메뉴 건너뛰기




Volumn 14, Issue 2, 2015, Pages 130-142

Measuring differential gene expression with RNA-seq: Challenges and strategies for data analysis

Author keywords

Differential gene expression; Next generation sequencing; NGS; RNA seq; Transcriptomics

Indexed keywords

RNA;

EID: 84938698208     PISSN: 20412649     EISSN: 20412657     Source Type: Journal    
DOI: 10.1093/bfgp/elu035     Document Type: Article
Times cited : (168)

References (84)
  • 1
    • 45549088326 scopus 로고    scopus 로고
    • The transcriptional landscape of the yeast genome defined by RNA sequencing
    • Nagalakshmi U, Wang Z, Waern K, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 2008;320:1344-9.
    • (2008) Science , vol.320 , pp. 1344-1349
    • Nagalakshmi, U.1    Wang, Z.2    Waern, K.3
  • 2
    • 53649106195 scopus 로고    scopus 로고
    • Next-generation DNA sequencing
    • Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol 2008;26:1135-45.
    • (2008) Nat Biotechnol , vol.26 , pp. 1135-1145
    • Shendure, J.1    Ji, H.2
  • 3
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: a revolutionary tool for transcriptomics
    • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009;10:57-63.
    • (2009) Nat Rev Genet , vol.10 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 4
    • 79960869305 scopus 로고    scopus 로고
    • A comparison of analog and next-generation transcriptomic tools for mammalian studies
    • Roy NC, Altermann E, Park ZA, et al. A comparison of analog and next-generation transcriptomic tools for mammalian studies. Brief Funct Genomic 2011;10:135-50.
    • (2011) Brief Funct Genomic , vol.10 , pp. 135-150
    • Roy, N.C.1    Altermann, E.2    Park, Z.A.3
  • 5
    • 46249130709 scopus 로고    scopus 로고
    • The beginning of the end for microarrays?
    • Shendure J. The beginning of the end for microarrays? Nat Methods 2008;5:585-7.
    • (2008) Nat Methods , vol.5 , pp. 585-587
    • Shendure, J.1
  • 7
    • 46249103973 scopus 로고    scopus 로고
    • Stem cell transcriptome profiling via massive-scale mRNA sequencing
    • Cloonan N, Forrest AR, Kolle G, et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat. Methods 2008;5:613-19.
    • (2008) Nat. Methods , vol.5 , pp. 613-619
    • Cloonan, N.1    Forrest, A.R.2    Kolle, G.3
  • 8
    • 46249106990 scopus 로고    scopus 로고
    • Mapping and quantifying mammalian transcriptomes by RNA-Seq
    • Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008;5:621-8.
    • (2008) Nat Methods , vol.5 , pp. 621-628
    • Mortazavi, A.1    Williams, B.A.2    McCue, K.3
  • 9
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
    • Bullard J, Purdom E, Hansen K, et al. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 2010; 11:94.
    • (2010) BMC Bioinformatics , vol.11 , pp. 94
    • Bullard, J.1    Purdom, E.2    Hansen, K.3
  • 10
    • 78649969759 scopus 로고    scopus 로고
    • De novo transcriptome sequencing in Anopheles funestus using Illumina RNA-seq technology
    • Crawford JE, Guelbeogo WM, Sanou A, et al. De novo transcriptome sequencing in Anopheles funestus using Illumina RNA-seq technology. PLoS One 2010;5: e14202.
    • (2010) PLoS One , vol.5
    • Crawford, J.E.1    Guelbeogo, W.M.2    Sanou, A.3
  • 11
    • 41149167170 scopus 로고    scopus 로고
    • Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing
    • Vera JC, Wheat CW, Fescemyer HW, etal. Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 2008;17:1636-47.
    • (2008) Mol Ecol , vol.17 , pp. 1636-1647
    • Vera, J.C.1    Wheat, C.W.2    Fescemyer, H.W.3
  • 12
    • 80051941094 scopus 로고    scopus 로고
    • Identification of novel transcripts in annotated genomes using RNA-Seq
    • Roberts A, Pimentel H, Trapnell C, et al. Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 2011;27:2325-9.
