메뉴 건너뛰기




Volumn 20, Issue 4, 2018, Pages 1384-1394

How to design a single-cell RNA-sequencing experiment: Pitfalls, challenges and perspectives

Author keywords

experimental design; experimental protocols; normalization; single cell RNA seq; spike ins; Unique Molecular Identifiers

Indexed keywords

MESSENGER RNA; TRANSCRIPTOME;

EID: 85072991191     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bby007     Document Type: Article
Times cited : (68)

References (87)
  • 1
    • 83255177150 scopus 로고    scopus 로고
    • Single-cell dissection of transcriptional heterogeneity in human colon tumors
    • Dalerba P, Kalisky T, Sahoo D, et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 2011; 29:1120-7.
    • (2011) Nat Biotechnol , vol.29 , pp. 1120-1127
    • Dalerba, P.1    Kalisky, T.2    Sahoo, D.3
  • 2
    • 84894618996 scopus 로고    scopus 로고
    • The promise of single-cell sequencing
    • Eberwine J, Sul J-Y, Bartfai T, et al. The promise of single-cell sequencing. Nat Methods 2014;11(1):25-7.
    • (2014) Nat Methods , vol.11 , Issue.1 , pp. 25-27
    • Eberwine, J.1    Sul, J.-Y.2    Bartfai, T.3
  • 3
    • 84902668801 scopus 로고    scopus 로고
    • Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
    • Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014;344(6190):1396-401.
    • (2014) Science , vol.344 , Issue.6190 , pp. 1396-1401
    • Patel, A.P.1    Tirosh, I.2    Trombetta, J.J.3
  • 4
    • 84929687805 scopus 로고    scopus 로고
    • The technology and biology of single-cell RNA sequencing
    • Kolodziejczyk AA, Kim JK, Svensson V, et al. The technology and biology of single-cell RNA sequencing. Mol Cell 2015;58(4): 610-20.
    • (2015) Mol Cell , vol.58 , Issue.4 , pp. 610-620
    • Kolodziejczyk, A.A.1    Kim, J.K.2    Svensson, V.3
  • 6
    • 84908545105 scopus 로고    scopus 로고
    • Single-cell sequencing technologies: Current and future
    • Liang J, Cai W, Sun Z. Single-cell sequencing technologies: current and future. J Genet Genomics 2014;41(10):513-28.
    • (2014) J Genet Genomics , vol.41 , Issue.10 , pp. 513-528
    • Liang, J.1    Cai, W.2    Sun, Z.3
  • 7
    • 84964344546 scopus 로고    scopus 로고
    • High-efficiency cellular reprogramming with microfluidics
    • Luni C, Giulitti S, Serena E, et al. High-efficiency cellular reprogramming with microfluidics. NatMethods 2016;13(5):446-52.
    • (2016) NatMethods , vol.13 , Issue.5 , pp. 446-452
    • Luni, C.1    Giulitti, S.2    Serena, E.3
  • 8
    • 84946226911 scopus 로고    scopus 로고
    • Design and analysis of singlecell sequencing experiments
    • Grün D, Van Oudenaarden A. Design and analysis of singlecell sequencing experiments. Cell 2015;163(4):799-810.
    • (2015) Cell , vol.163 , Issue.4 , pp. 799-810
    • Grün, D.1    Van Oudenaarden, A.2
  • 9
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genomewide expression profiling of individual cells using nanoliter droplets
    • Macosko EZ, Basu A, Satija R, et al. Highly parallel genomewide expression profiling of individual cells using nanoliter droplets. Cell 2015;161(5):1202-14.
    • (2015) Cell , vol.161 , Issue.5 , pp. 1202-1214
    • Macosko, E.Z.1    Basu, A.2    Satija, R.3
  • 10
    • 85031046570 scopus 로고    scopus 로고
    • Massively parallel single-nucleus RNA-seq with DroNc-seq
    • Habib N, Avraham-Davidi I, Basu A, et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat Methods 2017; 14(10):955-8.
    • (2017) Nat Methods , vol.14 , Issue.10 , pp. 955-958
    • Habib, N.1    Avraham-Davidi, I.2    Basu, A.3
  • 11
    • 67349146589 scopus 로고    scopus 로고
    • MRNA-Seq wholetranscriptome analysis of a single cell
    • Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq wholetranscriptome analysis of a single cell. Nat Methods 2009;6(5): 377-82.
