메뉴 건너뛰기




Volumn 14, Issue 6, 2013, Pages 653-661

Human sirtuins: An overview of an emerging drug target in age-related diseases and cancer

Author keywords

Aging; Caloric restriction; Cancer; Deacetylase; Drug targets; NAD+; X ray crystallography

Indexed keywords

ADENOSINE DIPHOSPHATE; GLUTAMATE DEHYDROGENASE; NICOTINAMIDE ADENINE DINUCLEOTIDE; SIRTUIN; SIRTUIN 1; SIRTUIN 2; SIRTUIN 3; SIRTUIN 4; SIRTUIN 5; SIRTUIN 6; SIRTUIN 7; TRANSCRIPTION FACTOR ELK 4;

EID: 84878613097     PISSN: 13894501     EISSN: 18735592     Source Type: Journal    
DOI: 10.2174/1389450111314060006     Document Type: Article
Times cited : (7)

References (126)
  • 1
    • 0021734287 scopus 로고
    • Characterization of two genes required for the position-effect control of yeast mating-type genes
    • Shore D, Squire M, Nasmyth KA. Characterization of two genes required for the position-effect control of yeast mating-type genes. EMBO J 1984; 3: 2817-23.
    • (1984) EMBO J , vol.3 , pp. 2817-2823
    • Shore, D.1    Squire, M.2    Nasmyth, K.A.3
  • 2
    • 0024536650 scopus 로고
    • A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA
    • Gottlieb S, Esposito RE. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 1989; 56: 771-6.
    • (1989) Cell , vol.56 , pp. 771-776
    • Gottlieb, S.1    Esposito, R.E.2
  • 3
    • 0028841317 scopus 로고
    • The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability
    • Brachmann CB, Sherman JM, Devine SE, Cameron EE, Pillus L, Boeke JD. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev 1995; 9: 2888-902.
    • (1995) Genes Dev , vol.9 , pp. 2888-2902
    • Brachmann, C.B.1    Sherman, J.M.2    Devine, S.E.3    Cameron, E.E.4    Pillus, L.5    Boeke, J.D.6
  • 4
    • 3943054839 scopus 로고    scopus 로고
    • The Sir2 family of protein deacetylases
    • Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem 2004; 73: 417-35.
    • (2004) Annu Rev Biochem , vol.73 , pp. 417-435
    • Blander, G.1    Guarente, L.2
  • 6
    • 77953289094 scopus 로고    scopus 로고
    • Structural basis for sirtuin function: What we know and what we don't
    • Sanders BD, Jackson B, Marmorstein R. Structural basis for sirtuin function: what we know and what we don't. Biochim Biophys Acta 2010; 1804: 1604-16.
    • (2010) Biochim Biophys Acta , vol.1804 , pp. 1604-1616
    • Sanders, B.D.1    Jackson, B.2    Marmorstein, R.3
  • 7
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000; 403: 795-800.
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1    Armstrong, C.M.2    Kaeberlein, M.3    Guarente, L.4
  • 8
    • 0034705129 scopus 로고    scopus 로고
    • The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases
    • Landry J, Sutton A, Tafrov ST, et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA 2000; 97: 5807-11.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 5807-5811
    • Landry, J.1    Sutton, A.2    Tafrov, S.T.3
  • 9
    • 0034687694 scopus 로고    scopus 로고
    • Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose
    • Tanner KG, Landry J, Sternglanz R, Denu JM. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci USA 2000; 97: 14178-82.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 14178-14182
    • Tanner, K.G.1    Landry, J.2    Sternglanz, R.3    Denu, J.M.4
  • 10
    • 2942564591 scopus 로고    scopus 로고
    • Sir2-related NAD-dependent protein deacetylases
    • North BJ, Verdin E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol 2004; 5:224.
    • (2004) Genome Biol , vol.5 , pp. 224
    • North, B.J.1    Sirtuins, V.E.2
  • 11
    • 0033887456 scopus 로고    scopus 로고
    • Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
    • Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 2000; 273: 793-8.
    • (2000) Biochem Biophys Res Commun , vol.273 , pp. 793-798
    • Frye, R.A.1
  • 12
    • 33751113602 scopus 로고    scopus 로고
    • Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction
    • Haigis MC, Guarente LP. Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. Genes Dev 2006; 20: 2913-21.
    • (2006) Genes Dev , vol.20 , pp. 2913-2921
    • Haigis, M.C.1    Guarente, L.P.2
  • 13
    • 26244436281 scopus 로고    scopus 로고
    • Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
    • Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005; 16: 4623-35.
    • (2005) Mol Biol Cell , vol.16 , pp. 4623-4635
    • Michishita, E.1    Park, J.Y.2    Burneskis, J.M.3    Barrett, J.C.4    Horikawa, I.5
  • 14
    • 34247271282 scopus 로고    scopus 로고
    • SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress
    • Scher MB, Vaquero A, Reinberg D. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev 2007; 21: 920-8.
    • (2007) Genes Dev , vol.21 , pp. 920-928
    • Scher, M.B.1    Vaquero, A.2    Reinberg, D.3
  • 15
    • 37549026223 scopus 로고    scopus 로고
    • Localization of mouse mitochondrial SIRT proteins: Shift of SIRT3 to nucleus by co-expression with SIRT5
    • Nakamura Y, Ogura M, Tanaka D, Inagaki N. Localization of mouse mitochondrial SIRT proteins: shift of SIRT3 to nucleus by co-expression with SIRT5. Biochem Biophys Res Commun 2008; 366: 174-9.
    • (2008) Biochem Biophys Res Commun , vol.366 , pp. 174-179
    • Nakamura, Y.1    Ogura, M.2    Tanaka, D.3    Inagaki, N.4
  • 16
    • 40849135481 scopus 로고    scopus 로고
    • The Sirtuin family: Therapeutic targets to treat diseases of aging
    • Milne JC, Denu JM. The Sirtuin family: therapeutic targets to treat diseases of aging. Curr Opin Chem Biol 2008; 12: 11-7.
