메뉴 건너뛰기




Volumn 420-421, Issue , 2012, Pages 159-170

Integrated neural networks for monthly river flow estimation in arid inland basin of Northwest China

Author keywords

Artificial Neural Network; Northwest China; River flow; Simulation

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CONCEPTUAL MODEL; EFFECTIVE TOOL; FUNCTIONAL RELATIONSHIP; HYDROLOGICAL FACTORS; HYDROLOGICAL PROCESS; LOCAL LINEAR REGRESSION; LOWER PRECISION; NONLINEAR MAPPINGS; NORTHWEST CHINA; PHYSICAL CHARACTERISTICS; RAINFALL DISTRIBUTION; RAINFALL RUNOFF; RELATIVE ERRORS; RIVER FLOW; RIVER FLOW MODELS; ROOT MEAN SQUARE ERRORS; SEMI-DISTRIBUTED MODEL; SIMULATION; SPATIAL VARIATIONS; STREAMFLOW MODELING; STREAMFLOW MODELS; WATER RESOURCES MANAGEMENT;

EID: 84856234248     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2011.11.054     Document Type: Article
Times cited : (55)

References (37)
  • 1
    • 0003491818 scopus 로고    scopus 로고
    • Crop evapotranspiration:guidelines for computing crop requirements
    • FAO Irrigation and Drainage Paper No. 56. FAO, Rome, Italy.
    • Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration:guidelines for computing crop requirements. FAO Irrigation and Drainage Paper No. 56. FAO, Rome, Italy.
    • (1998)
    • Allen, R.G.1    Pereira, L.S.2    Raes, D.3    Smith, M.4
  • 2
    • 28844473522 scopus 로고    scopus 로고
    • Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques
    • Ashu J., Sanaga S. Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques. J. Hydrol. 2006, 317:291-306.
    • (2006) J. Hydrol. , vol.317 , pp. 291-306
    • Ashu, J.1    Sanaga, S.2
  • 3
    • 33748929857 scopus 로고    scopus 로고
    • Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River
    • Chau K.W. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J. Hydrol. 2006, 329(3-4):363-367.
    • (2006) J. Hydrol. , vol.329 , Issue.3-4 , pp. 363-367
    • Chau, K.W.1
  • 4
    • 31044455061 scopus 로고    scopus 로고
    • Integration of artificial neural networks with conceptual models in rainfall-runoff modeling
    • Chen J., Adams B.J. Integration of artificial neural networks with conceptual models in rainfall-runoff modeling. J. Hydrol. 2006, 318:232-249.
    • (2006) J. Hydrol. , vol.318 , pp. 232-249
    • Chen, J.1    Adams, B.J.2
  • 5
    • 0036845179 scopus 로고    scopus 로고
    • Combining a fuzzy optimal model with a genetic algorithm to solve multiobjective rainfall-runoff model calibration
    • Cheng C.T., Ou C.P., Chau K.W. Combining a fuzzy optimal model with a genetic algorithm to solve multiobjective rainfall-runoff model calibration. J. Hydrol. 2002, 268(1-4):72-86.
    • (2002) J. Hydrol. , vol.268 , Issue.1-4 , pp. 72-86
    • Cheng, C.T.1    Ou, C.P.2    Chau, K.W.3
  • 6
    • 23044443211 scopus 로고    scopus 로고
    • Application of generalized regression neural networks to intermittent flow forecasting and estimation
    • Cigizogilu H.K. Application of generalized regression neural networks to intermittent flow forecasting and estimation. J. Hydrol. Eng. 2005, 10(4):336-341.
    • (2005) J. Hydrol. Eng. , vol.10 , Issue.4 , pp. 336-341
    • Cigizogilu, H.K.1
  • 7
    • 77951856333 scopus 로고    scopus 로고
    • Combining semi-distributed process-based and data-driven models in flow simulation: a case study of the Meuse river basin
    • Corzo G.A., Solomatine D.P., Hidayat, de Wit M., Werner M., Uhlenbrook S., Price R.K. Combining semi-distributed process-based and data-driven models in flow simulation: a case study of the Meuse river basin. Hydrol. Earth Syst. Sci. 2009, 13:1619-1634.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 1619-1634
    • Corzo, G.A.1    Solomatine, D.P.2    Hidayat3    de Wit, M.4    Werner, M.5    Uhlenbrook, S.6    Price, R.K.7
  • 8
    • 79952696637 scopus 로고    scopus 로고
    • Simulation for response of crop yield to soil moisture and salinity with artificial neural network
    • Dai X., Huo Z., Wang H. Simulation for response of crop yield to soil moisture and salinity with artificial neural network. Field Crops Res. 2011, 121:441-449.
    • (2011) Field Crops Res. , vol.121 , pp. 441-449
    • Dai, X.1    Huo, Z.2    Wang, H.3
  • 9
    • 33745961505 scopus 로고    scopus 로고
    • Symbolic rule extraction with a scaled conjugate gradient version of CLARION
    • Neural Networks 2005, IEEE International Joint Conference.
