메뉴 건너뛰기




Volumn 12, Issue 5, 2011, Pages 973-988

Hydrologic evaluation of rainfall estimates from radar, satellite, gauge, and combinations on Ft. Cobb basin, Oklahoma

Author keywords

Flood events; Hydrologic models; Hydrology; Radars Radar observations; Satellite observations

Indexed keywords

COMPUTER SIMULATION; ESTIMATION METHOD; FLOOD; HYDROLOGICAL MODELING; PRECIPITATION ASSESSMENT; RADAR; RAINFALL; RAINGAUGE; SATELLITE DATA;

EID: 79960276322     PISSN: 1525755X     EISSN: None     Source Type: Journal    
DOI: 10.1175/2011JHM1287.1     Document Type: Article
Times cited : (77)

References (38)
  • 1
    • 77955498034 scopus 로고    scopus 로고
    • Benchmarking highresolution global satellite rainfall products to radar and raingauge rainfall estimates
    • doi:10.1109/TGRS.2009.2034736
    • Anagnostou, E. N., V. Maggioni, E. I. Nikolopoulos, T. Meskele, F. Hossain, and A. Papadopoulos, 2010: Benchmarking highresolution global satellite rainfall products to radar and raingauge rainfall estimates. IEEE Trans. Geosci. Remote Sens., 48, 1667-1683, doi:10.1109/TGRS.2009.2034736.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , pp. 1667-1683
    • Anagnostou, E.N.1    Maggioni, V.2    Nikolopoulos, E.I.3    Meskele, T.4    Hossain, F.5    Papadopoulos, A.6
  • 3
    • 0031454323 scopus 로고    scopus 로고
    • A survey of studies into errors in large scale spacetime averages of rainfall, cloud cover, sea surface processes and the earth's radiation budget as derived from low earth orbit satellite instruments because of their incomplete temporal and spatial coverage
    • Astin, I., 1997: A survey of studies into errors in large scale spacetime averages of rainfall, cloud cover, sea surface processes and the earth's radiation budget as derived from low earth orbit satellite instruments because of their incomplete temporal and spatial coverage. Surv. Geophys., 18, 385-403.
    • (1997) Surv. Geophys. , vol.18 , pp. 385-403
    • Astin, I.1
  • 5
    • 33847659625 scopus 로고    scopus 로고
    • Comparison of nearreal-time precipitation estimates from satellite observations and numerical models
    • Ebert, E. E., J. E. Janowiak, and C.Kidd, 2007: Comparison of nearreal-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 47-64.
    • (2007) Bull. Amer. Meteor. Soc. , vol.88 , pp. 47-64
    • Ebert, E.E.1    Janowiak, J.E.2    Kidd, C.3
  • 7
    • 4143089353 scopus 로고    scopus 로고
    • Characterization of the temporal sampling error in space-time-averaged rainfall estimates from satellites
    • doi:10.1029/2004JD004509
    • Gebremichael, M., and W. F. Krajewski, 2004: Characterization of the temporal sampling error in space-time-averaged rainfall estimates from satellites. J. Geophys. Res., 109, D11110, doi:10.1029/2004JD004509.
    • (2004) J. Geophys. Res. , vol.109
    • Gebremichael, M.1    Krajewski, W.F.2
  • 8
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A., and D. B. Rubin, 1992: Inference from iterative simulation using multiple sequences. Stat. Sci., 7, 457-472.
    • (1992) Stat. Sci. , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 10
    • 77953500572 scopus 로고    scopus 로고
    • Intercomparison of rainfall estimates fromradar, satellite, gauge, and combinations for a season of record rainfall
    • Gourley, J. J., Y. Hong, Z. L. Flamig, L. Li, and J. Wang, 2010b: Intercomparison of rainfall estimates fromradar, satellite, gauge, and combinations for a season of record rainfall. J. Appl. Meteor. Climatol., 49, 437-452.
    • (2010) J. Appl. Meteor. Climatol. , vol.49 , pp. 437-452
    • Gourley, J.J.1    Hong, Y.2    Flamig, Z.L.3    Li, L.4    Wang, J.5
  • 11
    • 33947676794 scopus 로고    scopus 로고
    • Completion of the 2001 National Land Cover Database for the conterminous United States
