-
1
-
-
83255177150
-
Single-cell dissection of transcriptional heterogeneity in human colon tumors
-
Dalerba P, Kalisky T, Sahoo D, et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 2011; 29:1120-7.
-
(2011)
Nat Biotechnol
, vol.29
, pp. 1120-1127
-
-
Dalerba, P.1
Kalisky, T.2
Sahoo, D.3
-
2
-
-
84894618996
-
The promise of single-cell sequencing
-
Eberwine J, Sul J-Y, Bartfai T, et al. The promise of single-cell sequencing. Nat Methods 2014;11(1):25-7.
-
(2014)
Nat Methods
, vol.11
, Issue.1
, pp. 25-27
-
-
Eberwine, J.1
Sul, J.-Y.2
Bartfai, T.3
-
3
-
-
84902668801
-
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
-
Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014;344(6190):1396-401.
-
(2014)
Science
, vol.344
, Issue.6190
, pp. 1396-1401
-
-
Patel, A.P.1
Tirosh, I.2
Trombetta, J.J.3
-
4
-
-
84929687805
-
The technology and biology of single-cell RNA sequencing
-
Kolodziejczyk AA, Kim JK, Svensson V, et al. The technology and biology of single-cell RNA sequencing. Mol Cell 2015;58(4): 610-20.
-
(2015)
Mol Cell
, vol.58
, Issue.4
, pp. 610-620
-
-
Kolodziejczyk, A.A.1
Kim, J.K.2
Svensson, V.3
-
5
-
-
84906228597
-
Single-cell RNA-seq: Advances and future challenges
-
Saliba AE, Westermann AJ, Gorski SA, Vogel J. Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 2014;42(14):8845-60.
-
(2014)
Nucleic Acids Res
, vol.42
, Issue.14
, pp. 8845-8860
-
-
Saliba, A.E.1
Westermann, A.J.2
Gorski, S.A.3
Vogel, J.4
-
6
-
-
84908545105
-
Single-cell sequencing technologies: Current and future
-
Liang J, Cai W, Sun Z. Single-cell sequencing technologies: current and future. J Genet Genomics 2014;41(10):513-28.
-
(2014)
J Genet Genomics
, vol.41
, Issue.10
, pp. 513-528
-
-
Liang, J.1
Cai, W.2
Sun, Z.3
-
7
-
-
84964344546
-
High-efficiency cellular reprogramming with microfluidics
-
Luni C, Giulitti S, Serena E, et al. High-efficiency cellular reprogramming with microfluidics. NatMethods 2016;13(5):446-52.
-
(2016)
NatMethods
, vol.13
, Issue.5
, pp. 446-452
-
-
Luni, C.1
Giulitti, S.2
Serena, E.3
-
8
-
-
84946226911
-
Design and analysis of singlecell sequencing experiments
-
Grün D, Van Oudenaarden A. Design and analysis of singlecell sequencing experiments. Cell 2015;163(4):799-810.
-
(2015)
Cell
, vol.163
, Issue.4
, pp. 799-810
-
-
Grün, D.1
Van Oudenaarden, A.2
-
9
-
-
84929684999
-
Highly parallel genomewide expression profiling of individual cells using nanoliter droplets
-
Macosko EZ, Basu A, Satija R, et al. Highly parallel genomewide expression profiling of individual cells using nanoliter droplets. Cell 2015;161(5):1202-14.
-
(2015)
Cell
, vol.161
, Issue.5
, pp. 1202-1214
-
-
Macosko, E.Z.1
Basu, A.2
Satija, R.3
-
10
-
-
85031046570
-
Massively parallel single-nucleus RNA-seq with DroNc-seq
-
Habib N, Avraham-Davidi I, Basu A, et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat Methods 2017; 14(10):955-8.
-
(2017)
Nat Methods
, vol.14
, Issue.10
, pp. 955-958
-
-
Habib, N.1
Avraham-Davidi, I.2
Basu, A.3
-
11
-
-
67349146589
-
MRNA-Seq wholetranscriptome analysis of a single cell
-
Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq wholetranscriptome analysis of a single cell. Nat Methods 2009;6(5): 377-82.