    • (2009) Nat Methods , vol.6 , Issue.5 , pp. 377-382
    • Tang, F.1    Barbacioru, C.2    Wang, Y.3
  • 13
    • 84887101406 scopus 로고    scopus 로고
    • Smart-seq2 for sensitive full-length transcriptome profiling in single cells
    • Picelli S, Björklund Å K, Faridani OR, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 2013;10(11):1096-8.
    • (2013) Nat Methods , vol.10 , Issue.11 , pp. 1096-1098
    • Picelli, S.1    Björklund, A.K.2    Faridani, O.R.3
  • 15
    • 85012271992 scopus 로고    scopus 로고
    • Seq-Well: Portable, low-cost RNA sequencing of single cells at high throughput
    • Gierahn TM, Wadsworth MH, Hughes TK, et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods 2017;14(4):395-8.
    • (2017) Nat Methods , vol.14 , Issue.4 , pp. 395-398
    • Gierahn, T.M.1    Wadsworth, M.H.2    Hughes, T.K.3
  • 17
    • 84964452502 scopus 로고    scopus 로고
    • CEL-Seq2: Sensitive highly-multiplexed single-cell RNA-Seq
    • Hashimshony T, Senderovich N, Avital G, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol 2016; 17:77.
    • (2016) Genome Biol , vol.17 , pp. 77
    • Hashimshony, T.1    Senderovich, N.2    Avital, G.3
  • 18
    • 79959403670 scopus 로고    scopus 로고
    • Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
    • Islam S, Kjä llquist U, Moliner A, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 2011;21(7):1160-7.
    • (2011) Genome Res , vol.21 , Issue.7 , pp. 1160-1167
    • Islam, S.1    Kjällquist, U.2    Moliner, A.3
  • 20
    • 85028303209 scopus 로고    scopus 로고
    • Comprehensive single-cell transcriptional profiling of a multicellular organism
    • Cao J, Packer JS, Ramani V, et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 2017;357:661-7.
    • (2017) Science , vol.357 , pp. 661-667
    • Cao, J.1    Packer, J.S.2    Ramani, V.3
  • 21
    • 84875811525 scopus 로고    scopus 로고
    • Methods, challenges and potentials of single cell RNA-seq
    • Hebenstreit D. Methods, challenges and potentials of single cell RNA-seq. Biology 2012;1(3):658-67.
    • (2012) Biology , vol.1 , Issue.3 , pp. 658-667
    • Hebenstreit, D.1
  • 22
    • 84895069488 scopus 로고    scopus 로고
    • Quantitative single-cell RNAseq with unique molecular identifiers
    • Islam S, Zeisel A, Joost S, et al. Quantitative single-cell RNAseq with unique molecular identifiers. Nat Methods 2014;11(2): 163-6.
    • (2014) Nat Methods , vol.11 , Issue.2 , pp. 163-166
    • Islam, S.1    Zeisel, A.2    Joost, S.3
  • 23
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 2015;161(5):1187-201.
    • (2015) Cell , vol.161 , Issue.5 , pp. 1187-1201
    • Klein, A.M.1    Mazutis, L.2    Akartuna, I.3
  • 24
    • 84984677948 scopus 로고    scopus 로고
    • Disentangling neural cell diversity using single-cell transcriptomics
    • Poulin J, Tasic B, Hjerling-Leffler J, et al. Disentangling neural cell diversity using single-cell transcriptomics. Nat Neurosci 2016;19(9):1131-41.
    • (2016) Nat Neurosci , vol.19 , Issue.9 , pp. 1131-1141
    • Poulin, J.1    Tasic, B.2    Hjerling-Leffler, J.3
  • 25
    • 84978951918 scopus 로고    scopus 로고
    • Single-cell RNA-sequencing: The future of genome biology is now
    • Picelli S. Single-cell RNA-sequencing: the future of genome biology is now. RNA Biol 2017;14(5):637-50.
    • (2017) RNA Biol , vol.14 , Issue.5 , pp. 637-650
    • Picelli, S.1
  • 26
    • 79951694175 scopus 로고    scopus 로고
    • Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries
    • Aird D, Ross MG, Chen WS, et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 2011;12(2):R18.
