-
1
-
-
45549088326
-
The transcriptional landscape of the yeast genome defined by RNA sequencing
-
Nagalakshmi U, Wang Z, Waern K, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 2008;320:1344-9.
-
(2008)
Science
, vol.320
, pp. 1344-1349
-
-
Nagalakshmi, U.1
Wang, Z.2
Waern, K.3
-
2
-
-
53649106195
-
Next-generation DNA sequencing
-
Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol 2008;26:1135-45.
-
(2008)
Nat Biotechnol
, vol.26
, pp. 1135-1145
-
-
Shendure, J.1
Ji, H.2
-
3
-
-
57749195712
-
RNA-Seq: a revolutionary tool for transcriptomics
-
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009;10:57-63.
-
(2009)
Nat Rev Genet
, vol.10
, pp. 57-63
-
-
Wang, Z.1
Gerstein, M.2
Snyder, M.3
-
4
-
-
79960869305
-
A comparison of analog and next-generation transcriptomic tools for mammalian studies
-
Roy NC, Altermann E, Park ZA, et al. A comparison of analog and next-generation transcriptomic tools for mammalian studies. Brief Funct Genomic 2011;10:135-50.
-
(2011)
Brief Funct Genomic
, vol.10
, pp. 135-150
-
-
Roy, N.C.1
Altermann, E.2
Park, Z.A.3
-
5
-
-
46249130709
-
The beginning of the end for microarrays?
-
Shendure J. The beginning of the end for microarrays? Nat Methods 2008;5:585-7.
-
(2008)
Nat Methods
, vol.5
, pp. 585-587
-
-
Shendure, J.1
-
7
-
-
46249103973
-
Stem cell transcriptome profiling via massive-scale mRNA sequencing
-
Cloonan N, Forrest AR, Kolle G, et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat. Methods 2008;5:613-19.
-
(2008)
Nat. Methods
, vol.5
, pp. 613-619
-
-
Cloonan, N.1
Forrest, A.R.2
Kolle, G.3
-
8
-
-
46249106990
-
Mapping and quantifying mammalian transcriptomes by RNA-Seq
-
Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008;5:621-8.
-
(2008)
Nat Methods
, vol.5
, pp. 621-628
-
-
Mortazavi, A.1
Williams, B.A.2
McCue, K.3
-
9
-
-
77949481052
-
Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
-
Bullard J, Purdom E, Hansen K, et al. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 2010; 11:94.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 94
-
-
Bullard, J.1
Purdom, E.2
Hansen, K.3
-
10
-
-
78649969759
-
De novo transcriptome sequencing in Anopheles funestus using Illumina RNA-seq technology
-
Crawford JE, Guelbeogo WM, Sanou A, et al. De novo transcriptome sequencing in Anopheles funestus using Illumina RNA-seq technology. PLoS One 2010;5: e14202.
-
(2010)
PLoS One
, vol.5
-
-
Crawford, J.E.1
Guelbeogo, W.M.2
Sanou, A.3
-
11
-
-
41149167170
-
Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing
-
Vera JC, Wheat CW, Fescemyer HW, etal. Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 2008;17:1636-47.
-
(2008)
Mol Ecol
, vol.17
, pp. 1636-1647
-
-
Vera, J.C.1
Wheat, C.W.2
Fescemyer, H.W.3
-
12
-
-
80051941094
-
Identification of novel transcripts in annotated genomes using RNA-Seq
-
Roberts A, Pimentel H, Trapnell C, et al. Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 2011;27:2325-9.
-
(2011)
Bioinformatics
, vol.27
, pp. 2325-2329
-
-
Roberts, A.1
Pimentel, H.2
Trapnell, C.3
-
13
-
-
84863229628
-
Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome
-
Peng Z, Cheng Y, Tan BC, et al. Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nat Biotechnol 2012;30:253-60.
-
(2012)
Nat Biotechnol
, vol.30
, pp. 253-260
-
-
Peng, Z.1
Cheng, Y.2
Tan, B.C.3
-
14
-
-
84855320189
-
Accurate identification of A-to-I RNA editing in human by transcriptome sequencing
-
Bahn JH, Lee J, Li G, et al. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res 2012;22:142-50.