    • (2008) Curr Opin Chem Biol , vol.12 , pp. 11-17
    • Milne, J.C.1    Denu, J.M.2
  • 18
    • 84865274411 scopus 로고    scopus 로고
    • The neurobiology of sirtuins and their role in neurodegeneration
    • Donmez G. The neurobiology of sirtuins and their role in neurodegeneration. Trends Pharmacol Sci 2012; 33: 494-501.
    • (2012) Trends Pharmacol Sci , vol.33 , pp. 494-501
    • Donmez, G.1
  • 19
    • 20444444649 scopus 로고    scopus 로고
    • Mechanism of human SIRT1 activation by resveratrol
    • Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 2005; 280: 17187-95.
    • (2005) J Biol Chem , vol.280 , pp. 17187-17195
    • Borra, M.T.1    Smith, B.C.2    Denu, J.M.3
  • 20
    • 20444431507 scopus 로고    scopus 로고
    • Substrate-specific activation of sirtuins by resveratrol
    • Kaeberlein M, McDonagh T, Heltweg B, et al. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 2005; 280: 17038-45.
    • (2005) J Biol Chem , vol.280 , pp. 17038-17045
    • Kaeberlein, M.1    McDonagh, T.2    Heltweg, B.3
  • 21
    • 41949118209 scopus 로고    scopus 로고
    • Sirtuins: Novel targets for metabolic disease
    • Elliott PJ, Jirousek M. Sirtuins: novel targets for metabolic disease. Curr Opin Investig Drugs 2008; 9: 371-8.
    • (2008) Curr Opin Investig Drugs , vol.9 , pp. 371-378
    • Elliott, P.J.1    Jirousek, M.2
  • 22
    • 0033600176 scopus 로고    scopus 로고
    • Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity
    • Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 1999; 260: 273-9.
    • (1999) Biochem Biophys Res Commun , vol.260 , pp. 273-279
    • Frye, R.A.1
  • 23
    • 77957655795 scopus 로고    scopus 로고
    • Human sirt-1: Molecular modeling and structure-function relationships of an unordered protein
    • Autiero I, Costantini S, Colonna G. Human sirt-1: molecular modeling and structure-function relationships of an unordered protein. PLoS One 2009; 4: e7350.
    • (2009) PLoS One , vol.4
    • Autiero, I.1    Costantini, S.2    Colonna, G.3
  • 24
    • 58149202185 scopus 로고    scopus 로고
    • Phosphorylation regulates SIRT1 function
    • Sasaki T, Maier B, Koclega KD, et al. Phosphorylation regulates SIRT1 function. PLoS One 2008; 3: e4020.
    • (2008) PLoS One , vol.3
    • Sasaki, T.1    Maier, B.2    Koclega, K.D.3
  • 26
    • 84864667383 scopus 로고    scopus 로고
    • Regulation of sirtuin function by posttranslational modifications
    • Flick F, Luscher B. Regulation of sirtuin function by posttranslational modifications. Front Pharmacol 2012; 3: 29.
    • (2012) Front Pharmacol , vol.3 , pp. 29
    • Flick, F.1    Luscher, B.2
  • 27
    • 84856076413 scopus 로고    scopus 로고
    • SIRT1 contains N-and C-terminal regions that potentiate deacetylase activity
    • Pan M, Yuan H, Brent M, Ding EC, Marmorstein R. SIRT1 contains N-and C-terminal regions that potentiate deacetylase activity. J Biol Chem 2012; 287: 2468-76.
    • (2012) J Biol Chem , vol.287 , pp. 2468-7246
    • Pan, M.1    Yuan, H.2    Brent, M.3    Ding, E.C.4    Marmorstein, R.5
  • 28
    • 59649126261 scopus 로고    scopus 로고
    • Deacetylation of cortactin by SIRT1 promotes cell migration
    • Zhang Y, Zhang M, Dong H, et al. Deacetylation of cortactin by SIRT1 promotes cell migration. Oncogene 2009; 28: 445-60.
    • (2009) Oncogene , vol.28 , pp. 445-460
    • Zhang, Y.1    Zhang, M.2    Dong, H.3
  • 29
    • 34249083199 scopus 로고    scopus 로고
    • Sirtuins in mammals: Insights into their biological function
    • Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J 2007; 404: 1-13.
    • (2007) Biochem J , vol.404 , pp. 1-13
    • Michan, S.1    Sinclair, D.2
  • 30
    • 34250365395 scopus 로고    scopus 로고
    • Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1
    • Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 2007; 282: 6823-32.
    • (2007) J Biol Chem , vol.282 , pp. 6823-6832
    • Tanno, M.1    Sakamoto, J.2    Miura, T.3    Shimamoto, K.4    Horio, Y.5
  • 31
    • 84867380741 scopus 로고    scopus 로고
    • Janus-faced role of SIRT1 in tumorigenesis
    • Song NY, Surh YJ. Janus-faced role of SIRT1 in tumorigenesis. Ann N Y Acad Sci 2012; 1271: 10-9.
    • (2012) Ann N Y Acad Sci , vol.1271 , pp. 10-19
    • Song, N.Y.1    Surh, Y.J.2
  • 32
    • 36549044009 scopus 로고    scopus 로고
    • Function of the SIRT1 protein deacetylase in cancer
    • Stunkel W, Peh BK, Tan YC, et al. Function of the SIRT1 protein deacetylase in cancer. Biotechnol J 2007; 2: 1360-8.
    • (2007) Biotechnol J , vol.2 , pp. 1360-1368
    • Stunkel, W.1    Peh, B.K.2    Tan, Y.C.3
  • 33
    • 78650048197 scopus 로고    scopus 로고
    • Aberrant cytoplasm localization and protein stability of SIRT1 is regulated by PI3K/IGF-1R signaling in human cancer cells
    • Byles V, Chmilewski LK, Wang J, et al. Aberrant cytoplasm localization and protein stability of SIRT1 is regulated by PI3K/IGF-1R signaling in human cancer cells. Int J Biol Sci 2010; 6: 599-612.
