메뉴 건너뛰기




Volumn 328, Issue 3-4, 2006, Pages 704-716

Support vector regression for real-time flood stage forecasting

Author keywords

Flood forecasting; Parameter optimization; Support vector regression; Water stage

Indexed keywords

ARTIFICIAL INTELLIGENCE; HYDROLOGY; MATHEMATICAL MODELS; OPTIMIZATION; REAL TIME SYSTEMS; SENSITIVITY ANALYSIS; STATISTICAL METHODS; WEATHER FORECASTING;

EID: 33746916489     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2006.01.021     Document Type: Article
Times cited : (492)

References (30)
  • 1
    • 0345257361 scopus 로고    scopus 로고
    • Short-term water level prediction using neural networks and neuro-fuzzy approach
    • Bazartseren B., Hildebrandt G., and Holz K.-P. Short-term water level prediction using neural networks and neuro-fuzzy approach. Neurocomputing 55 (2003) 439-450
    • (2003) Neurocomputing , vol.55 , pp. 439-450
    • Bazartseren, B.1    Hildebrandt, G.2    Holz, K.-P.3
  • 2
    • 33746834358 scopus 로고    scopus 로고
    • Identification of support vector machines for runoff modeling
    • Bray M., and Han D. Identification of support vector machines for runoff modeling. Journal of Hydroinformatics 6 4 (2004) 265-280
    • (2004) Journal of Hydroinformatics , vol.6 , Issue.4 , pp. 265-280
    • Bray, M.1    Han, D.2
  • 3
    • 0037428019 scopus 로고    scopus 로고
    • Estuary water-stage forecasting by using radial basis function neural network
    • Chang F.-J., and Chen Y.-C. Estuary water-stage forecasting by using radial basis function neural network. Journal of Hydrology 270 (2003) 158-166
    • (2003) Journal of Hydrology , vol.270 , pp. 158-166
    • Chang, F.-J.1    Chen, Y.-C.2
  • 4
    • 33746891141 scopus 로고    scopus 로고
    • Chang, C.-C., Lin, C.-J., 2001. LIBSVM: A Library for Support Vector Machines (Version 2.71, November 2004). Software available at: .
  • 5
    • 9444222028 scopus 로고    scopus 로고
    • River stage forecasting with particle swarm optimization
    • Chau K. River stage forecasting with particle swarm optimization. Lecture Notes in Computer Science 3029 (2004) 1166-1173
    • (2004) Lecture Notes in Computer Science , vol.3029 , pp. 1166-1173
    • Chau, K.1
  • 6
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., and Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 17 (2004) 113-126
    • (2004) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 7
    • 1642578192 scopus 로고    scopus 로고
    • Modelling of river discharges and rainfall using radial basis function networks based on support vector regression
    • Choy K.Y., and Chan C.W. Modelling of river discharges and rainfall using radial basis function networks based on support vector regression. International Journal of Systems Science 34 14-15 (2003) 763-773
    • (2003) International Journal of Systems Science , vol.34 , Issue.14-15 , pp. 763-773
    • Choy, K.Y.1    Chan, C.W.2
  • 10
    • 0028667768 scopus 로고
    • A flood routing Muskingum type simulation and forecasting model based on level data alone
    • Franchini M., and Lamberti P. A flood routing Muskingum type simulation and forecasting model based on level data alone. Water Resources Research 30 7 (1994) 2183-2196
    • (1994) Water Resources Research , vol.30 , Issue.7 , pp. 2183-2196
    • Franchini, M.1    Lamberti, P.2
  • 11
    • 33746914260 scopus 로고    scopus 로고
    • Support vector machines identification for runoff modeling
    • Liong S.Y., Phoon K.K., and Babovic V. (Eds). Singapore, 21-24 June 2004, World Scientific Publishing Co., Singapore
    • Han D., and Cluckie I. Support vector machines identification for runoff modeling. In: Liong S.Y., Phoon K.K., and Babovic V. (Eds). Proceedings of the Sixth International Conference on Hydroinformatics. Singapore, 21-24 June 2004 (2004), World Scientific Publishing Co., Singapore
    • (2004) Proceedings of the Sixth International Conference on Hydroinformatics
    • Han, D.1    Cluckie, I.2
  • 12
    • 33746908452 scopus 로고    scopus 로고
    • Hsu, C.-W., Chang, C.-C., Lin, C.-J., 2003. A Practical Guide to Support Vector Classification. Available at: .
  • 13
    • 0033865072 scopus 로고    scopus 로고
    • Precipitation uncertainty processor for probabilistic river stage forecasting
    • Kelly K.S., and Krzysztofowicz R. Precipitation uncertainty processor for probabilistic river stage forecasting. Water Resources Research 36 9 (2000) 2643-2653
    • (2000) Water Resources Research , vol.36 , Issue.9 , pp. 2643-2653
    • Kelly, K.S.1    Krzysztofowicz, R.2
  • 14
    • 0035425901 scopus 로고    scopus 로고
    • Integrator of uncertainties for probabilistic river stage forecasting: precipitation-dependent model
    • Krzysztofowicz R. Integrator of uncertainties for probabilistic river stage forecasting: precipitation-dependent model. Journal of Hydrology 249 (2001) 69-85