-
(2012)
Genome Res
, vol.22
, pp. 142-150
-
-
Bahn, J.H.1
Lee, J.2
Li, G.3
-
15
-
-
80051489977
-
AlleleSeq: analysis of allele-specific expression and binding in a network framework
-
Rozowsky J, Abyzov A, Wang J, et al. AlleleSeq: analysis of allele-specific expression and binding in a network framework. Mol Syst Biol 2011;7:522.
-
(2011)
Mol Syst Biol
, vol.7
, pp. 522
-
-
Rozowsky, J.1
Abyzov, A.2
Wang, J.3
-
16
-
-
78650539308
-
From RNA-seq reads to differential expression results
-
Oshlack A, Robinson MD, Young MD. From RNA-seq reads to differential expression results. Genome Biol 2010;11: 220.
-
(2010)
Genome Biol
, vol.11
, pp. 220
-
-
Oshlack, A.1
Robinson, M.D.2
Young, M.D.3
-
17
-
-
84888864088
-
Genomics: the state of the art in RNA-seq analysis
-
Korf I. Genomics: the state of the art in RNA-seq analysis. NatMethods 2013;10:1165-6.
-
(2013)
NatMethods
, vol.10
, pp. 1165-1166
-
-
Korf, I.1
-
18
-
-
79951694175
-
Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries
-
Aird D, Ross MG, Chen W, et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 2011;12:R18.
-
(2011)
Genome Biol
, vol.12
, pp. R18
-
-
Aird, D.1
Ross, M.G.2
Chen, W.3
-
19
-
-
77955883388
-
Biases in Illumina transcriptome sequencing caused by random hexamer priming
-
Hansen KD, Brenner SE, Dudoit S. Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res 2010;38:e131.
-
(2010)
Nucleic Acids Res
, vol.38
-
-
Hansen, K.D.1
Brenner, S.E.2
Dudoit, S.3
-
20
-
-
84869036699
-
Modelling and simulating generic RNA-Seq experiments with the flux simulator
-
Griebel T, Zacher B, Ribeca P, et al. Modelling and simulating generic RNA-Seq experiments with the flux simulator. Nucleic Acids Res 2012;40:10073-83.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 10073-10083
-
-
Griebel, T.1
Zacher, B.2
Ribeca, P.3
-
22
-
-
84888861753
-
Systematic evaluation of spliced alignment programs for RNA-seq data
-
Engström PG, Steijger T, Sipos B, et al. Systematic evaluation of spliced alignment programs for RNA-seq data. Nat Methods 2013;10:1185-91.
-
(2013)
Nat Methods
, vol.10
, pp. 1185-1191
-
-
Engström, P.G.1
Steijger, T.2
Sipos, B.3
-
23
-
-
70449701942
-
Sense from sequence reads: methods for alignment and assembly
-
Flicek P, Birney E. Sense from sequence reads: methods for alignment and assembly. NatMethods 2009;6(Suppl. 11):S6-S12.
-
(2009)
NatMethods
, vol.6
, pp. S6-S12
-
-
Flicek, P.1
Birney, E.2
-
24
-
-
77957272611
-
A survey of sequence alignment algorithms for next-generation sequencing
-
Li H, Homer N. A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinformatics 2010;11: 473-83.
-
(2010)
Brief Bioinformatics
, vol.11
, pp. 473-483
-
-
Li, H.1
Homer, N.2
-
27
-
-
0019887799
-
Identification of common molecular subsequences
-
Smith TF, Waterman MS. Identification of common molecular subsequences. JMol Biol 1981;147:195-7.
-
(1981)
JMol Biol
, vol.147
, pp. 195-197
-
-
Smith, T.F.1
Waterman, M.S.2
-
28
-
-
79957842166
-
Computational methods for transcriptome nnotation and quantification using RNA-seq
-
Garber M, Grabherr MG, Guttman M, et al. Computational methods for transcriptome nnotation and quantification using RNA-seq. NatMethods 2011;8:469-77.
-
(2011)
NatMethods
, vol.8
, pp. 469-477
-
-
Garber, M.1
Grabherr, M.G.2
Guttman, M.3
-
29
-
-
77949587649
-
Fast and accurate long-read alignment with Burrows-Wheeler transform
-
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010;26:589-95.
-
(2010)
Bioinformatics
, vol.26
, pp. 589-595
-
-
Li, H.1
Durbin, R.2
-
30
-
-
79952256999
-
Adaptive seeds tame genomic sequence comparison
-
Kielbasa SM, Wan R, Sato K, etal. Adaptive seeds tame genomic sequence comparison. Genome Res 2011;21:487-93.