    • (2011) Bioinformatics , vol.27 , pp. 2325-2329
    • Roberts, A.1    Pimentel, H.2    Trapnell, C.3
  • 13
    • 84863229628 scopus 로고    scopus 로고
    • Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome
    • Peng Z, Cheng Y, Tan BC, et al. Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nat Biotechnol 2012;30:253-60.
    • (2012) Nat Biotechnol , vol.30 , pp. 253-260
    • Peng, Z.1    Cheng, Y.2    Tan, B.C.3
  • 14
    • 84855320189 scopus 로고    scopus 로고
    • Accurate identification of A-to-I RNA editing in human by transcriptome sequencing
    • Bahn JH, Lee J, Li G, et al. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res 2012;22:142-50.
    • (2012) Genome Res , vol.22 , pp. 142-150
    • Bahn, J.H.1    Lee, J.2    Li, G.3
  • 15
    • 80051489977 scopus 로고    scopus 로고
    • AlleleSeq: analysis of allele-specific expression and binding in a network framework
    • Rozowsky J, Abyzov A, Wang J, et al. AlleleSeq: analysis of allele-specific expression and binding in a network framework. Mol Syst Biol 2011;7:522.
    • (2011) Mol Syst Biol , vol.7 , pp. 522
    • Rozowsky, J.1    Abyzov, A.2    Wang, J.3
  • 16
    • 78650539308 scopus 로고    scopus 로고
    • From RNA-seq reads to differential expression results
    • Oshlack A, Robinson MD, Young MD. From RNA-seq reads to differential expression results. Genome Biol 2010;11: 220.
    • (2010) Genome Biol , vol.11 , pp. 220
    • Oshlack, A.1    Robinson, M.D.2    Young, M.D.3
  • 17
    • 84888864088 scopus 로고    scopus 로고
    • Genomics: the state of the art in RNA-seq analysis
    • Korf I. Genomics: the state of the art in RNA-seq analysis. NatMethods 2013;10:1165-6.
    • (2013) NatMethods , vol.10 , pp. 1165-1166
    • Korf, I.1
  • 18
    • 79951694175 scopus 로고    scopus 로고
    • Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries
    • Aird D, Ross MG, Chen W, et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 2011;12:R18.
    • (2011) Genome Biol , vol.12 , pp. R18
    • Aird, D.1    Ross, M.G.2    Chen, W.3
  • 19
    • 77955883388 scopus 로고    scopus 로고
    • Biases in Illumina transcriptome sequencing caused by random hexamer priming
    • Hansen KD, Brenner SE, Dudoit S. Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res 2010;38:e131.
    • (2010) Nucleic Acids Res , vol.38
    • Hansen, K.D.1    Brenner, S.E.2    Dudoit, S.3
  • 20
    • 84869036699 scopus 로고    scopus 로고
    • Modelling and simulating generic RNA-Seq experiments with the flux simulator
    • Griebel T, Zacher B, Ribeca P, et al. Modelling and simulating generic RNA-Seq experiments with the flux simulator. Nucleic Acids Res 2012;40:10073-83.
    • (2012) Nucleic Acids Res , vol.40 , pp. 10073-10083
    • Griebel, T.1    Zacher, B.2    Ribeca, P.3
  • 21
  • 22
    • 84888861753 scopus 로고    scopus 로고
    • Systematic evaluation of spliced alignment programs for RNA-seq data
    • Engström PG, Steijger T, Sipos B, et al. Systematic evaluation of spliced alignment programs for RNA-seq data. Nat Methods 2013;10:1185-91.
    • (2013) Nat Methods , vol.10 , pp. 1185-1191
    • Engström, P.G.1    Steijger, T.2    Sipos, B.3
  • 23
    • 70449701942 scopus 로고    scopus 로고
    • Sense from sequence reads: methods for alignment and assembly
    • Flicek P, Birney E. Sense from sequence reads: methods for alignment and assembly. NatMethods 2009;6(Suppl. 11):S6-S12.