    • (2010) Int J Biol Sci , vol.6 , pp. 599-612
    • Byles, V.1    Chmilewski, L.K.2    Wang, J.3
  • 34
    • 0031707505 scopus 로고    scopus 로고
    • Nucleocytoplasmic transport: The soluble phase
    • Mattaj IW, Englmeier L. Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 1998; 67: 265-306.
    • (1998) Annu Rev Biochem , vol.67 , pp. 265-306
    • Mattaj, I.W.1    Englmeier, L.2
  • 35
    • 0029894726 scopus 로고    scopus 로고
    • Protein sequence requirements for function of the human T-cell leukemia virus type 1 Rex nuclear export signal delineated by a novel in vivo randomization-selection assay
    • Bogerd HP, Fridell RA, Benson RE, Hua J, Cullen BR. Protein sequence requirements for function of the human T-cell leukemia virus type 1 Rex nuclear export signal delineated by a novel in vivo randomization-selection assay. Mol Cell Biol 1996; 16: 4207-14.
    • (1996) Mol Cell Biol , vol.16 , pp. 4207-4214
    • Bogerd, H.P.1    Fridell, R.A.2    Benson, R.E.3    Hua, J.4    Cullen, B.R.5
  • 36
    • 0033598989 scopus 로고    scopus 로고
    • Transport of proteins and RNAs in and out of the nucleus
    • Nakielny S, Dreyfuss G. Transport of proteins and RNAs in and out of the nucleus. Cell 1999; 99: 677-90.
    • (1999) Cell , vol.99 , pp. 677-690
    • Nakielny, S.1    Dreyfuss, G.2
  • 37
    • 69949138641 scopus 로고    scopus 로고
    • CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage
    • Kang H, Jung JW, Kim MK, Chung JH. CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. PLoS One 2009; 4: e6611.
    • (2009) PLoS One , vol.4
    • Kang, H.1    Jung, J.W.2    Kim, M.K.3    Chung, J.H.4
  • 38
    • 77949887506 scopus 로고    scopus 로고
    • Mammalian sirtuins: Biological insights and disease relevance
    • Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 2010; 5: 253-95.
    • (2010) Annu Rev Pathol , vol.5 , pp. 253-295
    • Haigis, M.C.1    Sinclair, D.A.2
  • 39
    • 64049109876 scopus 로고    scopus 로고
    • STAT3 inhibition of gluconeogenesis is downregulated by SirT1
    • Nie Y, Erion DM, Yuan Z, et al. STAT3 inhibition of gluconeogenesis is downregulated by SirT1. Nat Cell Biol 2009; 11: 492-500.
    • (2009) Nat Cell Biol , vol.11 , pp. 492-500
    • Nie, Y.1    Erion, D.M.2    Yuan, Z.3
  • 40
    • 53449090280 scopus 로고    scopus 로고
    • Inhibition of transcriptional activity of c-JUN by SIRT1
    • Gao Z, Ye J. Inhibition of transcriptional activity of c-JUN by SIRT1. Biochem Biophys Res Commun 2008; 376: 793-6.
    • (2008) Biochem Biophys Res Commun , vol.376 , pp. 793-796
    • Gao, Z.1    Ye, J.2
  • 41
    • 52049102233 scopus 로고    scopus 로고
    • PTEN acetylation modulates its interaction with PDZ domain
    • Ikenoue T, Inoki K, Zhao B, Guan KL. PTEN acetylation modulates its interaction with PDZ domain. Cancer Res 2008; 68: 6908-12.
    • (2008) Cancer Res , vol.68 , pp. 6908-6912
    • Ikenoue, T.1    Inoki, K.2    Zhao, B.3    Guan, K.L.4
  • 42
    • 77952876986 scopus 로고    scopus 로고
    • Protein deacetylation by SIRT1: An emerging key post-translational modification in metabolic regulation
    • Yu J, Auwerx J. Protein deacetylation by SIRT1: an emerging key post-translational modification in metabolic regulation. Pharmacol Res 2010; 62: 35-41.
    • (2010) Pharmacol Res , vol.62 , pp. 35-41
    • Yu, J.1    Auwerx, J.2
  • 43
    • 77952541985 scopus 로고    scopus 로고
    • Vitamin B3, the nicotinamide adenine dinucleotides and aging
    • Xu P, Sauve AA. Vitamin B3, the nicotinamide adenine dinucleotides and aging. Mech Ageing Dev 2010; 131: 287-98.
    • (2010) Mech Ageing Dev , vol.131 , pp. 287-298
    • Xu, P.1    Sauve, A.A.2
  • 44
    • 79955661471 scopus 로고    scopus 로고
    • Mammalian Sirt1: Insights on its biological functions
    • Rahman S, Islam R. Mammalian Sirt1: insights on its biological functions. Cell Commun Signal 2011; 9:11.
    • (2011) Cell Commun Signal , vol.9 , pp. 11
    • Rahman, S.1    Islam, R.2
  • 45
    • 83455218662 scopus 로고    scopus 로고
    • Sirtuin 1 (SIRT1): The misunderstood HDAC
    • Stunkel W, Campbell RM. Sirtuin 1 (SIRT1): the misunderstood HDAC. J Biomol Screen 2011; 16: 1153-69.
    • (2011) J Biomol Screen , vol.16 , pp. 1153-1169
    • Stunkel, W.1    Campbell, R.M.2
  • 46
    • 0037405043 scopus 로고    scopus 로고
    • Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle
    • Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol 2003; 23: 3173-85.
    • (2003) Mol Cell Biol , vol.23 , pp. 3173-3185
    • Dryden, S.C.1    Nahhas, F.A.2    Nowak, J.E.3    Goustin, A.S.4    Tainsky, M.A.5
  • 47
    • 33644643513 scopus 로고    scopus 로고
    • FISH-mapping and genomic organization of the NAD-dependent histone deacetylase gene, Sirtuin 2 (Sirt2)
    • Voelter-Mahlknecht S, Ho AD, Mahlknecht U. FISH-mapping and genomic organization of the NAD-dependent histone deacetylase gene, Sirtuin 2 (Sirt2). Int J Oncol 2005; 27: 1187-96.