    • (2011) Genome Biol , vol.12 , Issue.2 , pp. R18
    • Aird, D.1    Ross, M.G.2    Chen, W.S.3
  • 27
    • 85013200683 scopus 로고    scopus 로고
    • Comparative analysis of single-cell RNA-sequencing methods (Sup)
    • Ziegenhain C, Vieth B, Parekh S, et al. Comparative analysis of single-cell RNA-sequencing methods (Sup). Mol Cell 2017; 65(4):631-43.e4.
    • (2017) Mol Cell , vol.65 , Issue.4 , pp. 631-643e4
    • Ziegenhain, C.1    Vieth, B.2    Parekh, S.3
  • 28
    • 27144548491 scopus 로고    scopus 로고
    • The external RNA controls consortium: A progress report
    • Baker SC, Bauer SR, Beyer RP, et al. The external RNA controls consortium: a progress report. Nat Methods 2005;2(10):731-4.
    • (2005) Nat Methods , vol.2 , Issue.10 , pp. 731-734
    • Baker, S.C.1    Bauer, S.R.2    Beyer, R.P.3
  • 29
    • 85014524493 scopus 로고    scopus 로고
    • Power analysis of single cell RNA-sequencing experiments
    • Svensson V, Natarajan KN, Ly L-H, et al. Power analysis of single cell RNA-sequencing experiments. NatMethods 2017;14(4):381-7.
    • (2017) NatMethods , vol.14 , Issue.4 , pp. 381-387
    • Svensson, V.1    Natarajan, K.N.2    Ly, L.-H.3
  • 30
    • 84962658087 scopus 로고    scopus 로고
    • Design and computational analysis of single-cell RNA-sequencing experiments
    • Bacher R, Kendziorski C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol 2016;17:63.
    • (2016) Genome Biol , vol.17 , pp. 63
    • Bacher, R.1    Kendziorski, C.2
  • 32
    • 84981274155 scopus 로고    scopus 로고
    • Spliced synthetic genes as internal controls in RNA sequencing experiments
    • Hardwick SA, Chen W, Wong T, et al. Spliced synthetic genes as internal controls in RNA sequencing experiments. Nat Methods 2016;13(9):792-8.
    • (2016) Nat Methods , vol.13 , Issue.9 , pp. 792-798
    • Hardwick, S.A.1    Chen, W.2    Wong, T.3
  • 33
    • 84901831004 scopus 로고    scopus 로고
    • Validation of noise models for single-cell transcriptomics
    • Grün D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods 2014; 11(6):637-40.
    • (2014) Nat Methods , vol.11 , Issue.6 , pp. 637-640
    • Grün, D.1    Kester, L.2    Van Oudenaarden, A.3
  • 34
    • 85021816036 scopus 로고    scopus 로고
    • Normalizing singlecell RNA sequencing data: Challenges and opportunities
    • Vallejos CA, Risso D, Scialdone A, et al. Normalizing singlecell RNA sequencing data: challenges and opportunities. Nat Methods 2017;14(6):565-71.
    • (2017) Nat Methods , vol.14 , Issue.6 , pp. 565-571
    • Vallejos, C.A.1    Risso, D.2    Scialdone, A.3
  • 35
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 2015; 16:133-45.
    • (2015) Nat Rev Genet , vol.16 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 36
    • 84992163193 scopus 로고    scopus 로고
    • Single-cell transcriptomics bioinformatics and computational challenges
    • Poirion OB, Zhu X, Ching T, et al. Single-cell transcriptomics bioinformatics and computational challenges. Front Genet 2016;7:163.
    • (2016) Front Genet , vol.7 , pp. 163
    • Poirion, O.B.1    Zhu, X.2    Ching, T.3
  • 37
    • 80255127234 scopus 로고    scopus 로고
    • Cutadapt removes adapter sequences from highthroughput sequencing reads
    • Martin M. Cutadapt removes adapter sequences from highthroughput sequencing reads. EMBnet J 2011;17(1):10-2.
    • (2011) EMBnet J , vol.17 , Issue.1 , pp. 10-12
    • Martin, M.1
  • 38
    • 84905049901 scopus 로고    scopus 로고
    • Trimmomatic: A flexible trimmer for Illumina sequence data
    • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30(15): 2114-20.
    • (2014) Bioinformatics , vol.30 , Issue.15 , pp. 2114-2120
    • Bolger, A.M.1    Lohse, M.2    Usadel, B.3
  • 39
    • 84856282851 scopus 로고    scopus 로고
    • FastQC: A quality control tool for high throughput sequence data
    • Andrews S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics 2010. http://www.bio informatics.babraham.ac.uk/projects/fastqc.