    • (2009) NatMethods , vol.6 , pp. S6-S12
    • Flicek, P.1    Birney, E.2
  • 24
    • 77957272611 scopus 로고    scopus 로고
    • A survey of sequence alignment algorithms for next-generation sequencing
    • Li H, Homer N. A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinformatics 2010;11: 473-83.
    • (2010) Brief Bioinformatics , vol.11 , pp. 473-483
    • Li, H.1    Homer, N.2
  • 27
    • 0019887799 scopus 로고
    • Identification of common molecular subsequences
    • Smith TF, Waterman MS. Identification of common molecular subsequences. JMol Biol 1981;147:195-7.
    • (1981) JMol Biol , vol.147 , pp. 195-197
    • Smith, T.F.1    Waterman, M.S.2
  • 28
    • 79957842166 scopus 로고    scopus 로고
    • Computational methods for transcriptome nnotation and quantification using RNA-seq
    • Garber M, Grabherr MG, Guttman M, et al. Computational methods for transcriptome nnotation and quantification using RNA-seq. NatMethods 2011;8:469-77.
    • (2011) NatMethods , vol.8 , pp. 469-477
    • Garber, M.1    Grabherr, M.G.2    Guttman, M.3
  • 29
    • 77949587649 scopus 로고    scopus 로고
    • Fast and accurate long-read alignment with Burrows-Wheeler transform
    • Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010;26:589-95.
    • (2010) Bioinformatics , vol.26 , pp. 589-595
    • Li, H.1    Durbin, R.2
  • 30
    • 79952256999 scopus 로고    scopus 로고
    • Adaptive seeds tame genomic sequence comparison
    • Kielbasa SM, Wan R, Sato K, etal. Adaptive seeds tame genomic sequence comparison. Genome Res 2011;21:487-93.
    • (2011) Genome Res , vol.21 , pp. 487-493
    • Kielbasa, S.M.1    Wan, R.2    Sato, K.3
  • 31
    • 40749108125 scopus 로고    scopus 로고
    • Compressed indexing and local alignment of DNA
    • Lam TW, Sung W, Tam S, et al. Compressed indexing and local alignment of DNA. Bioinformatics 2008; 24:791-7.
    • (2008) Bioinformatics , vol.24 , pp. 791-797
    • Lam, T.W.1    Sung, W.2    Tam, S.3
  • 32
    • 84859210032 scopus 로고    scopus 로고
    • Fast gapped-read alignment with Bowtie 2
    • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. NatMethods 2012;9:357-9.
    • (2012) NatMethods , vol.9 , pp. 357-359
    • Langmead, B.1    Salzberg, S.L.2
  • 34
    • 84876996918 scopus 로고    scopus 로고
    • TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
    • Kim D, Pertea G, Trapnell C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013;14:R36.
    • (2013) Genome Biol , vol.14 , pp. R36
    • Kim, D.1    Pertea, G.2    Trapnell, C.3
  • 35
    • 80052745094 scopus 로고    scopus 로고
    • Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM)
    • Grant GR, Farkas MH, Pizarro AD, et al. Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics 2011;27: 2518-28.
    • (2011) Bioinformatics , vol.27 , pp. 2518-2528
    • Grant, G.R.1    Farkas, M.H.2    Pizarro, A.D.3
  • 36
    • 75749096130 scopus 로고    scopus 로고
    • Cancer genome sequencing: a review
    • Mardis ER, Wilson RK. Cancer genome sequencing: a review. HumMol Genet 2009;18:R163-8.
    • (2009) HumMol Genet , vol.18 , pp. R163-R168
    • Mardis, E.R.1    Wilson, R.K.2
  • 37
    • 65449136284 scopus 로고    scopus 로고
    • TopHat: discovering splice junctions with RNA-Seq
    • Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009;25: 1105-11.
    • (2009) Bioinformatics , vol.25 , pp. 1105-1111
    • Trapnell, C.1    Pachter, L.2    Salzberg, S.L.3
  • 38
    • 79961123152 scopus 로고    scopus 로고
    • RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
    • Li B, Dewey C. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011;12:323.