    • Falas, T., Stafylopatis, A., 2005. Symbolic rule extraction with a scaled conjugate gradient version of CLARION. In: Neural Networks 2005, IEEE International Joint Conference, vol. 2, pp. 845-848.
    • (2005) , vol.2 , pp. 845-848
    • Falas, T.1    Stafylopatis, A.2
  • 10
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi K. On the approximate realization of continuous mappings by neural networks. Neural Networks 1989, 2:183-192.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 11
    • 77955056913 scopus 로고    scopus 로고
    • Projected streamflow in the Huaihe River Basin (2010-2100) using artificial neural network
    • Gao C., Gemmer M., Zeng X., Liu B., Su B., Wen Y. Projected streamflow in the Huaihe River Basin (2010-2100) using artificial neural network. Stochastic Environ. Res. Risk Assess. 2010, 24(5):685-697.
    • (2010) Stochastic Environ. Res. Risk Assess. , vol.24 , Issue.5 , pp. 685-697
    • Gao, C.1    Gemmer, M.2    Zeng, X.3    Liu, B.4    Su, B.5    Wen, Y.6
  • 12
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks 1989, 2:359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 13
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K., Gupta H.V., Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 1995, 31(10):2517-2530.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 14
    • 49249124059 scopus 로고    scopus 로고
    • Effect of climate changes and water-related human activities on annual streamflows of the Shiyang River basin in arid north-west China
    • Huo Z., Feng S., Kang S., Li W., Chen S. Effect of climate changes and water-related human activities on annual streamflows of the Shiyang River basin in arid north-west China. Hydrol. Process. 2008, 22:3155-3167.
    • (2008) Hydrol. Process. , vol.22 , pp. 3155-3167
    • Huo, Z.1    Feng, S.2    Kang, S.3    Li, W.4    Chen, S.5
  • 15
    • 30444441291 scopus 로고    scopus 로고
    • Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction
    • Jeong D., Kim Y. Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction. Hydrol. Process. 2005, 19:3819-3835.
    • (2005) Hydrol. Process. , vol.19 , pp. 3819-3835
    • Jeong, D.1    Kim, Y.2
  • 17
    • 2942567681 scopus 로고    scopus 로고
    • The impact of human activities on the water-land environment of the Shiyang River basin, an arid region in Northwest China
    • Kang S., Su X., Tong L. The impact of human activities on the water-land environment of the Shiyang River basin, an arid region in Northwest China. Hydrol. Sci. Sci. Hydrol. 2004, 49(3):413-426.
    • (2004) Hydrol. Sci. Sci. Hydrol. , vol.49 , Issue.3 , pp. 413-426
    • Kang, S.1    Su, X.2    Tong, L.3
  • 18
    • 85001858096 scopus 로고    scopus 로고
    • Discussion on rainfall runoff modeling using artificial neural networks
    • Kumar A., Minocha K. Discussion on rainfall runoff modeling using artificial neural networks. J. Hydrol. Eng. 2001, 6(2):176-177.
    • (2001) J. Hydrol. Eng. , vol.6 , Issue.2 , pp. 176-177
    • Kumar, A.1    Minocha, K.2
  • 19
    • 28844470673 scopus 로고    scopus 로고
    • A web-based flood forecasting system for Shuangpai region
    • Li X.Y., Chau K.W., Cheng C.T., Li Y.S. A web-based flood forecasting system for Shuangpai region. Adv. Eng. Softw. 2006, 37(3):146-158.
    • (2006) Adv. Eng. Softw. , vol.37 , Issue.3 , pp. 146-158
    • Li, X.Y.1    Chau, K.W.2    Cheng, C.T.3    Li, Y.S.4
  • 20
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin J.Y., Cheng C.T., Chau K.W. Using support vector machines for long-term discharge prediction. J. Hydrol. Sci. 2006, 51(4):599-612.
    • (2006) J. Hydrol. Sci. , vol.51 , Issue.4 , pp. 599-612
    • Lin, J.Y.1    Cheng, C.T.2    Chau, K.W.3
  • 22
    • 78650952042 scopus 로고    scopus 로고
    • Comparative study of neural network, fuzzy logic and linear transfer function techniques in daily rainfall-runoff modelling under different input domains
    • Lohani A.K., Goel N.K., Bhatia K.K.S. Comparative study of neural network, fuzzy logic and linear transfer function techniques in daily rainfall-runoff modelling under different input domains. Hydrol. Process. 2011, 25(2):175-193.
    • (2011) Hydrol. Process. , vol.25 , Issue.2 , pp. 175-193
    • Lohani, A.K.1    Goel, N.K.2    Bhatia, K.K.S.3
  • 23
    • 40849106248 scopus 로고    scopus 로고
    • Analysis of impacts of climate variability and human activity on streamflow for a river basin in arid region of Northwest China