    • (2001) Journal of Hydrology , vol.249 , pp. 69-85
    • Krzysztofowicz, R.1
  • 15
    • 0036846999 scopus 로고    scopus 로고
    • Bayesian system for probabilistic river stage forecasting
    • Krzysztofowicz R. Bayesian system for probabilistic river stage forecasting. Journal of Hydrology 268 (2002) 16-40
    • (2002) Journal of Hydrology , vol.268 , pp. 16-40
    • Krzysztofowicz, R.1
  • 16
    • 0035425631 scopus 로고    scopus 로고
    • Hydrologic uncertainty processor for probabilistic river stage forecasting: Precipitation-dependent model
    • Krzysztofowicz R., and Herr H.D. Hydrologic uncertainty processor for probabilistic river stage forecasting: Precipitation-dependent model. Journal of Hydrology 249 (2001) 46-68
    • (2001) Journal of Hydrology , vol.249 , pp. 46-68
    • Krzysztofowicz, R.1    Herr, H.D.2
  • 17
    • 0033735880 scopus 로고    scopus 로고
    • Hydrologic uncertainty processor for probabilistic river stage forecasting
    • Krzysztofowicz R., and Kelly K.S. Hydrologic uncertainty processor for probabilistic river stage forecasting. Water Resources Research 36 11 (2000) 3265-3277
    • (2000) Water Resources Research , vol.36 , Issue.11 , pp. 3265-3277
    • Krzysztofowicz, R.1    Kelly, K.S.2
  • 20
    • 0002941010 scopus 로고    scopus 로고
    • Support vector machines for dynamic reconstruction of a chaotic system
    • Schölkopf B., Burges J., and Smola A. (Eds), MIT Press, Cambridge, MA
    • Mattera D., and Haykin S. Support vector machines for dynamic reconstruction of a chaotic system. In: Schölkopf B., Burges J., and Smola A. (Eds). Advances in Kernel Methods Support Vector Machine (1999), MIT Press, Cambridge, MA
    • (1999) Advances in Kernel Methods Support Vector Machine
    • Mattera, D.1    Haykin, S.2
  • 21
    • 0033381989 scopus 로고    scopus 로고
    • Applying soft computing approaches to river level forecasting
    • See L., and Openshaw S. Applying soft computing approaches to river level forecasting. Hydrological Sciences Journal 44 5 (1999) 763-778
    • (1999) Hydrological Sciences Journal , vol.44 , Issue.5 , pp. 763-778
    • See, L.1    Openshaw, S.2
  • 22
    • 0034254025 scopus 로고    scopus 로고
    • A hybrid multi-model approach to river level forecasting
    • See L., and Openshaw S. A hybrid multi-model approach to river level forecasting. Hydrological Sciences Journal 45 4 (2000) 523-536
    • (2000) Hydrological Sciences Journal , vol.45 , Issue.4 , pp. 523-536
    • See, L.1    Openshaw, S.2
  • 23
    • 0013394082 scopus 로고    scopus 로고
    • On the need for benchmarks in hydrological modelling
    • Seibert J. On the need for benchmarks in hydrological modelling. Hydrological Processes 15 (2001) 1063-1064
    • (2001) Hydrological Processes , vol.15 , pp. 1063-1064
    • Seibert, J.1
  • 24
    • 33746868832 scopus 로고    scopus 로고
    • Identifying optimal training data set - a new approach
    • Liong S.Y., Phoon K.K., and Babovic V. (Eds). Singapore, 21-24 June 2004, World Scientific Publishing Co., Singapore
    • Sivapragasam C., and Liong S.-Y. Identifying optimal training data set - a new approach. In: Liong S.Y., Phoon K.K., and Babovic V. (Eds). Proceedings of the Sixth International Conference on Hydroinformatics. Singapore, 21-24 June 2004 (2004), World Scientific Publishing Co., Singapore
    • (2004) Proceedings of the Sixth International Conference on Hydroinformatics
    • Sivapragasam, C.1    Liong, S.-Y.2
  • 25
    • 18144390148 scopus 로고    scopus 로고
    • Flow categorization model for improving forecasting
    • Sivapragasam C., and Liong S.-Y. Flow categorization model for improving forecasting. Nordic Hydrology 36 1 (2005) 37-48
    • (2005) Nordic Hydrology , vol.36 , Issue.1 , pp. 37-48
    • Sivapragasam, C.1    Liong, S.-Y.2
  • 27
    • 0031898654 scopus 로고    scopus 로고
    • River stage forecasting using artificial neural networks
    • Thirumalaiah K., and Deo M.C. River stage forecasting using artificial neural networks. Journal of Hydrologic Engineering 3 1 (1998) 26-32
    • (1998) Journal of Hydrologic Engineering , vol.3 , Issue.1 , pp. 26-32
    • Thirumalaiah, K.1    Deo, M.C.2
  • 29
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik V.N. An overview of statistical learning theory. IEEE Transactions on Neural Networks 10 5 (1999) 988-999
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 30
    • 84919454581 scopus 로고    scopus 로고
    • EC-SVM approach for real-time hydrologic forecasting
    • Yu X., Liong S.-Y., and Babovic V. EC-SVM approach for real-time hydrologic forecasting. Journal of Hydroinformatics 6 3 (2004) 209-223
    • (2004) Journal of Hydroinformatics , vol.6 , Issue.3 , pp. 209-223
    • Yu, X.1    Liong, S.-Y.2    Babovic, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.