    • (2010) Babraham Bioinformatics
    • Andrews, S.1
  • 40
    • 84883492771 scopus 로고    scopus 로고
    • Kraken: A set of tools for quality control and analysis of highthroughput sequence data
    • Davis MPA, van Dongen S, Abreu-Goodger C, et al. Kraken: a set of tools for quality control and analysis of highthroughput sequence data. Methods 2013;63(1):41-9.
    • (2013) Methods , vol.63 , Issue.1 , pp. 41-49
    • Davis, M.P.A.1    Van Dongen, S.2    Abreu-Goodger, C.3
  • 41
    • 84983372594 scopus 로고    scopus 로고
    • Quality control of single-cell RNA-seq by SinQC
    • Jiang P, Thomson JA, Stewart R. Quality control of single-cell RNA-seq by SinQC. Bioinformatics 2016;32(16):2514-6.
    • (2016) Bioinformatics , vol.32 , Issue.16 , pp. 2514-2516
    • Jiang, P.1    Thomson, J.A.2    Stewart, R.3
  • 42
    • 85019072518 scopus 로고    scopus 로고
    • Scater: Preprocessing, quality control, normalization and visualization of single-cell RNA-seq data in R
    • McCarthy DJ, Campbell KR, Lun ATL, et al. Scater: preprocessing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 2017;33(8): 1179-86.
    • (2017) Bioinformatics , vol.33 , Issue.8 , pp. 1179-1186
    • McCarthy, D.J.1    Campbell, K.R.2    Lun, A.T.L.3
  • 43
    • 84871809302 scopus 로고    scopus 로고
    • STAR: Ultrafast universal RNA-seq aligner
    • Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29(1):15-21.
    • (2013) Bioinformatics , vol.29 , Issue.1 , pp. 15-21
    • Dobin, A.1    Davis, C.A.2    Schlesinger, F.3
  • 44
    • 84961618446 scopus 로고    scopus 로고
    • GMAP and GSNAP for genomic sequence alignment: Enhancements to speed, accuracy, and functionality
    • Wu TD, Reeder J, Lawrence M, et al. GMAP and GSNAP for genomic sequence alignment: enhancements to speed, accuracy, and functionality. Methods Mol Biol 2016;1418:283-334.
    • (2016) Methods Mol Biol , vol.1418 , pp. 283-334
    • Wu, T.D.1    Reeder, J.2    Lawrence, M.3
  • 45
    • 84876996918 scopus 로고    scopus 로고
    • TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
    • Kim D, Pertea G, Trapnell C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013;14(4):R36.
    • (2013) Genome Biol , vol.14 , Issue.4 , pp. R36
    • Kim, D.1    Pertea, G.2    Trapnell, C.3
  • 46
    • 84926519013 scopus 로고    scopus 로고
    • HISAT: A fast spliced aligner with lowmemory requirements
    • Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with lowmemory requirements. NatMethods 2015;12(4):357-60.
    • (2015) NatMethods , vol.12 , Issue.4 , pp. 357-360
    • Kim, D.1    Langmead, B.2    Salzberg, S.L.3
  • 47
    • 84966283954 scopus 로고    scopus 로고
    • Near-optimal probabilistic RNA-seq quantification
    • Bray NL, Pimentel H, Melsted P, et al. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 2016; 34:525-7.
    • (2016) Nat Biotechnol , vol.34 , pp. 525-527
    • Bray, N.L.1    Pimentel, H.2    Melsted, P.3
  • 48
    • 84888861753 scopus 로고    scopus 로고
    • Systematic evaluation of spliced alignment programs for RNA-seq data
    • Engström PG, Steijger T, Sipos B, et al. Systematic evaluation of spliced alignment programs for RNA-seq data. Nat Methods 2013;10(12):1185-91.
    • (2013) Nat Methods , vol.10 , Issue.12 , pp. 1185-1191
    • Engström, P.G.1    Steijger, T.2    Sipos, B.3
  • 49
    • 85004093010 scopus 로고    scopus 로고
    • Simulation-based comprehensive benchmarking of RNA-seq aligners
    • Baruzzo G, Hayer KE, Kim EJ, et al. Simulation-based comprehensive benchmarking of RNA-seq aligners. Nat Methods 2017;14:135-7.