-
(2009)
Nat Methods
, vol.6
, Issue.5
, pp. 377-382
-
-
Tang, F.1
Barbacioru, C.2
Wang, Y.3
-
13
-
-
84887101406
-
Smart-seq2 for sensitive full-length transcriptome profiling in single cells
-
Picelli S, Björklund Å K, Faridani OR, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 2013;10(11):1096-8.
-
(2013)
Nat Methods
, vol.10
, Issue.11
, pp. 1096-1098
-
-
Picelli, S.1
Björklund, A.K.2
Faridani, O.R.3
-
15
-
-
85012271992
-
Seq-Well: Portable, low-cost RNA sequencing of single cells at high throughput
-
Gierahn TM, Wadsworth MH, Hughes TK, et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods 2017;14(4):395-8.
-
(2017)
Nat Methods
, vol.14
, Issue.4
, pp. 395-398
-
-
Gierahn, T.M.1
Wadsworth, M.H.2
Hughes, T.K.3
-
17
-
-
84964452502
-
CEL-Seq2: Sensitive highly-multiplexed single-cell RNA-Seq
-
Hashimshony T, Senderovich N, Avital G, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol 2016; 17:77.
-
(2016)
Genome Biol
, vol.17
, pp. 77
-
-
Hashimshony, T.1
Senderovich, N.2
Avital, G.3
-
18
-
-
79959403670
-
Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
-
Islam S, Kjä llquist U, Moliner A, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 2011;21(7):1160-7.
-
(2011)
Genome Res
, vol.21
, Issue.7
, pp. 1160-1167
-
-
Islam, S.1
Kjällquist, U.2
Moliner, A.3
-
20
-
-
85028303209
-
Comprehensive single-cell transcriptional profiling of a multicellular organism
-
Cao J, Packer JS, Ramani V, et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 2017;357:661-7.
-
(2017)
Science
, vol.357
, pp. 661-667
-
-
Cao, J.1
Packer, J.S.2
Ramani, V.3
-
21
-
-
84875811525
-
Methods, challenges and potentials of single cell RNA-seq
-
Hebenstreit D. Methods, challenges and potentials of single cell RNA-seq. Biology 2012;1(3):658-67.
-
(2012)
Biology
, vol.1
, Issue.3
, pp. 658-667
-
-
Hebenstreit, D.1
-
22
-
-
84895069488
-
Quantitative single-cell RNAseq with unique molecular identifiers
-
Islam S, Zeisel A, Joost S, et al. Quantitative single-cell RNAseq with unique molecular identifiers. Nat Methods 2014;11(2): 163-6.
-
(2014)
Nat Methods
, vol.11
, Issue.2
, pp. 163-166
-
-
Islam, S.1
Zeisel, A.2
Joost, S.3
-
23
-
-
84929684998
-
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
-
Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 2015;161(5):1187-201.
-
(2015)
Cell
, vol.161
, Issue.5
, pp. 1187-1201
-
-
Klein, A.M.1
Mazutis, L.2
Akartuna, I.3
-
24
-
-
84984677948
-
Disentangling neural cell diversity using single-cell transcriptomics
-
Poulin J, Tasic B, Hjerling-Leffler J, et al. Disentangling neural cell diversity using single-cell transcriptomics. Nat Neurosci 2016;19(9):1131-41.
-
(2016)
Nat Neurosci
, vol.19
, Issue.9
, pp. 1131-1141
-
-
Poulin, J.1
Tasic, B.2
Hjerling-Leffler, J.3
-
25
-
-
84978951918
-
Single-cell RNA-sequencing: The future of genome biology is now
-
Picelli S. Single-cell RNA-sequencing: the future of genome biology is now. RNA Biol 2017;14(5):637-50.
-
(2017)
RNA Biol
, vol.14
, Issue.5
, pp. 637-650
-
-
Picelli, S.1
-
26
-
-
79951694175
-
Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries
-
Aird D, Ross MG, Chen WS, et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 2011;12(2):R18.
-
(2011)
Genome Biol
, vol.12
, Issue.2
, pp. R18
-
-
Aird, D.1
Ross, M.G.2
Chen, W.S.3
-
27
-
-
85013200683
-
Comparative analysis of single-cell RNA-sequencing methods (Sup)
-
Ziegenhain C, Vieth B, Parekh S, et al. Comparative analysis of single-cell RNA-sequencing methods (Sup). Mol Cell 2017; 65(4):631-43.e4.
