메뉴 건너뛰기




Volumn 391, Issue 3-4, 2010, Pages 248-262

Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall-runoff modeling

Author keywords

Adaptive Network based Fuzzy Inference System (ANFIS); Event based; Input selection; Rainfall runoff modeling; Runoff forecasting

Indexed keywords

ADAPTIVE NETWORK BASED FUZZY INFERENCE SYSTEM; EVENT-BASED; INPUT SELECTION; RAINFALL-RUNOFF MODELING; RUNOFF FORECASTING;

EID: 77956263390     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2010.07.023     Document Type: Article
Times cited : (105)

References (43)
  • 1
    • 33750953806 scopus 로고    scopus 로고
    • Water allocation improvement in river basin using adaptive neural fuzzy reinforcement learning approach
    • Abolpour B., Javan M., Karamouz M. Water allocation improvement in river basin using adaptive neural fuzzy reinforcement learning approach. Applied Soft Computing Journal 2007, 7:265-285.
    • (2007) Applied Soft Computing Journal , vol.7 , pp. 265-285
    • Abolpour, B.1    Javan, M.2    Karamouz, M.3
  • 2
    • 34249794005 scopus 로고    scopus 로고
    • Timing error correction procedure applied to neural network rainfall-runoff modelling
    • Abrahart R.J., Heppenstall A.J., See L.M. Timing error correction procedure applied to neural network rainfall-runoff modelling. Hydrological Sciences Journal 2007, 52:414-431.
    • (2007) Hydrological Sciences Journal , vol.52 , pp. 414-431
    • Abrahart, R.J.1    Heppenstall, A.J.2    See, L.M.3
  • 3
    • 0016355478 scopus 로고
    • New look at the statistical model identification
    • AC
    • Akaike H. New look at the statistical model identification. IEEE Transactions on Automatic Control 1974, AC-19:716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 4
    • 14544280631 scopus 로고    scopus 로고
    • RSPOP: rough set-based pseudo outer-product fuzzy rule identification algorithm
    • Ang K.K., Quek C. RSPOP: rough set-based pseudo outer-product fuzzy rule identification algorithm. Neural Computation 2005, 17:205-243.
    • (2005) Neural Computation , vol.17 , pp. 205-243
    • Ang, K.K.1    Quek, C.2
  • 5
    • 33947572974 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff
    • Aqil M., Kita I., Yano A., Nishiyama S. A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. Journal of Hydrology 2007, 337:22-34.
    • (2007) Journal of Hydrology , vol.337 , pp. 22-34
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 6
    • 28444489651 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
    • Chang F.J., Chang Y.T. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advances in Water Resources 2006, 29:1-10.
    • (2006) Advances in Water Resources , vol.29 , pp. 1-10
    • Chang, F.J.1    Chang, Y.T.2
  • 7
    • 0035340711 scopus 로고    scopus 로고
    • A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction
    • Chang F.J., Chen Y.C. A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. Journal of Hydrology 2001, 245:153-164.
    • (2001) Journal of Hydrology , vol.245 , pp. 153-164
    • Chang, F.J.1    Chen, Y.C.2
  • 8
    • 33646075449 scopus 로고    scopus 로고
    • The strategy of building a flood forecast model by neuro-fuzzy network
    • Chen S.H., Lin Y.H., Chang L.C., Chang F.J. The strategy of building a flood forecast model by neuro-fuzzy network. Hydrological Processes 2006, 20:1525-1540.
    • (2006) Hydrological Processes , vol.20 , pp. 1525-1540
    • Chen, S.H.1    Lin, Y.H.2    Chang, L.C.3    Chang, F.J.4
  • 9
    • 58849091317 scopus 로고    scopus 로고
    • HebbR2-taffic: a novel application of neuro-fuzzy network for visual based traffic monitoring system
    • Cho S.Y., Quek C., Seah S.X., Chong C.H. HebbR2-taffic: a novel application of neuro-fuzzy network for visual based traffic monitoring system. Expert Systems with Applications 2009, 36:6343-6356.
    • (2009) Expert Systems with Applications , vol.36 , pp. 6343-6356
    • Cho, S.Y.1    Quek, C.2    Seah, S.X.3    Chong, C.H.4
  • 10
    • 47049118310 scopus 로고    scopus 로고
    • Comparison between kinematic wave and artificial neural network models in event-based runoff simulation for an overland plane