    • Ma Z., Kang S., Zhang L., Tong L., Su X. Analysis of impacts of climate variability and human activity on streamflow for a river basin in arid region of Northwest China. J. Hydrol. 2008, 352:239-249.
    • (2008) J. Hydrol. , vol.352 , pp. 239-249
    • Ma, Z.1    Kang, S.2    Zhang, L.3    Tong, L.4    Su, X.5
  • 24
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moler M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 1993, 6(4):525-533.
    • (1993) Neural Networks , vol.6 , Issue.4 , pp. 525-533
    • Moler, M.F.1
  • 25
    • 33645973241 scopus 로고    scopus 로고
    • Monthly runoff simulation: comparing and combining conceptual and neural network models
    • Nilsson P., Uvo C.B., Berndtsson R. Monthly runoff simulation: comparing and combining conceptual and neural network models. J. Hydrol. 2006, 321:344-363.
    • (2006) J. Hydrol. , vol.321 , pp. 344-363
    • Nilsson, P.1    Uvo, C.B.2    Berndtsson, R.3
  • 26
    • 65749094852 scopus 로고    scopus 로고
    • Runoff prediction using an hybrid modeling scheme
    • Remesan R., Shamim M.A., Han D., Mathew J. Runoff prediction using an hybrid modeling scheme. J. Hydrol. 2009, 372:48-60.
    • (2009) J. Hydrol. , vol.372 , pp. 48-60
    • Remesan, R.1    Shamim, M.A.2    Han, D.3    Mathew, J.4
  • 27
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors. Nature 1986, 323:533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 28
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall runoff model using an artificial neural network
    • Sajikumar N., Thandaveswara B.S. A non-linear rainfall runoff model using an artificial neural network. J. Hydrol. 1999, 216:32-55.
    • (1999) J. Hydrol. , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 29
    • 0034739743 scopus 로고    scopus 로고
    • Application of a geographic information system for conceptual rainfall-runoff modeling
    • Schumann A.H., Funke R., Schultz G.A. Application of a geographic information system for conceptual rainfall-runoff modeling. J. Hydrol. 2000, 240:45-61.
    • (2000) J. Hydrol. , vol.240 , pp. 45-61
    • Schumann, A.H.1    Funke, R.2    Schultz, G.A.3
  • 31
    • 0030274099 scopus 로고    scopus 로고
    • Application of an empirical infiltration equation in the SMAR conceptual model
    • Tan B.Q., Connor K.M. Application of an empirical infiltration equation in the SMAR conceptual model. J. Hydrol. 1996, 185:275-295.
    • (1996) J. Hydrol. , vol.185 , pp. 275-295
    • Tan, B.Q.1    Connor, K.M.2
  • 32
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • Tokar A.S., Markus M. Precipitation-runoff modeling using artificial neural networks and conceptual models. J. Hydrol. Eng. 2000, 5(2):156-161.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 33
    • 63649151694 scopus 로고    scopus 로고
    • River flow estimation from upstream flow records by artificial intelligence method
    • Turan M.E., Yurdusev M.A. River flow estimation from upstream flow records by artificial intelligence method. J. Hydrol. 2009, 369:71-77.
    • (2009) J. Hydrol. , vol.369 , pp. 71-77
    • Turan, M.E.1    Yurdusev, M.A.2
  • 34
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang W.C., Chau K.W., Cheng C.T., Qiu L. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 2009, 374(3-4):294-306.
    • (2009) J. Hydrol. , vol.374 , Issue.3-4 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 35
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
    • Wu C.L., Chau K.W., Li Y.S. Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour. Res. 2009, 45:W08432. 10.1029/2007WR006737.
    • (2009) Water Resour. Res. , vol.45
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 36
    • 0037466126 scopus 로고    scopus 로고
    • Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over catchments
    • Zhang B., Govindaraju R.S. Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over catchments. J. Hydrol. 2003, 273(1-4):18-34.
    • (2003) J. Hydrol. , vol.273 , Issue.1-4 , pp. 18-34
    • Zhang, B.1    Govindaraju, R.S.2
  • 37
    • 0000626643 scopus 로고
    • The Xinanjiang model
    • Water Resources Publications, Littleton, CO, V.P. Singh (Ed.)
    • Zhao R.J., Liu X.R. The Xinanjiang model. Computer Models of Catchment Hydrology 1995, Water Resources Publications, Littleton, CO. V.P. Singh (Ed.).
    • (1995) Computer Models of Catchment Hydrology
    • Zhao, R.J.1    Liu, X.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.