    • (2011) BMC Bioinformatics , vol.12 , pp. 323
    • Li, B.1    Dewey, C.2
  • 39
    • 84941658109 scopus 로고    scopus 로고
    • The author file: Paul Bertone
    • Marx V. The author file: Paul Bertone. NatMethods 2013; 10:1137.
    • (2013) NatMethods , vol.10 , pp. 1137
    • Marx, V.1
  • 40
    • 77950460661 scopus 로고    scopus 로고
    • Understanding mechanisms underlying human gene expression variation with RNA sequencing
    • Pickrell JK, Marioni JC, Pai AA, et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 2010;464:768-72.
    • (2010) Nature , vol.464 , pp. 768-772
    • Pickrell, J.K.1    Marioni, J.C.2    Pai, A.A.3
  • 41
    • 77952123055 scopus 로고    scopus 로고
    • Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
    • Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010;28:511-5.
    • (2010) Nat Biotechnol , vol.28 , pp. 511-515
    • Trapnell, C.1    Williams, B.A.2    Pertea, G.3
  • 42
    • 84899645241 scopus 로고    scopus 로고
    • Fine-Splice, enhanced splice junction detection and quantification: a novel pipeline based on the assessment of diverse RNA-Seq alignment solutions
    • Gatto A, Torroja-Fungairiño C, Mazzarotto F, et al. Fine-Splice, enhanced splice junction detection and quantification: a novel pipeline based on the assessment of diverse RNA-Seq alignment solutions. Nucleic Acids Res 2014;42:e71.
    • (2014) Nucleic Acids Res , vol.42
    • Gatto, A.1    Torroja-Fungairiño, C.2    Mazzarotto, F.3
  • 44
    • 84919415762 scopus 로고    scopus 로고
    • Reducing bias in RNA sequencing data: a novel approach to compute counts
    • Finotello F, Lavezzo E, Bianco L, et al. Reducing bias in RNA sequencing data: a novel approach to compute counts. BMC Bioinformatics 2014;15(Suppl. 1):S7.
    • (2014) BMC Bioinformatics , vol.15 , pp. S7
    • Finotello, F.1    Lavezzo, E.2    Bianco, L.3
  • 45
    • 79751531332 scopus 로고    scopus 로고
    • Haplotype and isoform specific expression estimation using multi-mapping RNAseq reads
    • Turro E, Su S, Goncalves Ã, et al. Haplotype and isoform specific expression estimation using multi-mapping RNAseq reads. Genome Biol 2011;12:R13.
    • (2011) Genome Biol , vol.12 , pp. R13
    • Turro, E.1    Su, S.2    Goncalves, Ã.3
  • 46
    • 83855165105 scopus 로고    scopus 로고
    • Repetitive DNA and next-generation sequencing: computational challenges and solutions
    • Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat RevGenet 2011;13:36-46.
    • (2011) Nat RevGenet , vol.13 , pp. 36-46
    • Treangen, T.J.1    Salzberg, S.L.2
  • 47
    • 84875476234 scopus 로고    scopus 로고
    • SeqEntropy: genomewide assessment of repeats for short read sequencing
    • Chu H, Hsiao WW, Tsao TT, et al. SeqEntropy: genomewide assessment of repeats for short read sequencing. PloS One 2013;8:e59484.
    • (2013) PloS One , vol.8
    • Chu, H.1    Hsiao, W.W.2    Tsao, T.T.3
  • 48
    • 82255165034 scopus 로고    scopus 로고
    • Comparative analysis of algorithms for whole-genome assembly of pyrosequencing data
    • Finotello F, Lavezzo E, Fontana P, et al. Comparative analysis of algorithms for whole-genome assembly of pyrosequencing data. Brief Bioinformatics 2012;13:269-80.
    • (2012) Brief Bioinformatics , vol.13 , pp. 269-280
    • Finotello, F.1    Lavezzo, E.2    Fontana, P.3
  • 49
    • 50649089207 scopus 로고    scopus 로고
    • RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays
    • Marioni JC, Mason CE, Mane SM, et al. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. GenomeRes 2008;18:1509-17.