    • (2005) Int J Oncol , vol.27 , pp. 1187-1196
    • Voelter-Mahlknecht, S.1    Ho, A.D.2    Mahlknecht, U.3
  • 48
    • 0037291214 scopus 로고    scopus 로고
    • The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
    • North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003; 11: 437-44.
    • (2003) Mol Cell , vol.11 , pp. 437-444
    • North, B.J.1    Marshall, B.L.2    Borra, M.T.3    Denu, J.M.4    Verdin, E.5
  • 49
    • 39149122568 scopus 로고    scopus 로고
    • Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis
    • North BJ, Verdin E. Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS One 2007; 2: e784.
    • (2007) PLoS One , vol.2
    • North, B.J.1    Verdin, E.2
  • 50
    • 33646550204 scopus 로고    scopus 로고
    • SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis
    • Vaquero A, Scher MB, Lee DH, et al. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 2006; 20: 1256-61.
    • (2006) Genes Dev , vol.20 , pp. 1256-1261
    • Vaquero, A.1    Scher, M.B.2    Lee, D.H.3
  • 51
    • 34248151365 scopus 로고    scopus 로고
    • The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation
    • Inoue T, Hiratsuka M, Osaki M, Oshimura M. The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle 2007; 6: 1011-8.
    • (2007) Cell Cycle , vol.6 , pp. 1011-1018
    • Inoue, T.1    Hiratsuka, M.2    Osaki, M.3    Oshimura, M.4
  • 52
    • 33847053144 scopus 로고    scopus 로고
    • SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress
    • Inoue T, Hiratsuka M, Osaki M, et al. SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene 2007; 26: 945-57.
    • (2007) Oncogene , vol.26 , pp. 945-957
    • Inoue, T.1    Hiratsuka, M.2    Osaki, M.3
  • 53
    • 70549088824 scopus 로고    scopus 로고
    • The function of APC/CCdh1 in cell cycle and beyond
    • Li M, Zhang P. The function of APC/CCdh1 in cell cycle and beyond. Cell Div 2009; 4: 2.
    • (2009) Cell Div , vol.4 , pp. 2
    • Li, M.1    Zhang, P.2
  • 54
    • 80054769188 scopus 로고    scopus 로고
    • SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity
    • Kim HS, Vassilopoulos A, Wang RH, et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 2011; 20: 487-99.
    • (2011) Cancer Cell , vol.20 , pp. 487-499
    • Kim, H.S.1    Vassilopoulos, A.2    Wang, R.H.3
  • 55
    • 84962778960 scopus 로고    scopus 로고
    • SIRT2 is a tumor suppressor that connects aging, acetylome, cell cycle signaling, and carcinogenesis
    • Park SH, Zhu Y, Ozden O, et al. SIRT2 is a tumor suppressor that connects aging, acetylome, cell cycle signaling, and carcinogenesis. Transl Cancer Res 2012; 1: 15-21.
    • (2012) Transl Cancer Res , vol.1 , pp. 15-21
    • Park, S.H.1    Zhu, Y.2    Ozden, O.3
  • 56
    • 64049089450 scopus 로고    scopus 로고
    • SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma
    • Wang F, Tong Q. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma. Mol Biol Cell 2009; 20: 801-8.
    • (2009) Mol Biol Cell , vol.20 , pp. 801-808
    • Wang, F.1    Tong, Q.2
  • 57
    • 84858795617 scopus 로고    scopus 로고
    • Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation
    • Wang F, Chan CH, Chen K, Guan X, Lin HK, Tong Q. Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene 2012; 31: 1546-57.
    • (2012) Oncogene , vol.31 , pp. 1546-1557
    • Wang, F.1    Chan, C.H.2    Chen, K.3    Guan, X.4    Lin, H.K.5    Tong, Q.6
  • 59
    • 78649738291 scopus 로고    scopus 로고
    • SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310
    • Rothgiesser KM, Erener S, Waibel S, Luscher B, Hottiger MO. SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310. J Cell Sci 2010; 123: 4251-8.
    • (2010) J Cell Sci , vol.123 , pp. 4251-4258
    • Rothgiesser, K.M.1    Erener, S.2    Waibel, S.3    Luscher, B.4    Hottiger, M.O.5
  • 60
    • 39749143163 scopus 로고    scopus 로고
    • Sirt2 interacts with 14-3-3 beta/gamma and down-regulates the activity of p53
    • Jin YH, Kim YJ, Kim DW, et al. Sirt2 interacts with 14-3-3 beta/gamma and down-regulates the activity of p53. Biochem Biophys Res Commun 2008; 368: 690-5.
    • (2008) Biochem Biophys Res Commun , vol.368 , pp. 690-695
    • Jin, Y.H.1    Kim, Y.J.2    Kim, D.W.3
  • 61
    • 40849113090 scopus 로고    scopus 로고
    • The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility
    • Pandithage R, Lilischkis R, Harting K, et al. The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility. J Cell Biol 2008; 180: 915-29.
    • (2008) J Cell Biol , vol.180 , pp. 915-929
    • Pandithage, R.1    Lilischkis, R.2    Harting, K.3
  • 62
    • 51449123628 scopus 로고    scopus 로고
    • Acetylation of Sirt2 by p300 attenuates its deacetylase activity
    • Han Y, Jin YH, Kim YJ, et al. Acetylation of Sirt2 by p300 attenuates its deacetylase activity. Biochem Biophys Res Commun 2008; 375: 576-80.
    • (2008) Biochem Biophys Res Commun , vol.375 , pp. 576-580
    • Han, Y.1    Jin, Y.H.2    Kim, Y.J.3
  • 63
    • 0037135972 scopus 로고    scopus 로고
    • The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase
    • Schwer B, North BJ, Frye RA, Ott M, Verdin E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol 2002; 158: 647-57.
    • (2002) J Cell Biol , vol.158 , pp. 647-657
    • Schwer, B.1    North, B.J.2    Frye, R.A.3    Ott, M.4    Verdin, E.5
  • 64
    • 69949151709 scopus 로고    scopus 로고
    • Crystal structures of human SIRT3 displaying substrate-induced conformational changes
    • Jin L, Wei W, Jiang Y, et al. Crystal structures of human SIRT3 displaying substrate-induced conformational changes. J Biol Chem 2009; 284: 24394-405.