    • Chua L.H.C., Wong T.S.W., Sriramula L.K. Comparison between kinematic wave and artificial neural network models in event-based runoff simulation for an overland plane. Journal of Hydrology 2008, 357:337-348.
    • (2008) Journal of Hydrology , vol.357 , pp. 337-348
    • Chua, L.H.C.1    Wong, T.S.W.2    Sriramula, L.K.3
  • 11
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modelling
    • Dawson C.W., Wilby R. An artificial neural network approach to rainfall-runoff modelling. Hydrological Sciences Journal 1998, 43:47-66.
    • (1998) Hydrological Sciences Journal , vol.43 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 12
    • 0033512986 scopus 로고    scopus 로고
    • A comparison of artificial neural networks used for river flow forecasting
    • Dawson C.W., Wilby R.L. A comparison of artificial neural networks used for river flow forecasting. Hydrology and Earth System Sciences 1999, 3:529-540.
    • (1999) Hydrology and Earth System Sciences , vol.3 , pp. 529-540
    • Dawson, C.W.1    Wilby, R.L.2
  • 13
    • 23744444467 scopus 로고    scopus 로고
    • Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation
    • de Vos N.J., Rientjes T.H.M. Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation. Hydrology and Earth System Sciences 2005, 9:111-126.
    • (2005) Hydrology and Earth System Sciences , vol.9 , pp. 111-126
    • de Vos, N.J.1    Rientjes, T.H.M.2
  • 14
    • 0031998129 scopus 로고    scopus 로고
    • Application example of neural networks for time series analysis: rainfall-runoff modeling
    • Furundzic D. Application example of neural networks for time series analysis: rainfall-runoff modeling. Signal Processing 1998, 64:383-396.
    • (1998) Signal Processing , vol.64 , pp. 383-396
    • Furundzic, D.1
  • 15
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K.-L., Gupta H.V., Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 1995, 31:2517-2530.
    • (1995) Water Resources Research , vol.31 , pp. 2517-2530
    • Hsu, K.-L.1    Gupta, H.V.2    Sorooshian, S.3
  • 16
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • Jain A., Sudheer K.P., Srinivasulu S. Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrological Processes 2004, 18:571-581.
    • (2004) Hydrological Processes , vol.18 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 22
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: survey in soft computing framework
    • Mitra S., Hayashi Y. Neuro-fuzzy rule generation: survey in soft computing framework. IEEE Transactions on Neural Networks 2000, 11:748-768.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 748-768
    • Mitra, S.1    Hayashi, Y.2
  • 24
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models. Part I - A discussion of principles
    • Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models. Part I - A discussion of principles. Journal of Hydrology 1970, 10:282-290.
    • (1970) Journal of Hydrology , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 26
    • 14844352523 scopus 로고    scopus 로고
    • Fuzzy computing based rainfall-runoff model for real time flood forecasting
    • Nayak P.C., Sudheer K.P., Ramasastri K.S. Fuzzy computing based rainfall-runoff model for real time flood forecasting. Hydrological Processes 2005, 19:955-968.
    • (2005) Hydrological Processes , vol.19 , pp. 955-968
    • Nayak, P.C.1    Sudheer, K.P.2    Ramasastri, K.S.3
  • 29
    • 31744432525 scopus 로고    scopus 로고
    • FITSK: online local learning with generic fuzzy input Takagi-Sugeno-Kang fuzzy framework for nonlinear system estimation
    • Quah K.H., Quek C. FITSK: online local learning with generic fuzzy input Takagi-Sugeno-Kang fuzzy framework for nonlinear system estimation. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 2006, 36:166-178.
    • (2006) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.36 , pp. 166-178
    • Quah, K.H.1    Quek, C.2
  • 31
    • 4644296256 scopus 로고    scopus 로고
    • Predicting catchment flow in a semi-arid region via an artificial neural network technique
    • Riad S., Mania J., Bouchaou L., Najjar Y. Predicting catchment flow in a semi-arid region via an artificial neural network technique. Hydrological Processes 2004, 18:2387-2393.