-
(2017)
Mol Cell
, vol.65
, Issue.4
, pp. 631-643e4
-
-
Ziegenhain, C.1
Vieth, B.2
Parekh, S.3
-
28
-
-
27144548491
-
The external RNA controls consortium: A progress report
-
Baker SC, Bauer SR, Beyer RP, et al. The external RNA controls consortium: a progress report. Nat Methods 2005;2(10):731-4.
-
(2005)
Nat Methods
, vol.2
, Issue.10
, pp. 731-734
-
-
Baker, S.C.1
Bauer, S.R.2
Beyer, R.P.3
-
29
-
-
85014524493
-
Power analysis of single cell RNA-sequencing experiments
-
Svensson V, Natarajan KN, Ly L-H, et al. Power analysis of single cell RNA-sequencing experiments. NatMethods 2017;14(4):381-7.
-
(2017)
NatMethods
, vol.14
, Issue.4
, pp. 381-387
-
-
Svensson, V.1
Natarajan, K.N.2
Ly, L.-H.3
-
30
-
-
84962658087
-
Design and computational analysis of single-cell RNA-sequencing experiments
-
Bacher R, Kendziorski C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol 2016;17:63.
-
(2016)
Genome Biol
, vol.17
, pp. 63
-
-
Bacher, R.1
Kendziorski, C.2
-
32
-
-
84981274155
-
Spliced synthetic genes as internal controls in RNA sequencing experiments
-
Hardwick SA, Chen W, Wong T, et al. Spliced synthetic genes as internal controls in RNA sequencing experiments. Nat Methods 2016;13(9):792-8.
-
(2016)
Nat Methods
, vol.13
, Issue.9
, pp. 792-798
-
-
Hardwick, S.A.1
Chen, W.2
Wong, T.3
-
33
-
-
84901831004
-
Validation of noise models for single-cell transcriptomics
-
Grün D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods 2014; 11(6):637-40.
-
(2014)
Nat Methods
, vol.11
, Issue.6
, pp. 637-640
-
-
Grün, D.1
Kester, L.2
Van Oudenaarden, A.3
-
34
-
-
85021816036
-
Normalizing singlecell RNA sequencing data: Challenges and opportunities
-
Vallejos CA, Risso D, Scialdone A, et al. Normalizing singlecell RNA sequencing data: challenges and opportunities. Nat Methods 2017;14(6):565-71.
-
(2017)
Nat Methods
, vol.14
, Issue.6
, pp. 565-571
-
-
Vallejos, C.A.1
Risso, D.2
Scialdone, A.3
-
35
-
-
84923647450
-
Computational and analytical challenges in single-cell transcriptomics
-
Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 2015; 16:133-45.
-
(2015)
Nat Rev Genet
, vol.16
, pp. 133-145
-
-
Stegle, O.1
Teichmann, S.A.2
Marioni, J.C.3
-
36
-
-
84992163193
-
Single-cell transcriptomics bioinformatics and computational challenges
-
Poirion OB, Zhu X, Ching T, et al. Single-cell transcriptomics bioinformatics and computational challenges. Front Genet 2016;7:163.
-
(2016)
Front Genet
, vol.7
, pp. 163
-
-
Poirion, O.B.1
Zhu, X.2
Ching, T.3
-
37
-
-
80255127234
-
Cutadapt removes adapter sequences from highthroughput sequencing reads
-
Martin M. Cutadapt removes adapter sequences from highthroughput sequencing reads. EMBnet J 2011;17(1):10-2.
-
(2011)
EMBnet J
, vol.17
, Issue.1
, pp. 10-12
-
-
Martin, M.1
-
38
-
-
84905049901
-
Trimmomatic: A flexible trimmer for Illumina sequence data
-
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30(15): 2114-20.
-
(2014)
Bioinformatics
, vol.30
, Issue.15
, pp. 2114-2120
-
-
Bolger, A.M.1
Lohse, M.2
Usadel, B.3
-
39
-
-
84856282851
-
FastQC: A quality control tool for high throughput sequence data
-
Andrews S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics 2010. http://www.bio informatics.babraham.ac.uk/projects/fastqc.