-
(2011)
Genome Res
, vol.21
, pp. 487-493
-
-
Kielbasa, S.M.1
Wan, R.2
Sato, K.3
-
31
-
-
40749108125
-
Compressed indexing and local alignment of DNA
-
Lam TW, Sung W, Tam S, et al. Compressed indexing and local alignment of DNA. Bioinformatics 2008; 24:791-7.
-
(2008)
Bioinformatics
, vol.24
, pp. 791-797
-
-
Lam, T.W.1
Sung, W.2
Tam, S.3
-
32
-
-
84859210032
-
Fast gapped-read alignment with Bowtie 2
-
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. NatMethods 2012;9:357-9.
-
(2012)
NatMethods
, vol.9
, pp. 357-359
-
-
Langmead, B.1
Salzberg, S.L.2
-
34
-
-
84876996918
-
TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
-
Kim D, Pertea G, Trapnell C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013;14:R36.
-
(2013)
Genome Biol
, vol.14
, pp. R36
-
-
Kim, D.1
Pertea, G.2
Trapnell, C.3
-
35
-
-
80052745094
-
Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM)
-
Grant GR, Farkas MH, Pizarro AD, et al. Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics 2011;27: 2518-28.
-
(2011)
Bioinformatics
, vol.27
, pp. 2518-2528
-
-
Grant, G.R.1
Farkas, M.H.2
Pizarro, A.D.3
-
36
-
-
75749096130
-
Cancer genome sequencing: a review
-
Mardis ER, Wilson RK. Cancer genome sequencing: a review. HumMol Genet 2009;18:R163-8.
-
(2009)
HumMol Genet
, vol.18
, pp. R163-R168
-
-
Mardis, E.R.1
Wilson, R.K.2
-
37
-
-
65449136284
-
TopHat: discovering splice junctions with RNA-Seq
-
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009;25: 1105-11.
-
(2009)
Bioinformatics
, vol.25
, pp. 1105-1111
-
-
Trapnell, C.1
Pachter, L.2
Salzberg, S.L.3
-
38
-
-
79961123152
-
RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
-
Li B, Dewey C. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011;12:323.
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 323
-
-
Li, B.1
Dewey, C.2
-
39
-
-
84941658109
-
The author file: Paul Bertone
-
Marx V. The author file: Paul Bertone. NatMethods 2013; 10:1137.
-
(2013)
NatMethods
, vol.10
, pp. 1137
-
-
Marx, V.1
-
40
-
-
77950460661
-
Understanding mechanisms underlying human gene expression variation with RNA sequencing
-
Pickrell JK, Marioni JC, Pai AA, et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 2010;464:768-72.
-
(2010)
Nature
, vol.464
, pp. 768-772
-
-
Pickrell, J.K.1
Marioni, J.C.2
Pai, A.A.3
-
41
-
-
77952123055
-
Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
-
Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010;28:511-5.
-
(2010)
Nat Biotechnol
, vol.28
, pp. 511-515
-
-
Trapnell, C.1
Williams, B.A.2
Pertea, G.3
-
42
-
-
84899645241
-
Fine-Splice, enhanced splice junction detection and quantification: a novel pipeline based on the assessment of diverse RNA-Seq alignment solutions
-
Gatto A, Torroja-Fungairiño C, Mazzarotto F, et al. Fine-Splice, enhanced splice junction detection and quantification: a novel pipeline based on the assessment of diverse RNA-Seq alignment solutions. Nucleic Acids Res 2014;42:e71.
-
(2014)
Nucleic Acids Res
, vol.42
-
-
Gatto, A.1
Torroja-Fungairiño, C.2
Mazzarotto, F.3
-
44
-
-
84919415762
-
Reducing bias in RNA sequencing data: a novel approach to compute counts
-
Finotello F, Lavezzo E, Bianco L, et al. Reducing bias in RNA sequencing data: a novel approach to compute counts. BMC Bioinformatics 2014;15(Suppl. 1):S7.
-
(2014)
BMC Bioinformatics
, vol.15
, pp. S7
-
-
Finotello, F.1
Lavezzo, E.2
Bianco, L.3
-
45
-
-
79751531332
-
Haplotype and isoform specific expression estimation using multi-mapping RNAseq reads
-
Turro E, Su S, Goncalves Ã, et al. Haplotype and isoform specific expression estimation using multi-mapping RNAseq reads. Genome Biol 2011;12:R13.