    • (2008) GenomeRes , vol.18 , pp. 1509-1517
    • Marioni, J.C.1    Mason, C.E.2    Mane, S.M.3
  • 50
    • 83655163970 scopus 로고    scopus 로고
    • BM-Map: bayesian mapping of multireads for next-generation sequencing data
    • Ji Y, Xu Y, Zhang Q, et al. BM-Map: bayesian mapping of multireads for next-generation sequencing data. Biometrics 2011;67:1215-24.
    • (2011) Biometrics , vol.67 , pp. 1215-1224
    • Ji, Y.1    Xu, Y.2    Zhang, Q.3
  • 51
    • 79955082292 scopus 로고    scopus 로고
    • Estimation of alternative splicing isoform frequencies from RNA-Seq data
    • Nicolae M, Mangul S, Mandoiu II, et al. Estimation of alternative splicing isoform frequencies from RNA-Seq data. AlgorithmsMol Biol 2011;6:9.
    • (2011) AlgorithmsMol Biol , vol.6 , pp. 9
    • Nicolae, M.1    Mangul, S.2    Mandoiu, I.I.3
  • 53
    • 84861548193 scopus 로고    scopus 로고
    • Summarizing and correcting the GC content bias in high-throughput sequencing
    • Benjamini Y, Speed TP. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res 2012;40:e72.
    • (2012) Nucleic Acids Res , vol.40
    • Benjamini, Y.1    Speed, T.P.2
  • 54
    • 52649157765 scopus 로고    scopus 로고
    • Substantial biases in ultra-short read data sets from high-throughput DNA sequencing
    • Dohm JC, Lottaz C, Borodina T, et al. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res 2008;36:e105.
    • (2008) Nucleic Acids Res , vol.36
    • Dohm, J.C.1    Lottaz, C.2    Borodina, T.3
  • 55
    • 77951940273 scopus 로고    scopus 로고
    • Modeling non-uniformity in short-read rates in RNA-Seq data
    • Li J, Jiang H, Wong WH. Modeling non-uniformity in short-read rates in RNA-Seq data. Genome Biol 2010;11: R25.
    • (2010) Genome Biol , vol.11 , pp. R25
    • Li, J.1    Jiang, H.2    Wong, W.H.3
  • 56
    • 65649126066 scopus 로고    scopus 로고
    • Transcript length bias in RNAseq data confounds systems biology
    • Oshlack A, Wakefield MJ. Transcript length bias in RNAseq data confounds systems biology. Biol Direct 2009;4:14.
    • (2009) Biol Direct , vol.4 , pp. 14
    • Oshlack, A.1    Wakefield, M.J.2
  • 57
    • 79960411408 scopus 로고    scopus 로고
    • Comparative studies of de novo assembly tools for next-generation sequencing technologies
    • Lin Y, Li J, Shen H, et al. Comparative studies of de novo assembly tools for next-generation sequencing technologies. Bioinformatics 2011;27:2031-7.
    • (2011) Bioinformatics , vol.27 , pp. 2031-2037
    • Lin, Y.1    Li, J.2    Shen, H.3
  • 58
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 2010;11:R25.
    • (2010) Genome Biol , vol.11 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 59
    • 84863562292 scopus 로고    scopus 로고
    • Normalization, testing, and false discovery rate estimation for RNA-sequencing data
    • Li J, Witten DM, Johnstone IM, et al. Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics 2012;13:523-38.
    • (2012) Biostatistics , vol.13 , pp. 523-538
    • Li, J.1    Witten, D.M.2    Johnstone, I.M.3
  • 60
    • 0142121516 scopus 로고    scopus 로고
    • Exploration, normalization, and summaries of high density oligonucleotide array probe level data
    • Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003;4:249-64.