    • Homer, C., and Coauthors, 2007: Completion of the 2001 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sens., 73, 337-341.
    • (2007) Photogramm. Eng. Remote Sens. , vol.73 , pp. 337-341
    • Homer, C.1
  • 12
    • 13244261088 scopus 로고    scopus 로고
    • Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system
    • Hong, Y., K.-L. Hsu, S. Sorooshian, and X. Gao, 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteor., 43, 1834-1853.
    • (2004) J. Appl. Meteor. , vol.43 , pp. 1834-1853
    • Hong, Y.1    Hsu, K.-L.2    Sorooshian, S.3    Gao, X.4
  • 13
    • 17844365878 scopus 로고    scopus 로고
    • Self-organizing nonlinear output (SONO): A neural network suitable for cloud patch-based rainfall estimation at small scales
    • doi:10.1029/2004WR003142
    • Hong, Y., K.-L. Hsu, S. Sorooshian, and X. Gao, 2005: Self-organizing nonlinear output (SONO): A neural network suitable for cloud patch-based rainfall estimation at small scales. Water Resour. Res., 41, W03008, doi:10.1029/2004WR003142.
    • (2005) Water Resour. Res. , vol.41
    • Hong, Y.1    Hsu, K.-L.2    Sorooshian, S.3    Gao, X.4
  • 14
    • 33748083024 scopus 로고    scopus 로고
    • Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response
    • doi:10.1029/2005WR004398
    • Hong, Y., K.-L. Hsu, H. Moradkhani, and S. Sorooshian, 2006: Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resour. Res., 42, W08421, doi:10.1029/2005WR004398.
    • (2006) Water Resour. Res. , vol.42
    • Hong, Y.1    Hsu, K.-L.2    Moradkhani, H.3    Sorooshian, S.4
  • 15
    • 34848927837 scopus 로고    scopus 로고
    • A first approach to global runoff simulation using satellite rainfall estimation
    • doi: 10.1029/2006WR005739
    • Hong, Y., R. F. Adler, F. Hossain, S. Curtis, and G. J. Huffman, 2007a: A first approach to global runoff simulation using satellite rainfall estimation. Water Resour. Res., 43, W08502, doi: 10.1029/2006WR005739.
    • (2007) Water Resour. Res. , vol.43
    • Hong, Y.1    Adler, R.F.2    Hossain, F.3    Curtis, S.4    Huffman, G.J.5
  • 16
    • 34249825519 scopus 로고    scopus 로고
    • An experimental global prediction system for rainfall-triggered landslides using satellite remote sensing and geospatial datasets
    • doi:10.1109/TGRS.2006.888436
    • Hong, Y., R. F. Adler, and G. J. Huffman, 2007b: An experimental global prediction system for rainfall-triggered landslides using satellite remote sensing and geospatial datasets. IEEE Trans. Geosci. Remote Sens., 45, 1671-1680, doi:10.1109/TGRS.2006.888436.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , pp. 1671-1680
    • Hong, Y.1    Adler, R.F.2    Huffman, G.J.3
  • 17
    • 18544400973 scopus 로고    scopus 로고
    • Assessment of current passive-microwave- and infrared-based satellite rainfall remote sensing for flood prediction
    • doi:10.1029/2003JD003986
    • Hossain, F., and E. N. Anagnostou, 2004: Assessment of current passive-microwave- and infrared-based satellite rainfall remote sensing for flood prediction. J. Geophys. Res., 109, D07102, doi:10.1029/2003JD003986.
    • (2004) J. Geophys. Res. , vol.109
    • Hossain, F.1    Anagnostou, E.N.2
  • 18
    • 33846373084 scopus 로고    scopus 로고
    • Flood prediction in the future: Recognizing hydrologic issues in anticipation of the Global Precipitation Measurement mission
    • doi:10.1029/2006WR005202
    • Hossain, F., and D. P. Lettenmaier, 2006: Flood prediction in the future: Recognizing hydrologic issues in anticipation of the Global Precipitation Measurement mission. Water Resour. Res., 42, W11301, doi:10.1029/2006WR005202.
    • (2006) Water Resour. Res. , vol.42
    • Hossain, F.1    Lettenmaier, D.P.2
  • 19
    • 58049118632 scopus 로고    scopus 로고
    • Investigating error metrics for satellite rainfall data at hydrologically relevant scales