-
(2011)
Genome Biol
, vol.12
, pp. R13
-
-
Turro, E.1
Su, S.2
Goncalves, Ã.3
-
46
-
-
83855165105
-
Repetitive DNA and next-generation sequencing: computational challenges and solutions
-
Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat RevGenet 2011;13:36-46.
-
(2011)
Nat RevGenet
, vol.13
, pp. 36-46
-
-
Treangen, T.J.1
Salzberg, S.L.2
-
47
-
-
84875476234
-
SeqEntropy: genomewide assessment of repeats for short read sequencing
-
Chu H, Hsiao WW, Tsao TT, et al. SeqEntropy: genomewide assessment of repeats for short read sequencing. PloS One 2013;8:e59484.
-
(2013)
PloS One
, vol.8
-
-
Chu, H.1
Hsiao, W.W.2
Tsao, T.T.3
-
48
-
-
82255165034
-
Comparative analysis of algorithms for whole-genome assembly of pyrosequencing data
-
Finotello F, Lavezzo E, Fontana P, et al. Comparative analysis of algorithms for whole-genome assembly of pyrosequencing data. Brief Bioinformatics 2012;13:269-80.
-
(2012)
Brief Bioinformatics
, vol.13
, pp. 269-280
-
-
Finotello, F.1
Lavezzo, E.2
Fontana, P.3
-
49
-
-
50649089207
-
RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays
-
Marioni JC, Mason CE, Mane SM, et al. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. GenomeRes 2008;18:1509-17.
-
(2008)
GenomeRes
, vol.18
, pp. 1509-1517
-
-
Marioni, J.C.1
Mason, C.E.2
Mane, S.M.3
-
50
-
-
83655163970
-
BM-Map: bayesian mapping of multireads for next-generation sequencing data
-
Ji Y, Xu Y, Zhang Q, et al. BM-Map: bayesian mapping of multireads for next-generation sequencing data. Biometrics 2011;67:1215-24.
-
(2011)
Biometrics
, vol.67
, pp. 1215-1224
-
-
Ji, Y.1
Xu, Y.2
Zhang, Q.3
-
51
-
-
79955082292
-
Estimation of alternative splicing isoform frequencies from RNA-Seq data
-
Nicolae M, Mangul S, Mandoiu II, et al. Estimation of alternative splicing isoform frequencies from RNA-Seq data. AlgorithmsMol Biol 2011;6:9.
-
(2011)
AlgorithmsMol Biol
, vol.6
, pp. 9
-
-
Nicolae, M.1
Mangul, S.2
Mandoiu, I.I.3
-
53
-
-
84861548193
-
Summarizing and correcting the GC content bias in high-throughput sequencing
-
Benjamini Y, Speed TP. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res 2012;40:e72.
-
(2012)
Nucleic Acids Res
, vol.40
-
-
Benjamini, Y.1
Speed, T.P.2
-
54
-
-
52649157765
-
Substantial biases in ultra-short read data sets from high-throughput DNA sequencing
-
Dohm JC, Lottaz C, Borodina T, et al. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res 2008;36:e105.
-
(2008)
Nucleic Acids Res
, vol.36
-
-
Dohm, J.C.1
Lottaz, C.2
Borodina, T.3
-
55
-
-
77951940273
-
Modeling non-uniformity in short-read rates in RNA-Seq data
-
Li J, Jiang H, Wong WH. Modeling non-uniformity in short-read rates in RNA-Seq data. Genome Biol 2010;11: R25.
-
(2010)
Genome Biol
, vol.11
, pp. R25
-
-
Li, J.1
Jiang, H.2
Wong, W.H.3
-
56
-
-
65649126066
-
Transcript length bias in RNAseq data confounds systems biology
-
Oshlack A, Wakefield MJ. Transcript length bias in RNAseq data confounds systems biology. Biol Direct 2009;4:14.
-
(2009)
Biol Direct
, vol.4
, pp. 14
-
-
Oshlack, A.1
Wakefield, M.J.2
-
57
-
-
79960411408
-
Comparative studies of de novo assembly tools for next-generation sequencing technologies
-
Lin Y, Li J, Shen H, et al. Comparative studies of de novo assembly tools for next-generation sequencing technologies. Bioinformatics 2011;27:2031-7.