-
(2010)
Babraham Bioinformatics
-
-
Andrews, S.1
-
40
-
-
84883492771
-
Kraken: A set of tools for quality control and analysis of highthroughput sequence data
-
Davis MPA, van Dongen S, Abreu-Goodger C, et al. Kraken: a set of tools for quality control and analysis of highthroughput sequence data. Methods 2013;63(1):41-9.
-
(2013)
Methods
, vol.63
, Issue.1
, pp. 41-49
-
-
Davis, M.P.A.1
Van Dongen, S.2
Abreu-Goodger, C.3
-
41
-
-
84983372594
-
Quality control of single-cell RNA-seq by SinQC
-
Jiang P, Thomson JA, Stewart R. Quality control of single-cell RNA-seq by SinQC. Bioinformatics 2016;32(16):2514-6.
-
(2016)
Bioinformatics
, vol.32
, Issue.16
, pp. 2514-2516
-
-
Jiang, P.1
Thomson, J.A.2
Stewart, R.3
-
42
-
-
85019072518
-
Scater: Preprocessing, quality control, normalization and visualization of single-cell RNA-seq data in R
-
McCarthy DJ, Campbell KR, Lun ATL, et al. Scater: preprocessing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 2017;33(8): 1179-86.
-
(2017)
Bioinformatics
, vol.33
, Issue.8
, pp. 1179-1186
-
-
McCarthy, D.J.1
Campbell, K.R.2
Lun, A.T.L.3
-
43
-
-
84871809302
-
STAR: Ultrafast universal RNA-seq aligner
-
Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29(1):15-21.
-
(2013)
Bioinformatics
, vol.29
, Issue.1
, pp. 15-21
-
-
Dobin, A.1
Davis, C.A.2
Schlesinger, F.3
-
44
-
-
84961618446
-
GMAP and GSNAP for genomic sequence alignment: Enhancements to speed, accuracy, and functionality
-
Wu TD, Reeder J, Lawrence M, et al. GMAP and GSNAP for genomic sequence alignment: enhancements to speed, accuracy, and functionality. Methods Mol Biol 2016;1418:283-334.
-
(2016)
Methods Mol Biol
, vol.1418
, pp. 283-334
-
-
Wu, T.D.1
Reeder, J.2
Lawrence, M.3
-
45
-
-
84876996918
-
TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
-
Kim D, Pertea G, Trapnell C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013;14(4):R36.
-
(2013)
Genome Biol
, vol.14
, Issue.4
, pp. R36
-
-
Kim, D.1
Pertea, G.2
Trapnell, C.3
-
46
-
-
84926519013
-
HISAT: A fast spliced aligner with lowmemory requirements
-
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with lowmemory requirements. NatMethods 2015;12(4):357-60.
-
(2015)
NatMethods
, vol.12
, Issue.4
, pp. 357-360
-
-
Kim, D.1
Langmead, B.2
Salzberg, S.L.3
-
47
-
-
84966283954
-
Near-optimal probabilistic RNA-seq quantification
-
Bray NL, Pimentel H, Melsted P, et al. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 2016; 34:525-7.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 525-527
-
-
Bray, N.L.1
Pimentel, H.2
Melsted, P.3
-
48
-
-
84888861753
-
Systematic evaluation of spliced alignment programs for RNA-seq data
-
Engström PG, Steijger T, Sipos B, et al. Systematic evaluation of spliced alignment programs for RNA-seq data. Nat Methods 2013;10(12):1185-91.
-
(2013)
Nat Methods
, vol.10
, Issue.12
, pp. 1185-1191
-
-
Engström, P.G.1
Steijger, T.2
Sipos, B.3
-
49
-
-
85004093010
-
Simulation-based comprehensive benchmarking of RNA-seq aligners
-
Baruzzo G, Hayer KE, Kim EJ, et al. Simulation-based comprehensive benchmarking of RNA-seq aligners. Nat Methods 2017;14:135-7.
-
(2017)
Nat Methods
, vol.14
, pp. 135-137
-
-
Baruzzo, G.1
Hayer, K.E.2
Kim, E.J.3
-
50
-
-
85016502865
-
UMI-tools: Modelling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy
-
Smith TS, Heger A, Sudbery I. UMI-tools: modelling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res 2017;27:491-9.