    • (2003) Biostatistics , vol.4 , pp. 249-264
    • Irizarry, R.A.1    Hobbs, B.2    Collin, F.3
  • 61
    • 84887791432 scopus 로고    scopus 로고
    • A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis
    • Dillies M, Rau A, Aubert J, et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinformatics 2013; 14:671-83.
    • (2013) Brief Bioinformatics , vol.14 , pp. 671-683
    • Dillies, M.1    Rau, A.2    Aubert, J.3
  • 62
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol 2010;11:R106.
    • (2010) Genome Biol , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 63
    • 84868010349 scopus 로고    scopus 로고
    • Revisiting global gene expression analysis
    • Lovén J, Orlando DA, Sigova AA, et al. Revisiting global gene expression analysis. Cell 2012;151:476.
    • (2012) Cell , vol.151 , pp. 476
    • Lovén, J.1    Orlando, D.A.2    Sigova, A.A.3
  • 64
    • 79951985461 scopus 로고    scopus 로고
    • Length bias correction for RNA-seq data in gene set analyses
    • Gao L, Fang Z, Zhang K, et al. Length bias correction for RNA-seq data in gene set analyses. Bioinformatics 2011;27: 662-9.
    • (2011) Bioinformatics , vol.27 , pp. 662-669
    • Gao, L.1    Fang, Z.2    Zhang, K.3
  • 65
    • 84858068675 scopus 로고    scopus 로고
    • Removing technical variability in RNA-seq data using conditional quantile normalization
    • Hansen KD, Irizarry RA, Zhijin W. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 2012;13:204-16.
    • (2012) Biostatistics , vol.13 , pp. 204-216
    • Hansen, K.D.1    Irizarry, R.A.2    Zhijin, W.3
  • 66
    • 79960557820 scopus 로고    scopus 로고
    • Bias detection and correction in RNA-Sequencing data
    • Zheng W, Chung LM, Zhao H. Bias detection and correction in RNA-Sequencing data. BMCBioinformatics 2011;12: 290.
    • (2011) BMCBioinformatics , vol.12 , pp. 290
    • Zheng, W.1    Chung, L.M.2    Zhao, H.3
  • 67
    • 84928199480 scopus 로고    scopus 로고
    • Comparison of software packages for detecting differential expression in RNA-seq studies
    • Seyednasrollah F, Laiho A, Elo LL. Comparison of software packages for detecting differential expression in RNA-seq studies. Brief Bioinformatics 2015;16:59-70.
    • (2015) Brief Bioinformatics , vol.16 , pp. 59-70
    • Seyednasrollah, F.1    Laiho, A.2    Elo, L.L.3
  • 68
    • 84883644707 scopus 로고    scopus 로고
    • Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
    • Rapaport F, Khanin R, Liang Y, et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol 2013;14:R95.
    • (2013) Genome Biol , vol.14 , pp. R95
    • Rapaport, F.1    Khanin, R.2    Liang, Y.3
  • 69
    • 84903858214 scopus 로고    scopus 로고
    • Evaluation of read count based RNAseq analysis methods
    • Guo Y, Li C, Ye F, et al. Evaluation of read count based RNAseq analysis methods. BMC Genomics 2013;14(Suppl. 8):S2.
    • (2013) BMC Genomics , vol.14 , pp. S2
    • Guo, Y.1    Li, C.2    Ye, F.3
  • 70
    • 83055192078 scopus 로고    scopus 로고
    • Differential expression in RNA-seq: a matter of depth
    • Tarazona S, García-Alcalde F, Dopazo J, et al. Differential expression in RNA-seq: a matter of depth. Genome Res 2011;21:2213-23.
    • (2011) Genome Res , vol.21 , pp. 2213-2223
    • Tarazona, S.1    García-Alcalde, F.2    Dopazo, J.3
  • 71
    • 84886557480 scopus 로고    scopus 로고
    • Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data
    • Li J, Tibshirani R. Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data. StatMethodsMed Res 2013;22:519-36.
    • (2013) StatMethodsMed Res , vol.22 , pp. 519-536
    • Li, J.1    Tibshirani, R.2
  • 72
    • 84866158885 scopus 로고    scopus 로고
    • Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing
    • Robles JA, Qureshi SE, Stephen SJ, et al. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing. BMC Genomics 2012;13:484.