-
(2011)
Bioinformatics
, vol.27
, pp. 2031-2037
-
-
Lin, Y.1
Li, J.2
Shen, H.3
-
58
-
-
77953176036
-
A scaling normalization method for differential expression analysis of RNA-seq data
-
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 2010;11:R25.
-
(2010)
Genome Biol
, vol.11
, pp. R25
-
-
Robinson, M.D.1
Oshlack, A.2
-
59
-
-
84863562292
-
Normalization, testing, and false discovery rate estimation for RNA-sequencing data
-
Li J, Witten DM, Johnstone IM, et al. Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics 2012;13:523-38.
-
(2012)
Biostatistics
, vol.13
, pp. 523-538
-
-
Li, J.1
Witten, D.M.2
Johnstone, I.M.3
-
60
-
-
0142121516
-
Exploration, normalization, and summaries of high density oligonucleotide array probe level data
-
Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003;4:249-64.
-
(2003)
Biostatistics
, vol.4
, pp. 249-264
-
-
Irizarry, R.A.1
Hobbs, B.2
Collin, F.3
-
61
-
-
84887791432
-
A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis
-
Dillies M, Rau A, Aubert J, et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinformatics 2013; 14:671-83.
-
(2013)
Brief Bioinformatics
, vol.14
, pp. 671-683
-
-
Dillies, M.1
Rau, A.2
Aubert, J.3
-
62
-
-
77958471357
-
Differential expression analysis for sequence count data
-
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol 2010;11:R106.
-
(2010)
Genome Biol
, vol.11
, pp. R106
-
-
Anders, S.1
Huber, W.2
-
63
-
-
84868010349
-
Revisiting global gene expression analysis
-
Lovén J, Orlando DA, Sigova AA, et al. Revisiting global gene expression analysis. Cell 2012;151:476.
-
(2012)
Cell
, vol.151
, pp. 476
-
-
Lovén, J.1
Orlando, D.A.2
Sigova, A.A.3
-
64
-
-
79951985461
-
Length bias correction for RNA-seq data in gene set analyses
-
Gao L, Fang Z, Zhang K, et al. Length bias correction for RNA-seq data in gene set analyses. Bioinformatics 2011;27: 662-9.
-
(2011)
Bioinformatics
, vol.27
, pp. 662-669
-
-
Gao, L.1
Fang, Z.2
Zhang, K.3
-
65
-
-
84858068675
-
Removing technical variability in RNA-seq data using conditional quantile normalization
-
Hansen KD, Irizarry RA, Zhijin W. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 2012;13:204-16.
-
(2012)
Biostatistics
, vol.13
, pp. 204-216
-
-
Hansen, K.D.1
Irizarry, R.A.2
Zhijin, W.3
-
66
-
-
79960557820
-
Bias detection and correction in RNA-Sequencing data
-
Zheng W, Chung LM, Zhao H. Bias detection and correction in RNA-Sequencing data. BMCBioinformatics 2011;12: 290.
-
(2011)
BMCBioinformatics
, vol.12
, pp. 290
-
-
Zheng, W.1
Chung, L.M.2
Zhao, H.3
-
67
-
-
84928199480
-
Comparison of software packages for detecting differential expression in RNA-seq studies
-
Seyednasrollah F, Laiho A, Elo LL. Comparison of software packages for detecting differential expression in RNA-seq studies. Brief Bioinformatics 2015;16:59-70.
-
(2015)
Brief Bioinformatics
, vol.16
, pp. 59-70
-
-
Seyednasrollah, F.1
Laiho, A.2
Elo, L.L.3
-
68
-
-
84883644707
-
Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
-
Rapaport F, Khanin R, Liang Y, et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol 2013;14:R95.
-
(2013)
Genome Biol
, vol.14
, pp. R95
-
-
Rapaport, F.1
Khanin, R.2
Liang, Y.3
-
69
-
-
84903858214
-
Evaluation of read count based RNAseq analysis methods
-
Guo Y, Li C, Ye F, et al. Evaluation of read count based RNAseq analysis methods. BMC Genomics 2013;14(Suppl. 8):S2.