    • Hossain, F., and G. J. Huffman, 2008: Investigating error metrics for satellite rainfall data at hydrologically relevant scales. J. Hydrometeor., 9, 563-575.
    • (2008) J. Hydrometeor. , vol.9 , pp. 563-575
    • Hossain, F.1    Huffman, G.J.2
  • 20
    • 1242286434 scopus 로고    scopus 로고
    • Sensitivity analyses of satellite rainfall retrieval and sampling error on flood prediction uncertainty
    • Hossain, F., E. N. Anagnostou, and T. Dinku, 2004: Sensitivity analyses of satellite rainfall retrieval and sampling error on flood prediction uncertainty. IEEE Trans. Geosci. Remote Sens., 42, 130-139.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , pp. 130-139
    • Hossain, F.1    Anagnostou, E.N.2    Dinku, T.3
  • 21
    • 33947356755 scopus 로고    scopus 로고
    • The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales
    • Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38-55.
    • (2007) J. Hydrometeor. , vol.8 , pp. 38-55
    • Huffman, G.J.1
  • 24
    • 2142847337 scopus 로고    scopus 로고
    • Hydrology laboratory research modeling system (HL-RMS) of the U.S. National Weather Service
    • Koren, V. I., S. Reed, M. Smith, Z. Zhang, and D. J. Seo, 2004: Hydrology laboratory research modeling system (HL-RMS) of the U.S. National Weather Service. J. Hydrol., 291, 297-318.
    • (2004) J. Hydrol. , vol.291 , pp. 297-318
    • Koren, V.I.1    Reed, S.2    Smith, M.3    Zhang, Z.4    Seo, D.J.5
  • 25
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models. Part I: A discussion of principles.
    • Nash, J., and J. Sutcliffe, 1970: River flow forecasting through conceptual models. Part I: A discussion of principles. J. Hydrol., 10, 282-290.
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.1    Sutcliffe, J.2
  • 26
    • 77953347903 scopus 로고    scopus 로고
    • Understanding the scale relationships of uncertainty propagation of satellite rainfall through a distributed hydrologic model
    • Nikolopoulos, E. I., E.N.Anagnostou, F.Hossain, M.Gebremichael, and M. Borga, 2010: Understanding the scale relationships of uncertainty propagation of satellite rainfall through a distributed hydrologic model. J. Hydrometeor., 11, 520-532.
    • (2010) J. Hydrometeor. , vol.11 , pp. 520-532
    • Nikolopoulos, E.I.1    Anagnostou, E.N.2    Hossain, F.3    Gebremichael, M.4    Borga, M.5
  • 27
    • 84857349427 scopus 로고    scopus 로고
    • NWS, cited, Available online at
    • NWS, cited 2007: National Weather Service instruction 10-1605. [Available online at http://www.weather.gov/directives/sym/pd01016005curr.pdf.]
    • (2007) National Weather Service instruction 10-1605
  • 28
    • 67349151100 scopus 로고    scopus 로고
    • Influence of rainfall and soil properties spatial aggregation on extreme flash flood response modeling: An evaluation based on the Sesia river basin, North Western Italy
    • Sangati, M., M. Borga, D. Rabuffetti, and R. Bechini, 2009: Influence of rainfall and soil properties spatial aggregation on extreme flash flood response modeling: An evaluation based on the Sesia river basin, North Western Italy. Adv. Water Resour., 32, 1090-1106.
    • (2009) Adv. Water Resour. , vol.32 , pp. 1090-1106
    • Sangati, M.1    Borga, M.2    Rabuffetti, D.3    Bechini, R.4
  • 29
    • 0032503984 scopus 로고    scopus 로고
    • Real-time estimation of rainfall fields using radar rainfall and rain gage data
    • Seo, D.-J., 1998: Real-time estimation of rainfall fields using radar rainfall and rain gage data. J. Hydrol., 208, 37-52.
    • (1998) J. Hydrol. , vol.208 , pp. 37-52
    • Seo, D.-J.1
  • 31
    • 83455212943 scopus 로고
    • Soil Survey Staff, USDA Natural Resources Conservation Service Miscellaneous Publication 1492