    • (2009) J Biol Chem , vol.284 , pp. 24394-24405
    • Jin, L.1    Wei, W.2    Jiang, Y.3
  • 65
    • 33745931074 scopus 로고    scopus 로고
    • Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
    • Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA 2006; 103: 10230-5.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 10230-10235
    • Hallows, W.C.1    Lee, S.2    Denu, J.M.3
  • 68
    • 75349111140 scopus 로고    scopus 로고
    • Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
    • Cimen H, Han MJ, Yang Y, Tong Q, Koc H, Koc EC. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 2010; 49: 304-11.
    • (2010) Biochemistry , vol.49 , pp. 304-311
    • Cimen, H.1    Han, M.J.2    Yang, Y.3    Tong, Q.4    Koc, H.5    Koc, E.C.6
  • 69
    • 77951235122 scopus 로고    scopus 로고
    • NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10
    • Yang Y, Cimen H, Han MJ, et al. NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10. J Biol Chem 2010; 285: 7417-29.
    • (2010) J Biol Chem , vol.285 , pp. 7417-7429
    • Yang, Y.1    Cimen, H.2    Han, M.J.3
  • 70
    • 78649521247 scopus 로고    scopus 로고
    • Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
    • Qiu X, Brown K, Hirschey MD, Verdin E, Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 2010; 12: 662-7.
    • (2010) Cell Metab , vol.12 , pp. 662-667
    • Qiu, X.1    Brown, K.2    Hirschey, M.D.3    Verdin, E.4    Chen, D.5
  • 71
    • 79959819034 scopus 로고    scopus 로고
    • SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production
    • Bell EL, Emerling BM, Ricoult SJ, Guarente L. SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production. Oncogene 2011; 30: 2986-96.
    • (2011) Oncogene , vol.30 , pp. 2986-2996
    • Bell, E.L.1    Emerling, B.M.2    Ricoult, S.J.3    Guarente, L.4
  • 72
    • 74049094817 scopus 로고    scopus 로고
    • SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
    • Kim HS, Patel K, Muldoon-Jacobs K, et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 2010; 17: 41-52.
    • (2010) Cancer Cell , vol.17 , pp. 41-52
    • Kim, H.S.1    Patel, K.2    Muldoon-Jacobs, K.3
  • 73
    • 78651468722 scopus 로고    scopus 로고
    • Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
    • Someya S, Yu W, Hallows WC, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 2010; 143: 802-12.
    • (2010) Cell , vol.143 , pp. 802-812
    • Someya, S.1    Yu, W.2    Hallows, W.C.3
  • 74
    • 55749084738 scopus 로고    scopus 로고
    • A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
    • Ahn BH, Kim HS, Song S, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 2008; 105: 14447-52.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 14447-14452
    • Ahn, B.H.1    Kim, H.S.2    Song, S.3
  • 75
    • 70349208608 scopus 로고    scopus 로고
    • Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
    • Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 2009; 119: 2758-71.
    • (2009) J Clin Invest , vol.119 , pp. 2758-2771
    • Sundaresan, N.R.1    Gupta, M.2    Kim, G.3    Rajamohan, S.B.4    Isbatan, A.5    Gupta, M.P.6
  • 76
    • 78751513117 scopus 로고    scopus 로고
    • Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
    • Kendrick AA, Choudhury M, Rahman SM, et al. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem J 2011; 433: 505-14.
    • (2011) Biochem J , vol.433 , pp. 505-514
    • Kendrick, A.A.1    Choudhury, M.2    Rahman, S.M.3
  • 77
    • 51449083112 scopus 로고    scopus 로고
    • SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression
    • Jacobs KM, Pennington JD, Bisht KS, et al. SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int J Biol Sci 2008; 4: 291-9.
    • (2008) Int J Biol Sci , vol.4 , pp. 291-299
    • Jacobs, K.M.1    Pennington, J.D.2    Bisht, K.S.3
  • 78
    • 84878305687 scopus 로고    scopus 로고
    • A novel AMPKdependent FoxO3A-SIRT3 intramitochondrial complex sensing glucose levels
    • In press
    • Peserico A, Chiacchiera F, Grossi V, et al. A novel AMPKdependent FoxO3A-SIRT3 intramitochondrial complex sensing glucose levels. Cell Mol Life Sci 2013 (In press).
    • (2013) Cell Mol Life Sci
    • Peserico, A.1    Chiacchiera, F.2    Grossi, V.3
  • 79
    • 36849002444 scopus 로고    scopus 로고
    • SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways
    • Allison SJ, Milner J. SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways. Cell Cycle 2007; 6: 2669-77.
    • (2007) Cell Cycle , vol.6 , pp. 2669-2677
    • Allison, S.J.1    Milner, J.2
  • 80
    • 33748316536 scopus 로고    scopus 로고
    • SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
    • Haigis MC, Mostoslavsky R, Haigis KM, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006; 126: 941-54.
    • (2006) Cell , vol.126 , pp. 941-954
    • Haigis, M.C.1    Mostoslavsky, R.2    Haigis, K.M.3
  • 81
    • 36349030394 scopus 로고    scopus 로고
    • Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase
    • Ahuja N, Schwer B, Carobbio S, et al. Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J Biol Chem 2007; 282: 33583-92.
    • (2007) J Biol Chem , vol.282 , pp. 33583-33592
    • Ahuja, N.1    Schwer, B.2    Carobbio, S.3
  • 83
    • 0037390039 scopus 로고    scopus 로고
    • Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the betaamyloid precursor protein intracellular domain in vivo
    • Farris W, Mansourian S, Chang Y, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the betaamyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 2003; 100: 4162-7.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 4162-4167
    • Farris, W.1    Mansourian, S.2    Chang, Y.3
  • 84
    • 4143120198 scopus 로고    scopus 로고
    • Nucleotide exchange in mitochondria: Insight at a molecular level
    • Pebay-Peyroula E, Brandolin G. Nucleotide exchange in mitochondria: insight at a molecular level. Curr Opin Struct Biol 2004; 14: 420-5.