    • (2017) Nat Methods , vol.14 , pp. 135-137
    • Baruzzo, G.1    Hayer, K.E.2    Kim, E.J.3
  • 50
    • 85016502865 scopus 로고    scopus 로고
    • UMI-tools: Modelling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy
    • Smith TS, Heger A, Sudbery I. UMI-tools: modelling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res 2017;27:491-9.
    • (2017) Genome Res , vol.27 , pp. 491-499
    • Smith, T.S.1    Heger, A.2    Sudbery, I.3
  • 51
    • 84990841832 scopus 로고    scopus 로고
    • Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers
    • Girardot C, Scholtalbers J, Sauer S, et al. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers. BMC Bioinformatics 2016;17(1):419.
    • (2016) BMC Bioinformatics , vol.17 , Issue.1 , pp. 419
    • Girardot, C.1    Scholtalbers, J.2    Sauer, S.3
  • 52
    • 84861548193 scopus 로고    scopus 로고
    • RSeQC: Quality control of RNA-seq experiments
    • Benjamini Y, Speed TP. RSeQC: quality control of RNA-seq experiments. Bioinformatics 2012;40:e72.
    • (2012) Bioinformatics , vol.40 , pp. e72
    • Benjamini, Y.1    Speed, T.P.2
  • 53
    • 68549104404 scopus 로고    scopus 로고
    • The sequence alignment/map format and SAMtools
    • Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009;25(16):2078-9.
    • (2009) Bioinformatics , vol.25 , Issue.16 , pp. 2078-2079
    • Li, H.1    Handsaker, B.2    Wysoker, A.3
  • 54
    • 84992322906 scopus 로고    scopus 로고
    • SCell: Integrated analysis of single-cell RNA-seq data
    • Diaz A, Liu SJ, Sandoval C, et al. SCell: integrated analysis of single-cell RNA-seq data. Bioinformatics 2016;32(14):2219-20.
    • (2016) Bioinformatics , vol.32 , Issue.14 , pp. 2219-2220
    • Diaz, A.1    Liu, S.J.2    Sandoval, C.3
  • 55
    • 84958058589 scopus 로고    scopus 로고
    • Classification of low quality cells from single-cell RNA-seq data
    • Ilicic T, Kim JK, Kolodziejczyk AA, et al. Classification of low quality cells from single-cell RNA-seq data. Genome Biol 2016; 17:29.
    • (2016) Genome Biol , vol.17 , pp. 29
    • Ilicic, T.1    Kim, J.K.2    Kolodziejczyk, A.A.3
  • 56
    • 84928987900 scopus 로고    scopus 로고
    • HTSeq-A Python framework to work with high-throughput sequencing data
    • Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 2014;31:0-5.
    • (2014) Bioinformatics , vol.31 , pp. 0-5
    • Anders, S.1    Pyl, P.T.2    Huber, W.3
  • 57
    • 84897397058 scopus 로고    scopus 로고
    • FeatureCounts: An efficient generalpurpose program for assigning sequence reads to genomic features
    • Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient generalpurpose program for assigning sequence reads to genomic features. Bioinformatics 2014;30(7):923-30.
    • (2014) Bioinformatics , vol.30 , Issue.7 , pp. 923-930
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 58
    • 84919415762 scopus 로고    scopus 로고
    • Reducing bias in RNA sequencing data: A novel approach to compute counts
    • Finotello F, Lavezzo E, Bianco L, et al. Reducing bias in RNA sequencing data: a novel approach to compute counts. BMC Bioinformatics 2014;15 (Suppl 1):S7.
    • (2014) BMC Bioinformatics , vol.15 , pp. S7
    • Finotello, F.1    Lavezzo, E.2    Bianco, L.3
  • 59
    • 84939162152 scopus 로고    scopus 로고
    • Scalable microfluidics for singlecell RNA printing and sequencing
    • Bose S, Wan Z, Carr A, et al. Scalable microfluidics for singlecell RNA printing and sequencing. Genome Biol 2015; 16:120.
    • (2015) Genome Biol , vol.16 , pp. 120
    • Bose, S.1    Wan, Z.2    Carr, A.3
  • 60
    • 84897775152 scopus 로고    scopus 로고
    • A stochastic model dissects cell states in biological transition processes
    • Armond JW, Saha K, Rana AA, et al. A stochastic model dissects cell states in biological transition processes. Sci Rep 2015;4(1):3692.