    • Soil Survey Staff, 1994: State Soil Geographic (STATSGO) Database data users guide. USDA Natural Resources Conservation Service Miscellaneous Publication 1492, 88-1036.
    • (1994) State Soil Geographic (STATSGO) Database data users guide , pp. 88-1036
  • 32
    • 0003392216 scopus 로고    scopus 로고
    • Soil Survey Laboratory methods manual
    • Soil Survey Staff, National Soil Survey Center, Soil Conservation Service, U.S. Department of Agriculture Soil Survey Investigations Rep. 42, version 2.0
    • Soil Survey Staff, 1996: Soil Survey Laboratory methods manual. National Soil Survey Center, Soil Conservation Service, U.S. Department of Agriculture Soil Survey Investigations Rep. 42, version 2.0, 693-1036.
    • (1996) , pp. 693-1036
  • 33
    • 0346056657 scopus 로고    scopus 로고
    • Comparison of two methods for estimating the sampling-related uncertainty of satellite rainfall averages based on a large radar dataset
    • Steiner, M., T. L. Bell, Y. Zhang, and E. F. Wood, 2003: Comparison of two methods for estimating the sampling-related uncertainty of satellite rainfall averages based on a large radar dataset. J. Climate, 16, 3759-3778.
    • (2003) J. Climate , vol.16 , pp. 3759-3778
    • Steiner, M.1    Bell, T.L.2    Zhang, Y.3    Wood, E.F.4
  • 34
    • 68849126095 scopus 로고    scopus 로고
    • New paradigm for statistical validation of satellite precipitation estimates: Application to a large sample of the TMPA 0.25° 3-hourly estimates over Oklahoma
    • doi:10.1029/2008JD011475
    • Villarini, G., W. F. Krajewski, and J. A. Smith, 2009: New paradigm for statistical validation of satellite precipitation estimates: Application to a large sample of the TMPA 0.25° 3-hourly estimates over Oklahoma. J. Geophys. Res., 114, D12106, doi:10.1029/2008JD011475.
    • (2009) J. Geophys. Res. , vol.114
    • Villarini, G.1    Krajewski, W.F.2    Smith, J.A.3
  • 35
    • 14944365603 scopus 로고    scopus 로고
    • Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation
    • doi:10.1029/2004WR003059
    • Vrugt, J. A., C. G. H. Diks, H. V. Gupta, W. Bouten, and J. M. Verstraten, 2005: Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation. Water Resour. Res., 41, W01017, doi:10.1029/2004WR003059.
    • (2005) Water Resour. Res. , vol.41
    • Vrugt, J.A.1    Diks, C.G.H.2    Gupta, H.V.3    Bouten, W.4    Verstraten, J.M.5
  • 36
    • 65349141143 scopus 로고    scopus 로고
    • Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling
    • Vrugt, J. A., C. J. F. ter Braak, C. G. H. Diks, D. Higdon, B. A. Robinson, and J. M. Hyman, 2009: Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int. J. Nonlinear Sci. Numer. Simul., 10, 273-290.
    • (2009) Int. J. Nonlinear Sci. Numer. Simul. , vol.10 , pp. 273-290
    • Vrugt, J.A.1    ter Braak, C.J.F.2    Diks, C.G.H.3    Higdon, D.4    Robinson, B.A.5    Hyman, J.M.6
  • 37
    • 26444540803 scopus 로고    scopus 로고
    • Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting
    • Yilmaz, K. K., T. S. Hogue, K.-L. Hsu, S. Sorooshian, H. V. Gupta, and T. Wagener, 2005: Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting. J. Hydrometeor., 6, 497-517.
    • (2005) J. Hydrometeor. , vol.6 , pp. 497-517
    • Yilmaz, K.K.1    Hogue, T.S.2    Hsu, K.-L.3    Sorooshian, S.4    Gupta, H.V.5    Wagener, T.6
  • 38
    • 77955136398 scopus 로고    scopus 로고
    • Evaluation of a satellite-based global flood monitoring system
    • doi:10.1080/01431161.2010.483489
    • Yilmaz, K. K., R. F. Adler, Y. Tian, Y. Hong, and H. F. Pierce, 2010: Evaluation of a satellite-based global flood monitoring system. Int. J. Remote Sens., 31, 3763-3782, doi:10.1080/01431161.2010.483489.
    • (2010) Int. J. Remote Sens. , vol.31 , pp. 3763-3782
    • Yilmaz, K.K.1    Adler, R.F.2    Tian, Y.3    Hong, Y.4    Pierce, H.F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.