    • (2004) Curr Opin Struct Biol , vol.14 , pp. 420-425
    • Pebay-Peyroula, E.1    Brandolin, G.2
  • 85
    • 0031772126 scopus 로고    scopus 로고
    • The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release
    • Bradham CA, Qian T, Streetz K, Trautwein C, Brenner DA, Lemasters JJ. The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release. Mol Cell Biol 1998; 18: 6353-64.
    • (1998) Mol Cell Biol , vol.18 , pp. 6353-6364
    • Bradham, C.A.1    Qian, T.2    Streetz, K.3    Trautwein, C.4    Brenner, D.A.5    Lemasters, J.J.6
  • 86
    • 54349099428 scopus 로고    scopus 로고
    • Doxorubicin increases the susceptibility of brain mitochondria to Ca(2+)-induced permeability transition and oxidative damage
    • Cardoso S, Santos RX, Carvalho C, et al. Doxorubicin increases the susceptibility of brain mitochondria to Ca(2+)-induced permeability transition and oxidative damage. Free Radic Biol Med 2008; 45: 1395-402.
    • (2008) Free Radic Biol Med , vol.45 , pp. 1395-1402
    • Cardoso, S.1    Santos, R.X.2    Carvalho, C.3
  • 87
    • 84867746901 scopus 로고
    • Sirtuin-4 modulates sensitivity to induction of the mitochondrial permeability transition pore
    • Verma M, Shulga N, Pastorino JG. Sirtuin-4 modulates sensitivity to induction of the mitochondrial permeability transition pore. Biochim Biophys Acta 2013; 1827: 38-49.
    • (1827) Biochim Biophys Acta , vol.2013 , pp. 38-49
    • Verma, M.1    Shulga, N.2    Pastorino, J.G.3
  • 88
    • 32944479897 scopus 로고    scopus 로고
    • Assignment of the NAD-dependent deacetylase sirtuin 5 gene (SIRT5) to human chromosome band 6p23 by in situ hybridization
    • Mahlknecht U, Ho AD, Letzel S, Voelter-Mahlknecht S. Assignment of the NAD-dependent deacetylase sirtuin 5 gene (SIRT5) to human chromosome band 6p23 by in situ hybridization. Cytogenet Genome Res 2006; 112: 208-12.
    • (2006) Cytogenet Genome Res , vol.112 , pp. 208-212
    • Mahlknecht, U.1    Ho, A.D.2    Letzel, S.3    Voelter-Mahlknecht, S.4
  • 89
    • 78751700840 scopus 로고    scopus 로고
    • Distinct regulation of mitochondrial localization and stability of two human Sirt5 isoforms
    • Matsushita N, Yonashiro R, Ogata Y, et al. Distinct regulation of mitochondrial localization and stability of two human Sirt5 isoforms. Genes Cells 2011; 16: 190-202.
    • (2011) Genes Cells , vol.16 , pp. 190-202
    • Matsushita, N.1    Yonashiro, R.2    Ogata, Y.3
  • 90
    • 33847635635 scopus 로고    scopus 로고
    • Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin
    • Schuetz A, Min J, Antoshenko T, et al. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure 2007; 15: 377-89.
    • (2007) Structure , vol.15 , pp. 377-389
    • Schuetz, A.1    Min, J.2    Antoshenko, T.3
  • 91
    • 65249087389 scopus 로고    scopus 로고
    • SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
    • Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009; 137: 560-70.
    • (2009) Cell , vol.137 , pp. 560-570
    • Nakagawa, T.1    Lomb, D.J.2    Haigis, M.C.3    Guarente, L.4
  • 92
    • 81055122671 scopus 로고    scopus 로고
    • Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
    • Du J, Zhou Y, Su X, et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 2011; 334: 806-9.
    • (2011) Science , vol.334 , pp. 806-809
    • Du, J.1    Zhou, Y.2    Su, X.3
  • 93
    • 83055173304 scopus 로고    scopus 로고
    • The first identification of lysine malonylation substrates and its regulatory enzyme
    • M111 012658
    • Peng C, Lu Z, Xie Z, et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics 2011; 10: M111 012658.
    • (2011) Mol Cell Proteomics , vol.10
    • Peng, C.1    Lu, Z.2    Xie, Z.3
  • 94
    • 39049184073 scopus 로고    scopus 로고
    • Chromosomal organization and fluorescence in situ hybridization of the human Sirtuin 6 gene
    • Mahlknecht U, Ho AD, Voelter-Mahlknecht S. Chromosomal organization and fluorescence in situ hybridization of the human Sirtuin 6 gene. Int J Oncol 2006; 28: 447-56.
    • (2006) Int J Oncol , vol.28 , pp. 447-456
    • Mahlknecht, U.1    Ho, A.D.2    Voelter-Mahlknecht, S.3
  • 96
    • 77950035354 scopus 로고    scopus 로고
    • Functional dissection of SIRT6: Identification of domains that regulate histone deacetylase activity and chromatin localization
    • Tennen RI, Berber E, Chua KF. Functional dissection of SIRT6: identification of domains that regulate histone deacetylase activity and chromatin localization. Mech Ageing Dev 2010; 131: 185-92.
    • (2010) Mech Ageing Dev , vol.131 , pp. 185-192
    • Tennen, R.I.1    Berber, E.2    Chua, K.F.3
  • 97
    • 20444409132 scopus 로고    scopus 로고
    • Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase
    • Liszt G, Ford E, Kurtev M, Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 2005; 280: 21313-20.
    • (2005) J Biol Chem , vol.280 , pp. 21313-21320
    • Liszt, G.1    Ford, E.2    Kurtev, M.3    Guarente, L.4
  • 98
    • 41349090663 scopus 로고    scopus 로고
    • SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin
    • Michishita E, McCord RA, Berber E, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 2008; 452: 492-6.
    • (2008) Nature , vol.452 , pp. 492-496
    • Michishita, E.1    McCord, R.A.2    Berber, E.3
  • 99
    • 58149090925 scopus 로고    scopus 로고
    • SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span
    • Kawahara TL, Michishita E, Adler AS, et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 2009; 136: 62-74.
