001)
Journal of Hydrology
, vol.249
, pp. 46-68
-
-
Krzysztofowicz, R.1
Herr, H.D.2
-
17
-
-
0033735880
-
Hydrologic uncertainty processor for probabilistic river stage forecasting
-
Krzysztofowicz R., and Kelly K.S. Hydrologic uncertainty processor for probabilistic river stage forecasting. Water Resources Research 36 11 (2000) 3265-3277
-
(2000)
Water Resources Research
, vol.36
, Issue.11
, pp. 3265-3277
-
-
Krzysztofowicz, R.1
Kelly, K.S.2
-
20
-
-
0002941010
-
Support vector machines for dynamic reconstruction of a chaotic system
-
Schölkopf B., Burges J., and Smola A. (Eds), MIT Press, Cambridge, MA
-
Mattera D., and Haykin S. Support vector machines for dynamic reconstruction of a chaotic system. In: Schölkopf B., Burges J., and Smola A. (Eds). Advances in Kernel Methods Support Vector Machine (1999), MIT Press, Cambridge, MA
-
(1999)
Advances in Kernel Methods Support Vector Machine
-
-
Mattera, D.1
Haykin, S.2
-
21
-
-
0033381989
-
Applying soft computing approaches to river level forecasting
-
See L., and Openshaw S. Applying soft computing approaches to river level forecasting. Hydrological Sciences Journal 44 5 (1999) 763-778
-
(1999)
Hydrological Sciences Journal
, vol.44
, Issue.5
, pp. 763-778
-
-
See, L.1
Openshaw, S.2
-
22
-
-
0034254025
-
A hybrid multi-model approach to river level forecasting
-
See L., and Openshaw S. A hybrid multi-model approach to river level forecasting. Hydrological Sciences Journal 45 4 (2000) 523-536
-
(2000)
Hydrological Sciences Journal
, vol.45
, Issue.4
, pp. 523-536
-
-
See, L.1
Openshaw, S.2
-
23
-
-
0013394082
-
On the need for benchmarks in hydrological modelling
-
Seibert J. On the need for benchmarks in hydrological modelling. Hydrological Processes 15 (2001) 1063-1064
-
(2001)
Hydrological Processes
, vol.15
, pp. 1063-1064
-
-
Seibert, J.1
-
24
-
-
33746868832
-
Identifying optimal training data set - a new approach
-
Liong S.Y., Phoon K.K., and Babovic V. (Eds). Singapore, 21-24 June 2004, World Scientific Publishing Co., Singapore
-
Sivapragasam C., and Liong S.-Y. Identifying optimal training data set - a new approach. In: Liong S.Y., Phoon K.K., and Babovic V. (Eds). Proceedings of the Sixth International Conference on Hydroinformatics. Singapore, 21-24 June 2004 (2004), World Scientific Publishing Co., Singapore
-
(2004)
Proceedings of the Sixth International Conference on Hydroinformatics
-
-
Sivapragasam, C.1
Liong, S.-Y.2
-
25
-
-
18144390148
-
Flow categorization model for improving forecasting
-
Sivapragasam C., and Liong S.-Y. Flow categorization model for improving forecasting. Nordic Hydrology 36 1 (2005) 37-48
-
(2005)
Nordic Hydrology
, vol.36
, Issue.1
, pp. 37-48
-
-
Sivapragasam, C.1
Liong, S.-Y.2
-
27
-
-
0031898654
-
River stage forecasting using artificial neural networks
-
Thirumalaiah K., and Deo M.C. River stage forecasting using artificial neural networks. Journal of Hydrologic Engineering 3 1 (1998) 26-32
-
(1998)
Journal of Hydrologic Engineering
, vol.3
, Issue.1
, pp. 26-32
-
-
Thirumalaiah, K.1
Deo, M.C.2
-
29
-
-
0032594959
-
An overview of statistical learning theory
-
Vapnik V.N. An overview of statistical learning theory. IEEE Transactions on Neural Networks 10 5 (1999) 988-999
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.5
, pp. 988-999
-
-
Vapnik, V.N.1
-
30
-
-
84919454581
-
EC-SVM approach for real-time hydrologic forecasting
-
Yu X., Liong S.-Y., and Babovic V. EC-SVM approach for real-time hydrologic forecasting. Journal of Hydroinformatics 6 3 (2004) 209-223
-
(2004)
Journal of Hydroinformatics
, vol.6
, Issue.3
, pp. 209-223
-
-
Yu, X.1
Liong, S.-Y.2
Babovic, V.3
|