-
(2013)
BMC Genomics
, vol.14
, pp. S2
-
-
Guo, Y.1
Li, C.2
Ye, F.3
-
70
-
-
83055192078
-
Differential expression in RNA-seq: a matter of depth
-
Tarazona S, García-Alcalde F, Dopazo J, et al. Differential expression in RNA-seq: a matter of depth. Genome Res 2011;21:2213-23.
-
(2011)
Genome Res
, vol.21
, pp. 2213-2223
-
-
Tarazona, S.1
García-Alcalde, F.2
Dopazo, J.3
-
71
-
-
84886557480
-
Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data
-
Li J, Tibshirani R. Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data. StatMethodsMed Res 2013;22:519-36.
-
(2013)
StatMethodsMed Res
, vol.22
, pp. 519-536
-
-
Li, J.1
Tibshirani, R.2
-
72
-
-
84866158885
-
Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing
-
Robles JA, Qureshi SE, Stephen SJ, et al. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing. BMC Genomics 2012;13:484.
-
(2012)
BMC Genomics
, vol.13
, pp. 484
-
-
Robles, J.A.1
Qureshi, S.E.2
Stephen, S.J.3
-
73
-
-
64549119707
-
Statistical inferences for isoform expression in RNA-Seq
-
Jiang H, Wong WH. Statistical inferences for isoform expression in RNA-Seq. Bioinformatics 2009;25: 1026-32.
-
(2009)
Bioinformatics
, vol.25
, pp. 1026-1032
-
-
Jiang, H.1
Wong, W.H.2
-
74
-
-
84863453861
-
Technical and biological variance structure in mRNA-Seq data: life in the real world
-
Oberg AL, Bot BM, Grill DE, etal. Technical and biological variance structure in mRNA-Seq data: life in the real world. BMCGenomics 2012;13:304.
-
(2012)
BMCGenomics
, vol.13
, pp. 304
-
-
Oberg, A.L.1
Bot, B.M.2
Grill, D.E.3
-
75
-
-
84874912212
-
A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data
-
Wu H, Wang C, Wu Z. A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data. Biostatistics 2013;14:232-43.
-
(2013)
Biostatistics
, vol.14
, pp. 232-243
-
-
Wu, H.1
Wang, C.2
Wu, Z.3
-
76
-
-
79958117254
-
The NBP negative binomial model for assessing differential gene expression from RNA-seq
-
Di Y, Schafer DW, Cumbie JS, et al. The NBP negative binomial model for assessing differential gene expression from RNA-seq. Stat Appl GenetMol Biol 2011;10:24.
-
(2011)
Stat Appl GenetMol Biol
, vol.10
, pp. 24
-
-
Di, Y.1
Schafer, D.W.2
Cumbie, J.S.3
-
77
-
-
84858606519
-
A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data
-
Kvam VM, Liu P, Si Y. A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. AmJ Bot 2012;99:248-56.
-
(2012)
AmJ Bot
, vol.99
, pp. 248-256
-
-
Kvam, V.M.1
Liu, P.2
Si, Y.3
-
78
-
-
84896735766
-
Voom: precision weights unlock linear model analysis tools for RNA-seq read counts
-
Law C, Chen Y, Shi W, et al. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 2014;15:R29.
-
(2014)
Genome Biol
, vol.15
, pp. R29
-
-
Law, C.1
Chen, Y.2
Shi, W.3
-
79
-
-
77955298482
-
baySeq: empirical Bayesian methods for identifying differential expression in sequence count data
-
Hardcastle TJ, Kelly KA. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 2010;11:422.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 422
-
-
Hardcastle, T.J.1
Kelly, K.A.2
-
80
-
-
79960208246
-
Sequencing technology does not eliminate biological variability
-
Hansen KD, Wu Z, Irizarry RA, et al. Sequencing technology does not eliminate biological variability. Nat Biotechnol 2011;29:572-3.
-
(2011)
Nat Biotechnol
, vol.29
, pp. 572-573
-
-
Hansen, K.D.1
Wu, Z.2
Irizarry, R.A.3
-
81
-
-
75249087100
-
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
-
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139-40.
-
(2010)
Bioinformatics
, vol.26
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
82
-
-
84865527768
-
Detecting differential usage of exons from RNA-seq data
-
Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data. GenomeRes 2012;22:2008-17.
-
(2012)
GenomeRes
, vol.22
, pp. 2008-2017
-
-
Anders, S.1
Reyes, A.2
Huber, W.3
|