    • (2009) Cell , vol.136 , pp. 62-74
    • Kawahara, T.L.1    Michishita, E.2    Adler, A.S.3
  • 100
    • 66049150672 scopus 로고    scopus 로고
    • SIRT6 stabilizes DNAdependent protein kinase at chromatin for DNA double-strand break repair
    • McCord RA, Michishita E, Hong T, et al. SIRT6 stabilizes DNAdependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY) 2009; 1: 109-21.
    • (2009) Aging (Albany NY) , vol.1 , pp. 109-121
    • McCord, R.A.1    Michishita, E.2    Hong, T.3
  • 101
    • 79959363092 scopus 로고    scopus 로고
    • SIRT6 promotes DNA repair under stress by activating PARP1
    • Mao Z, Hine C, Tian X et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science 2011; 332: 1443-6.
    • (2011) Science , vol.332 , pp. 1443-1446
    • Mao, Z.1    Hine, C.2    Tian, X.3
  • 102
    • 31044445366 scopus 로고    scopus 로고
    • Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
    • Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006; 124: 315-29.
    • (2006) Cell , vol.124 , pp. 315-329
    • Mostoslavsky, R.1    Chua, K.F.2    Lombard, D.B.3
  • 103
    • 84858000209 scopus 로고    scopus 로고
    • The sirtuin SIRT6 regulates lifespan in male mice
    • Kanfi Y, Naiman S, Amir G, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 2012; 483: 218-21.
    • (2012) Nature , vol.483 , pp. 218-221
    • Kanfi, Y.1    Naiman, S.2    Amir, G.3
  • 104
    • 84869201195 scopus 로고    scopus 로고
    • The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun
    • Sundaresan NR, Vasudevan P, Zhong L, et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med 2012; 18: 1643-50.
    • (2012) Nat Med , vol.18 , pp. 1643-1650
    • Sundaresan, N.R.1    Vasudevan, P.2    Zhong, L.3
  • 105
    • 33744735005 scopus 로고    scopus 로고
    • Fluorescence in situ hybridization and chromosomal organization of the human Sirtuin 7 gene
    • Voelter-Mahlknecht S, Letzel S, Mahlknecht U. Fluorescence in situ hybridization and chromosomal organization of the human Sirtuin 7 gene. Int J Oncol 2006; 28: 899-908.
    • (2006) Int J Oncol , vol.28 , pp. 899-908
    • Voelter-Mahlknecht, S.1    Letzel, S.2    Mahlknecht, U.3
  • 106
    • 33744466971 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription
    • Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 2006; 20: 1075-80.
    • (2006) Genes Dev , vol.20 , pp. 1075-1080
    • Ford, E.1    Voit, R.2    Liszt, G.3    Magin, C.4    Grummt, I.5    Guarente, L.6
  • 107
    • 84856755475 scopus 로고    scopus 로고
    • Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription
    • Tsai YC, Greco TM, Boonmee A, Miteva Y, Cristea IM. Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Mol Cell Proteomics 2012; 11: 60-76.
    • (2012) Mol Cell Proteomics , vol.11 , pp. 60-76
    • Tsai, Y.C.1    Greco, T.M.2    Boonmee, A.3    Miteva, Y.4    Cristea, I.M.5
  • 108
    • 84863453769 scopus 로고    scopus 로고
    • SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation
    • Barber MF, Michishita-Kioi E, Xi Y, et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 2012; 487: 114-8.
    • (2012) Nature , vol.487 , pp. 114-118
    • Barber, M.F.1    Michishita-Kioi, E.2    Xi, Y.3
  • 109
    • 77955664616 scopus 로고    scopus 로고
    • SUMOylation can regulate the activity of ETS-like transcription factor 4
    • Kaikkonen S, Makkonen H, Rytinki M, Palvimo JJ. SUMOylation can regulate the activity of ETS-like transcription factor 4. Biochim Biophys Acta 2010; 1799: 555-60.
    • (2010) Biochim Biophys Acta , vol.1799 , pp. 555-560
    • Kaikkonen, S.1    Makkonen, H.2    Rytinki, M.3    Palvimo, J.J.4
  • 110
    • 27144475816 scopus 로고    scopus 로고
    • Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors
    • Bradbury CA, Khanim FL, Hayden R, et al. Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 2005; 19: 1751-9.
    • (2005) Leukemia , vol.19 , pp. 1751-1759
    • Bradbury, C.A.1    Khanim, F.L.2    Hayden, R.3
  • 111
    • 34547100073 scopus 로고    scopus 로고
    • SIRT1 is significantly elevated in mouse and human prostate cancer
    • Huffman DM, Grizzle WE, Bamman MM, et al. SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res 2007; 67: 6612-8.
    • (2007) Cancer Res , vol.67 , pp. 6612-6618
    • Huffman, D.M.1    Grizzle, W.E.2    Bamman, M.M.3
  • 112
    • 34247570492 scopus 로고    scopus 로고
    • Strong expression of a longevity-related protein, SIRT1, in Bowen's disease
    • Hida Y, Kubo Y, Murao K, Arase S. Strong expression of a longevity-related protein, SIRT1, in Bowen's disease. Arch Dermatol Res 2007; 299: 103-6.
    • (2007) Arch Dermatol Res , vol.299 , pp. 103-106
    • Hida, Y.1    Kubo, Y.2    Murao, K.3    Arase, S.4
  • 113
    • 84873674760 scopus 로고    scopus 로고
    • Analysis of 41 cancer cell lines reveals excessive allelic loss and novel mutations in the SIRT1 gene
    • Han J, Hubbard BP, Lee J, et al. Analysis of 41 cancer cell lines reveals excessive allelic loss and novel mutations in the SIRT1 gene. Cell Cycle 2013; 12: 263-70.