    • (2015) Sci Rep , vol.4 , Issue.1 , pp. 3692
    • Armond, J.W.1    Saha, K.2    Rana, A.A.3
  • 61
    • 84890060756 scopus 로고    scopus 로고
    • SAMstrt: Statistical test for differential expression in single-cell transcriptome with spike-in normalization
    • Katayama S, Töhönen V, Linnarsson S, et al. SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization. Bioinformatics 2013;29:2943-5.
    • (2013) Bioinformatics , vol.29 , pp. 2943-2945
    • Katayama, S.1    Töhönen, V.2    Linnarsson, S.3
  • 62
    • 84938698208 scopus 로고    scopus 로고
    • Measuring differential gene expression with RNA-seq: Challenges and strategies for data analysis
    • Finotello F, Di Camillo B. Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis. Brief Funct Genomics 2015;14(2):130-42.
    • (2015) Brief Funct Genomics , vol.14 , Issue.2 , pp. 130-142
    • Finotello, F.1    Di Camillo, B.2
  • 63
    • 84936803955 scopus 로고    scopus 로고
    • Normalization and noise reduction for single cell RNA-seq experiments
    • Ding B, Zheng L, Zhu Y, et al. Normalization and noise reduction for single cell RNA-seq experiments. Bioinformatics 2015; 31(13):2225-7.
    • (2015) Bioinformatics , vol.31 , Issue.13 , pp. 2225-2227
    • Ding, B.1    Zheng, L.2    Zhu, Y.3
  • 64
    • 84887109584 scopus 로고    scopus 로고
    • Accounting for technical noise in single-cell RNA-seq experiments
    • Brennecke P, Anders S, Kim JK, et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods 2013; 10(11):1093-5.
    • (2013) Nat Methods , vol.10 , Issue.11 , pp. 1093-1095
    • Brennecke, P.1    Anders, S.2    Kim, J.K.3
  • 65
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    • Buettner F, Natarajan KN, Casale FP, et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol 2015;33(2):155-60.
    • (2015) Nat Biotechnol , vol.33 , Issue.2 , pp. 155-160
    • Buettner, F.1    Natarajan, K.N.2    Casale, F.P.3
  • 66
    • 85017522016 scopus 로고    scopus 로고
    • SCnorm: Robust normalization of single-cell RNA-seq data
    • Bacher R, Chu LF, Leng N, et al. SCnorm: robust normalization of single-cell RNA-seq data. Nat Methods 2017;14(6):584-6.
    • (2017) Nat Methods , vol.14 , Issue.6 , pp. 584-586
    • Bacher, R.1    Chu, L.F.2    Leng, N.3
  • 67
    • 84964556059 scopus 로고    scopus 로고
    • Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
    • Lun LAT, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol 2016; 17:75.
    • (2016) Genome Biol , vol.17 , pp. 75
    • Lun, L.A.T.1    Bach, K.2    Marioni, J.C.3
  • 68
    • 84925226706 scopus 로고    scopus 로고
    • Svaseq: Removing batch effects and other unwanted noise from sequencing data
    • Leek JT. Svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res 2014;42:e161.
    • (2014) Nucleic Acids Res , vol.42 , pp. e161
    • Leek, J.T.1
  • 70
    • 33845432928 scopus 로고    scopus 로고
    • Adjusting batch effects in microarray expression data using empirical Bayes methods
    • Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007;8(1):118-27.
    • (2007) Biostatistics , vol.8 , Issue.1 , pp. 118-127
    • Johnson, W.E.1    Li, C.2    Rabinovic, A.3
  • 71
    • 85029226561 scopus 로고    scopus 로고
    • Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data
    • Lun ATL, Marioni JC. Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data. Biostatistics 2017;18:451-64.
    • (2017) Biostatistics , vol.18 , pp. 451-464
    • Lun, A.T.L.1    Marioni, J.C.2
  • 72
    • 84944901262 scopus 로고    scopus 로고
    • Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
    • Kim JK, Kolodziejczyk AA, Illicic T, et al. Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat Commun 2015;6:8687.
    • (2015) Nat Commun , vol.6 , pp. 8687
    • Kim, J.K.1    Kolodziejczyk, A.A.2    Illicic, T.3
  • 74
    • 84988815163 scopus 로고    scopus 로고
    • Identifying and removing the cell-cycle effect fromsingle-cell RNA-sequencing data
    • Barron M, Li J. Identifying and removing the cell-cycle effect fromsingle-cell RNA-sequencing data. Sci Rep 2016;6:33892.