    • (2012) BMC Genomics , vol.13 , pp. 484
    • Robles, J.A.1    Qureshi, S.E.2    Stephen, S.J.3
  • 73
    • 64549119707 scopus 로고    scopus 로고
    • Statistical inferences for isoform expression in RNA-Seq
    • Jiang H, Wong WH. Statistical inferences for isoform expression in RNA-Seq. Bioinformatics 2009;25: 1026-32.
    • (2009) Bioinformatics , vol.25 , pp. 1026-1032
    • Jiang, H.1    Wong, W.H.2
  • 74
    • 84863453861 scopus 로고    scopus 로고
    • Technical and biological variance structure in mRNA-Seq data: life in the real world
    • Oberg AL, Bot BM, Grill DE, etal. Technical and biological variance structure in mRNA-Seq data: life in the real world. BMCGenomics 2012;13:304.
    • (2012) BMCGenomics , vol.13 , pp. 304
    • Oberg, A.L.1    Bot, B.M.2    Grill, D.E.3
  • 75
    • 84874912212 scopus 로고    scopus 로고
    • A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data
    • Wu H, Wang C, Wu Z. A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data. Biostatistics 2013;14:232-43.
    • (2013) Biostatistics , vol.14 , pp. 232-243
    • Wu, H.1    Wang, C.2    Wu, Z.3
  • 76
    • 79958117254 scopus 로고    scopus 로고
    • The NBP negative binomial model for assessing differential gene expression from RNA-seq
    • Di Y, Schafer DW, Cumbie JS, et al. The NBP negative binomial model for assessing differential gene expression from RNA-seq. Stat Appl GenetMol Biol 2011;10:24.
    • (2011) Stat Appl GenetMol Biol , vol.10 , pp. 24
    • Di, Y.1    Schafer, D.W.2    Cumbie, J.S.3
  • 77
    • 84858606519 scopus 로고    scopus 로고
    • A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data
    • Kvam VM, Liu P, Si Y. A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. AmJ Bot 2012;99:248-56.
    • (2012) AmJ Bot , vol.99 , pp. 248-256
    • Kvam, V.M.1    Liu, P.2    Si, Y.3
  • 78
    • 84896735766 scopus 로고    scopus 로고
    • Voom: precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law C, Chen Y, Shi W, et al. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 2014;15:R29.
    • (2014) Genome Biol , vol.15 , pp. R29
    • Law, C.1    Chen, Y.2    Shi, W.3
  • 79
    • 77955298482 scopus 로고    scopus 로고
    • baySeq: empirical Bayesian methods for identifying differential expression in sequence count data
    • Hardcastle TJ, Kelly KA. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 2010;11:422.
    • (2010) BMC Bioinformatics , vol.11 , pp. 422
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 80
    • 79960208246 scopus 로고    scopus 로고
    • Sequencing technology does not eliminate biological variability
    • Hansen KD, Wu Z, Irizarry RA, et al. Sequencing technology does not eliminate biological variability. Nat Biotechnol 2011;29:572-3.
    • (2011) Nat Biotechnol , vol.29 , pp. 572-573
    • Hansen, K.D.1    Wu, Z.2    Irizarry, R.A.3
  • 81
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139-40.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 82
    • 84865527768 scopus 로고    scopus 로고
    • Detecting differential usage of exons from RNA-seq data
    • Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data. GenomeRes 2012;22:2008-17.
    • (2012) GenomeRes , vol.22 , pp. 2008-2017
    • Anders, S.1    Reyes, A.2    Huber, W.3
  • 84
    • 78650868150 scopus 로고    scopus 로고
    • A window into thirdgeneration sequencing
    • Schadt EE, Turner S, Kasarskis A. A window into thirdgeneration sequencing. HumMol Genet 2010;19:R227-40.
    • (2010) HumMol Genet , vol.19 , pp. R227-R240
    • Schadt, E.E.1    Turner, S.2    Kasarskis, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.