    • (2013) Cell Cycle , vol.12 , pp. 263-270
    • Han, J.1    Hubbard, B.P.2    Lee, J.3
  • 114
    • 84874538962 scopus 로고    scopus 로고
    • SIRT1 Positively Regulates Breast Cancer Associated Human Aromatase (CYP19A1) Expression
    • In press
    • Holloway KR, Barbieri A, Malyarchuk S, et al. SIRT1 Positively Regulates Breast Cancer Associated Human Aromatase (CYP19A1) Expression. Mol Endocrinol 2013 In press
    • (2013) Mol Endocrinol
    • Holloway, K.R.1    Barbieri, A.2    Malyarchuk, S.3
  • 115
    • 84878116031 scopus 로고    scopus 로고
    • Sirtuin 1 (SIRT1): A potential immunohistochemical marker and therapeutic target in soft tissue neoplasms with myoid differentiation
    • doi: 10.1016/j.humpath.2012.10.001
    • Dickson BC, Riddle ND, Brooks JS, Pasha TL, Zhang PJ. Sirtuin 1 (SIRT1): a potential immunohistochemical marker and therapeutic target in soft tissue neoplasms with myoid differentiation. Hum Pathol 2013 doi: 10.1016/j.humpath.2012.10.001.
    • (2013) Hum Pathol
    • Dickson, B.C.1    Riddle, N.D.2    Brooks, J.S.3    Pasha, T.L.4    Zhang, P.J.5
  • 116
    • 84870750886 scopus 로고    scopus 로고
    • HDAC isoenzyme expression is deregulated in chronic lymphocytic leukemia B-cells and has a complex prognostic significance
    • Van Damme M, Crompot E, Meuleman N, et al. HDAC isoenzyme expression is deregulated in chronic lymphocytic leukemia B-cells and has a complex prognostic significance. Epigenetics 2012; 7: 1403-12.
    • (2012) Epigenetics , vol.7 , pp. 1403-1412
    • van Damme, M.1    Crompot, E.2    Meuleman, N.3
  • 117
    • 84873736861 scopus 로고    scopus 로고
    • The histone deacetylase SIRT2 stabilizes Myc oncoproteins
    • Liu PY, Xu N, Malyukova A, et al. The histone deacetylase SIRT2 stabilizes Myc oncoproteins. Cell Death Differ 2013; 20: 503-14.
    • (2013) Cell Death Differ , vol.20 , pp. 503-514
    • Liu, P.Y.1    Xu, N.2    Malyukova, A.3
  • 118
    • 0041829415 scopus 로고    scopus 로고
    • Proteomics-based identification of differentially expressed genes in human gliomas: Down-regulation of SIRT2 gene
    • Hiratsuka M, Inoue T, Toda T, et al. Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem Biophys Res Commun 2003; 309: 558-66.
    • (2003) Biochem Biophys Res Commun , vol.309 , pp. 558-566
    • Hiratsuka, M.1    Inoue, T.2    Toda, T.3
  • 119
    • 33750212896 scopus 로고    scopus 로고
    • Altered sirtuin expression is associated with node-positive breast cancer
    • Ashraf N, Zino S, Macintyre A et al. Altered sirtuin expression is associated with node-positive breast cancer. Br J Cancer 2006; 95: 1056-61.
    • (2006) Br J Cancer , vol.95 , pp. 1056-1061
    • Ashraf, N.1    Zino, S.2    Macintyre, A.3
  • 120
    • 84870874690 scopus 로고    scopus 로고
    • The Histone Deacetylase SIRT6 Is a Tumor Suppressor that Controls Cancer Metabolism
    • Sebastian C, Zwaans BM, Silberman DM, et al. The Histone Deacetylase SIRT6 Is a Tumor Suppressor that Controls Cancer Metabolism. Cell 2012; 151: 1185-99.
    • (2012) Cell , vol.151 , pp. 1185-1199
    • Sebastian, C.1    Zwaans, B.M.2    Silberman, D.M.3
  • 121
    • 74549142287 scopus 로고    scopus 로고
    • The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha
    • Zhong L, D'Urso A, Toiber D et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 2010; 140: 280-93.
    • (2010) Cell , vol.140 , pp. 280-293
    • Zhong, L.1    D'Urso, A.2    Toiber, D.3
  • 122
    • 84869082071 scopus 로고    scopus 로고
    • Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin
    • Min L, Ji Y, Bakiri L, et al. Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nat Cell Biol 2012; 14: 1203-11.
    • (2012) Nat Cell Biol , vol.14 , pp. 1203-1211
    • Min, L.1    Ji, Y.2    Bakiri, L.3
  • 123
    • 84874487252 scopus 로고    scopus 로고
    • SIRT7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors mir-125a-5p and mir-125b
    • doi: 10.1002/hep.26101
    • Kim JK, Noh JH, Jung KH et al. SIRT7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors mir-125a-5p and mir-125b. Hepatology 2012 doi: 10.1002/hep.26101.
    • (2012) Hepatology
    • Kim, J.K.1    Noh, J.H.2    Jung, K.H.3
  • 124
    • 84864452777 scopus 로고    scopus 로고
    • Effects of niacin restriction on sirtuin and PARP responses to photodamage in human skin
    • Benavente CA, Schnell SA, Jacobson EL. Effects of niacin restriction on sirtuin and PARP responses to photodamage in human skin. PLoS One 2012; 7: e42276.
    • (2012) PLoS One , vol.7
    • Benavente, C.A.1    Schnell, S.A.2    Jacobson, E.L.3
  • 125
    • 70450239457 scopus 로고    scopus 로고
    • Metabolism and cancer: The circadian clock connection
    • Sahar S, Sassone-Corsi P. Metabolism and cancer: the circadian clock connection. Nat Rev Cancer 2009; 9: 886-96.
    • (2009) Nat Rev Cancer , vol.9 , pp. 886-896
    • Sahar, S.1    Sassone-Corsi, P.2
  • 126
    • 0142241211 scopus 로고    scopus 로고
    • Circadian timing in cancer treatment: The biological foundation for an integrative approach
    • Lis CG, Grutsch JF, Wood P, You M, Rich I, Hrushesky WJ. Circadian timing in cancer treatment: the biological foundation for an integrative approach. Integr Cancer Ther 2003; 2: 105-11.
    • (2003) Integr Cancer Ther , vol.2 , pp. 105-111
    • Lis, C.G.1    Grutsch, J.F.2    Wood, P.3    You, M.4    Rich, I.5    Hrushesky, W.J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.