-
(2017)
Genome Res
, vol.27
, pp. 491-499
-
-
Smith, T.S.1
Heger, A.2
Sudbery, I.3
-
51
-
-
84990841832
-
Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers
-
Girardot C, Scholtalbers J, Sauer S, et al. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers. BMC Bioinformatics 2016;17(1):419.
-
(2016)
BMC Bioinformatics
, vol.17
, Issue.1
, pp. 419
-
-
Girardot, C.1
Scholtalbers, J.2
Sauer, S.3
-
52
-
-
84861548193
-
RSeQC: Quality control of RNA-seq experiments
-
Benjamini Y, Speed TP. RSeQC: quality control of RNA-seq experiments. Bioinformatics 2012;40:e72.
-
(2012)
Bioinformatics
, vol.40
, pp. e72
-
-
Benjamini, Y.1
Speed, T.P.2
-
53
-
-
68549104404
-
The sequence alignment/map format and SAMtools
-
Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009;25(16):2078-9.
-
(2009)
Bioinformatics
, vol.25
, Issue.16
, pp. 2078-2079
-
-
Li, H.1
Handsaker, B.2
Wysoker, A.3
-
54
-
-
84992322906
-
SCell: Integrated analysis of single-cell RNA-seq data
-
Diaz A, Liu SJ, Sandoval C, et al. SCell: integrated analysis of single-cell RNA-seq data. Bioinformatics 2016;32(14):2219-20.
-
(2016)
Bioinformatics
, vol.32
, Issue.14
, pp. 2219-2220
-
-
Diaz, A.1
Liu, S.J.2
Sandoval, C.3
-
55
-
-
84958058589
-
Classification of low quality cells from single-cell RNA-seq data
-
Ilicic T, Kim JK, Kolodziejczyk AA, et al. Classification of low quality cells from single-cell RNA-seq data. Genome Biol 2016; 17:29.
-
(2016)
Genome Biol
, vol.17
, pp. 29
-
-
Ilicic, T.1
Kim, J.K.2
Kolodziejczyk, A.A.3
-
56
-
-
84928987900
-
HTSeq-A Python framework to work with high-throughput sequencing data
-
Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 2014;31:0-5.
-
(2014)
Bioinformatics
, vol.31
, pp. 0-5
-
-
Anders, S.1
Pyl, P.T.2
Huber, W.3
-
57
-
-
84897397058
-
FeatureCounts: An efficient generalpurpose program for assigning sequence reads to genomic features
-
Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient generalpurpose program for assigning sequence reads to genomic features. Bioinformatics 2014;30(7):923-30.
-
(2014)
Bioinformatics
, vol.30
, Issue.7
, pp. 923-930
-
-
Liao, Y.1
Smyth, G.K.2
Shi, W.3
-
58
-
-
84919415762
-
Reducing bias in RNA sequencing data: A novel approach to compute counts
-
Finotello F, Lavezzo E, Bianco L, et al. Reducing bias in RNA sequencing data: a novel approach to compute counts. BMC Bioinformatics 2014;15 (Suppl 1):S7.
-
(2014)
BMC Bioinformatics
, vol.15
, pp. S7
-
-
Finotello, F.1
Lavezzo, E.2
Bianco, L.3
-
59
-
-
84939162152
-
Scalable microfluidics for singlecell RNA printing and sequencing
-
Bose S, Wan Z, Carr A, et al. Scalable microfluidics for singlecell RNA printing and sequencing. Genome Biol 2015; 16:120.
-
(2015)
Genome Biol
, vol.16
, pp. 120
-
-
Bose, S.1
Wan, Z.2
Carr, A.3
-
60
-
-
84897775152
-
A stochastic model dissects cell states in biological transition processes
-
Armond JW, Saha K, Rana AA, et al. A stochastic model dissects cell states in biological transition processes. Sci Rep 2015;4(1):3692.
-
(2015)
Sci Rep
, vol.4
, Issue.1
, pp. 3692
-
-
Armond, J.W.1
Saha, K.2
Rana, A.A.3
-
61
-
-
84890060756
-
SAMstrt: Statistical test for differential expression in single-cell transcriptome with spike-in normalization
-
Katayama S, Töhönen V, Linnarsson S, et al. SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization. Bioinformatics 2013;29:2943-5.