    • (2004) Hydrological Processes , vol.18 , pp. 2387-2393
    • Riad, S.1    Mania, J.2    Bouchaou, L.3    Najjar, Y.4
  • 32
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen J. Modeling by shortest data description. Automatica 1978, 14:465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 33
    • 34047254142 scopus 로고    scopus 로고
    • Suitability of different neural networks in daily flow forecasting
    • Singh P., Deo M.C. Suitability of different neural networks in daily flow forecasting. Applied Soft Computing Journal 2007, 7:968-978.
    • (2007) Applied Soft Computing Journal , vol.7 , pp. 968-978
    • Singh, P.1    Deo, M.C.2
  • 34
    • 37549060590 scopus 로고    scopus 로고
    • Runoff analysis for a small watershed of tono area Japan by back propagation artificial neural network with seasonal data
    • Sohail A., Watanabe K., Takeuchi S. Runoff analysis for a small watershed of tono area Japan by back propagation artificial neural network with seasonal data. Water Resources Management 2008, 22:1-22.
    • (2008) Water Resources Management , vol.22 , pp. 1-22
    • Sohail, A.1    Watanabe, K.2    Takeuchi, S.3
  • 35
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man and Cybernetics 1985, 15:116-132.
    • (1985) IEEE Transactions on Systems, Man and Cybernetics , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 36
    • 33751081243 scopus 로고    scopus 로고
    • ANN and fuzzy logic models for simulating event-based rainfall-runoff
    • Tayfur G., Singh V.P. ANN and fuzzy logic models for simulating event-based rainfall-runoff. Journal of Hydraulic Engineering 2006, 132:1321-1330.
    • (2006) Journal of Hydraulic Engineering , vol.132 , pp. 1321-1330
    • Tayfur, G.1    Singh, V.P.2
  • 37
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • Tokar A.S., Markus M. Precipitation-runoff modeling using artificial neural networks and conceptual models. Journal of Hydrologic Engineering 2000, 5:156-161.
    • (2000) Journal of Hydrologic Engineering , vol.5 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 38
    • 0026711368 scopus 로고
    • Improving the convergence of the back-propagation algorithm
    • Van Ooyen A., Nienhuis B. Improving the convergence of the back-propagation algorithm. Neural Networks 1992, 5:465-471.
    • (1992) Neural Networks , vol.5 , pp. 465-471
    • Van Ooyen, A.1    Nienhuis, B.2
  • 40
    • 54249137704 scopus 로고    scopus 로고
    • Optimum rainfall interval and manning's roughness coefficient for runoff simulation
    • Wong T.S.W. Optimum rainfall interval and manning's roughness coefficient for runoff simulation. Journal of Hydrologic Engineering 2008, 13:1097-1102.
    • (2008) Journal of Hydrologic Engineering , vol.13 , pp. 1097-1102
    • Wong, T.S.W.1
  • 41
    • 58849094959 scopus 로고    scopus 로고
    • Modelling level change in lakes using neuro-fuzzy and artificial neural networks
    • Yarar A., Onucyildiz M., Copty N.K. Modelling level change in lakes using neuro-fuzzy and artificial neural networks. Journal of Hydrology 2009, 365:329-334.
    • (2009) Journal of Hydrology , vol.365 , pp. 329-334
    • Yarar, A.1    Onucyildiz, M.2    Copty, N.K.3
  • 42
    • 45849090754 scopus 로고    scopus 로고
    • Application of artificial intelligence models in water quality forecasting
    • Yeon I.S., Kim J.H., Jun K.W. Application of artificial intelligence models in water quality forecasting. Environmental Technology 2008, 29:625-631.
    • (2008) Environmental Technology , vol.29 , pp. 625-631
    • Yeon, I.S.1    Kim, J.H.2    Jun, K.W.3
  • 43
    • 58849164849 scopus 로고    scopus 로고
    • Adaptive neuro fuzzy inference system approach for municipal water consumption modeling: an application to Izmir, Turkey
    • Yurdusev M.A., Firat M. Adaptive neuro fuzzy inference system approach for municipal water consumption modeling: an application to Izmir, Turkey. Journal of Hydrology 2009, 365:225-234.
    • (2009) Journal of Hydrology , vol.365 , pp. 225-234
    • Yurdusev, M.A.1    Firat, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.