    • (2016) Sci Rep , vol.6 , pp. 33892
    • Barron, M.1    Li, J.2
  • 75
    • 84959122613 scopus 로고    scopus 로고
    • Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments
    • Leng N, Chu L-F, Barry C, et al. Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments. Nat Methods 2015;12(10):947-50.
    • (2015) Nat Methods , vol.12 , Issue.10 , pp. 947-950
    • Leng, N.1    Chu, L.-F.2    Barry, C.3
  • 76
    • 85025649872 scopus 로고    scopus 로고
    • Identifying cell populations with scRNASeq
    • Andrews TS, Hemberg M. Identifying cell populations with scRNASeq. Mol Aspects Med 2017;59:114-22.
    • (2017) Mol Aspects Med , vol.59 , pp. 114-122
    • Andrews, T.S.1    Hemberg, M.2
  • 77
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson K. LIII. On lines and planes of closest fit to systems of points in space. Philos Mag Ser 1901;6(2):559-72.
    • (1901) Philos Mag ser , vol.6 , Issue.2 , pp. 559-572
    • Pearson, K.1
  • 78
    • 85021301728 scopus 로고    scopus 로고
    • Computational approaches for interpreting scRNA-seq data
    • Rostom R, Svensson V, Teichmann SA, et al. Computational approaches for interpreting scRNA-seq data. FEBS Lett 2017; 591(15):2213-25.
    • (2017) FEBS Lett , vol.591 , Issue.15 , pp. 2213-2225
    • Rostom, R.1    Svensson, V.2    Teichmann, S.A.3
  • 79
    • 84955706109 scopus 로고    scopus 로고
    • ZIFA: Dimensionality reduction for zeroinflated single-cell gene expression analysis
    • Pierson E, Yau C. ZIFA: dimensionality reduction for zeroinflated single-cell gene expression analysis. Genome Biol 2015;16:241.
    • (2015) Genome Biol , vol.16 , pp. 241
    • Pierson, E.1    Yau, C.2
  • 81
    • 84966667709 scopus 로고    scopus 로고
    • Destiny: Diffusion maps for large-scale single-cell data in R
    • Angerer P, Haghverdi L, Büttner M, et al. Destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 2016; 32(8):1241-3.
    • (2016) Bioinformatics , vol.32 , Issue.8 , pp. 1241-1243
    • Angerer, P.1    Haghverdi, L.2    Büttner, M.3
  • 82
    • 84991571425 scopus 로고    scopus 로고
    • Computational methods for trajectory inference from single-cell transcriptomics
    • Cannoodt R, Saelens W, Saeys Y. Computational methods for trajectory inference from single-cell transcriptomics. Eur J Immunol 2016;46(11):2496-506.
    • (2016) Eur J Immunol , vol.46 , Issue.11 , pp. 2496-2506
    • Cannoodt, R.1    Saelens, W.2    Saeys, Y.3
  • 84
    • 84856484968 scopus 로고    scopus 로고
    • Counting absolute numbers of molecules using unique molecular identifiers
    • Kivioja T, Vähä rautio A, Karlsson K, et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods 2011;9(1):72-4.
    • (2011) Nat Methods , vol.9 , Issue.1 , pp. 72-74
    • Kivioja, T.1    Vähärautio, A.2    Karlsson, K.3
  • 85
    • 84922321862 scopus 로고    scopus 로고
    • Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
    • Pollen AA, Nowakowski TJ, Shuga J, et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol 2014;32:1053-8.
    • (2014) Nat Biotechnol , vol.32 , pp. 1053-1058
    • Pollen, A.A.1    Nowakowski, T.J.2    Shuga, J.3
  • 86
    • 84903185013 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
    • Shalek AK, Satija R, Shuga J, et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 2014; 510(7505):363-9.
    • (2014) Nature , vol.510 , Issue.7505 , pp. 363-369
    • Shalek, A.K.1    Satija, R.2    Shuga, J.3
  • 87
    • 85008384488 scopus 로고    scopus 로고
    • Batch effects and the effective design of single-cell gene expression studies
    • Tung P-Y, Blischak JD, Hsiao CJ, et al. Batch effects and the effective design of single-cell gene expression studies. Nat Sci Rep 2017;7: doi:10.1038/srep39921.
    • (2017) Nat Sci Rep , vol.7
    • Tung, P.-Y.1    Blischak, J.D.2    Hsiao, C.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.