-
(2013)
Bioinformatics
, vol.29
, pp. 2943-2945
-
-
Katayama, S.1
Töhönen, V.2
Linnarsson, S.3
-
62
-
-
84938698208
-
Measuring differential gene expression with RNA-seq: Challenges and strategies for data analysis
-
Finotello F, Di Camillo B. Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis. Brief Funct Genomics 2015;14(2):130-42.
-
(2015)
Brief Funct Genomics
, vol.14
, Issue.2
, pp. 130-142
-
-
Finotello, F.1
Di Camillo, B.2
-
63
-
-
84936803955
-
Normalization and noise reduction for single cell RNA-seq experiments
-
Ding B, Zheng L, Zhu Y, et al. Normalization and noise reduction for single cell RNA-seq experiments. Bioinformatics 2015; 31(13):2225-7.
-
(2015)
Bioinformatics
, vol.31
, Issue.13
, pp. 2225-2227
-
-
Ding, B.1
Zheng, L.2
Zhu, Y.3
-
64
-
-
84887109584
-
Accounting for technical noise in single-cell RNA-seq experiments
-
Brennecke P, Anders S, Kim JK, et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods 2013; 10(11):1093-5.
-
(2013)
Nat Methods
, vol.10
, Issue.11
, pp. 1093-1095
-
-
Brennecke, P.1
Anders, S.2
Kim, J.K.3
-
65
-
-
84923292191
-
Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
-
Buettner F, Natarajan KN, Casale FP, et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol 2015;33(2):155-60.
-
(2015)
Nat Biotechnol
, vol.33
, Issue.2
, pp. 155-160
-
-
Buettner, F.1
Natarajan, K.N.2
Casale, F.P.3
-
66
-
-
85017522016
-
SCnorm: Robust normalization of single-cell RNA-seq data
-
Bacher R, Chu LF, Leng N, et al. SCnorm: robust normalization of single-cell RNA-seq data. Nat Methods 2017;14(6):584-6.
-
(2017)
Nat Methods
, vol.14
, Issue.6
, pp. 584-586
-
-
Bacher, R.1
Chu, L.F.2
Leng, N.3
-
67
-
-
84964556059
-
Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
-
Lun LAT, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol 2016; 17:75.
-
(2016)
Genome Biol
, vol.17
, pp. 75
-
-
Lun, L.A.T.1
Bach, K.2
Marioni, J.C.3
-
68
-
-
84925226706
-
Svaseq: Removing batch effects and other unwanted noise from sequencing data
-
Leek JT. Svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res 2014;42:e161.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. e161
-
-
Leek, J.T.1
-
70
-
-
33845432928
-
Adjusting batch effects in microarray expression data using empirical Bayes methods
-
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007;8(1):118-27.
-
(2007)
Biostatistics
, vol.8
, Issue.1
, pp. 118-127
-
-
Johnson, W.E.1
Li, C.2
Rabinovic, A.3
-
71
-
-
85029226561
-
Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data
-
Lun ATL, Marioni JC. Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data. Biostatistics 2017;18:451-64.
-
(2017)
Biostatistics
, vol.18
, pp. 451-464
-
-
Lun, A.T.L.1
Marioni, J.C.2
-
72
-
-
84944901262
-
Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
-
Kim JK, Kolodziejczyk AA, Illicic T, et al. Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat Commun 2015;6:8687.
-
(2015)
Nat Commun
, vol.6
, pp. 8687
-
-
Kim, J.K.1
Kolodziejczyk, A.A.2
Illicic, T.3
-
73
-
-
84953226880
-
BASiCS: Bayesian analysis of single-cell sequencing data
-
Vallejos CA, Marioni JC, Richardson S, Morris Q. BASiCS: bayesian analysis of single-cell sequencing data. PLoS Comput Biol 2015;11(6):e1004333.
-
(2015)
PLoS Comput Biol
, vol.11
, Issue.6
, pp. e1004333
-
-
Vallejos, C.A.1
Marioni, J.C.2
Richardson, S.3
Morris, Q.4
-
74
-
-
84988815163
-
Identifying and removing the cell-cycle effect fromsingle-cell RNA-sequencing data
-
Barron M, Li J. Identifying and removing the cell-cycle effect fromsingle-cell RNA-sequencing data. Sci Rep 2016;6:33892.
-
(2016)
Sci Rep
, vol.6
, pp. 33892
-
-
Barron, M.1
Li, J.2
-
75
-
-
84959122613
-
Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments
-
Leng N, Chu L-F, Barry C, et al. Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments. Nat Methods 2015;12(10):947-50.
-
(2015)
Nat Methods
, vol.12
, Issue.10
, pp. 947-950
-
-
Leng, N.1
Chu, L.-F.2
Barry, C.3
-
76
-
-
85025649872
-
Identifying cell populations with scRNASeq
-
Andrews TS, Hemberg M. Identifying cell populations with scRNASeq. Mol Aspects Med 2017;59:114-22.
-
(2017)
Mol Aspects Med
, vol.59
, pp. 114-122
-
-
Andrews, T.S.1
Hemberg, M.2
-
77
-
-
0000325341
-
On lines and planes of closest fit to systems of points in space
-
Pearson K. LIII. On lines and planes of closest fit to systems of points in space. Philos Mag Ser 1901;6(2):559-72.
-
(1901)
Philos Mag ser
, vol.6
, Issue.2
, pp. 559-572
-
-
Pearson, K.1
-
78
-
-
85021301728
-
Computational approaches for interpreting scRNA-seq data
-
Rostom R, Svensson V, Teichmann SA, et al. Computational approaches for interpreting scRNA-seq data. FEBS Lett 2017; 591(15):2213-25.
-
(2017)
FEBS Lett
, vol.591
, Issue.15
, pp. 2213-2225
-
-
Rostom, R.1
Svensson, V.2
Teichmann, S.A.3
-
79
-
-
84955706109
-
ZIFA: Dimensionality reduction for zeroinflated single-cell gene expression analysis
-
Pierson E, Yau C. ZIFA: dimensionality reduction for zeroinflated single-cell gene expression analysis. Genome Biol 2015;16:241.
-
(2015)
Genome Biol
, vol.16
, pp. 241
-
-
Pierson, E.1
Yau, C.2
-
81
-
-
84966667709
-
Destiny: Diffusion maps for large-scale single-cell data in R
-
Angerer P, Haghverdi L, Büttner M, et al. Destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 2016; 32(8):1241-3.
-
(2016)
Bioinformatics
, vol.32
, Issue.8
, pp. 1241-1243
-
-
Angerer, P.1
Haghverdi, L.2
Büttner, M.3
-
82
-
-
84991571425
-
Computational methods for trajectory inference from single-cell transcriptomics
-
Cannoodt R, Saelens W, Saeys Y. Computational methods for trajectory inference from single-cell transcriptomics. Eur J Immunol 2016;46(11):2496-506.
-
(2016)
Eur J Immunol
, vol.46
, Issue.11
, pp. 2496-2506
-
-
Cannoodt, R.1
Saelens, W.2
Saeys, Y.3
-
84
-
-
84856484968
-
Counting absolute numbers of molecules using unique molecular identifiers
-
Kivioja T, Vähä rautio A, Karlsson K, et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods 2011;9(1):72-4.
-
(2011)
Nat Methods
, vol.9
, Issue.1
, pp. 72-74
-
-
Kivioja, T.1
Vähärautio, A.2
Karlsson, K.3
-
85
-
-
84922321862
-
Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
-
Pollen AA, Nowakowski TJ, Shuga J, et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol 2014;32:1053-8.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 1053-1058
-
-
Pollen, A.A.1
Nowakowski, T.J.2
Shuga, J.3
-
86
-
-
84903185013
-
Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
-
Shalek AK, Satija R, Shuga J, et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 2014; 510(7505):363-9.
-
(2014)
Nature
, vol.510
, Issue.7505
, pp. 363-369
-
-
Shalek, A.K.1
Satija, R.2
Shuga, J.3
-
87
-
-
85008384488
-
Batch effects and the effective design of single-cell gene expression studies
-
Tung P-Y, Blischak JD, Hsiao CJ, et al. Batch effects and the effective design of single-cell gene expression studies. Nat Sci Rep 2017;7: doi:10.1038/srep39921.
-
(2017)
Nat Sci Rep
, vol.7
-
-
Tung, P.-Y.1
Blischak, J.D.2
Hsiao, C.J.3
|