메뉴 건너뛰기




Volumn 14, Issue 6, 2017, Pages 565-571

Normalizing single-cell RNA sequencing data: Challenges and opportunities

Author keywords

[No Author keywords available]

Indexed keywords

ANIMAL CELL; DATA ANALYSIS; MICROARRAY ANALYSIS; NONHUMAN; PRIORITY JOURNAL; REVIEW; RNA SEQUENCE; SINGLE CELL ANALYSIS; TECHNOLOGY; TRANSCRIPTOMICS; ALGORITHM; GENETICS; HIGH THROUGHPUT SEQUENCING; PROCEDURES; REFERENCE VALUE; SEQUENCE ANALYSIS; STANDARDS; STATISTICAL ANALYSIS;

EID: 85021816036     PISSN: 15487091     EISSN: 15487105     Source Type: Journal    
DOI: 10.1038/nmeth.4292     Document Type: Review
Times cited : (310)

References (46)
  • 1
    • 67349146589 scopus 로고    scopus 로고
    • mRNA-Seq whole-transcriptome analysis of a single cell
    • Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377-382 (2009).
    • (2009) Nat. Methods , vol.6 , pp. 377-382
    • Tang, F.1
  • 2
    • 84882455458 scopus 로고    scopus 로고
    • Single-cell sequencing-based technologies will revolutionize whole-organism science
    • Shapiro, E., Biezuner, T., Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14, 618-630 (2013).
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 618-630
    • Shapiro, E.1    Biezuner, T.2    Linnarsson, S.3
  • 3
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • Stegle, O., Teichmann, S.A., Marioni, J.C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133-145 (2015).
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 5
    • 84958606331 scopus 로고    scopus 로고
    • Single-cell genome sequencing: Current state of the science
    • Gawad, C., Koh, W., Quake, S.R. Single-cell genome sequencing: Current state of the science. Nat. Rev. Genet. 17, 175-188 (2016).
    • (2016) Nat. Rev. Genet. , vol.17 , pp. 175-188
    • Gawad, C.1    Koh, W.2    Quake, S.R.3
  • 6
    • 84887109584 scopus 로고    scopus 로고
    • Accounting for technical noise in single-cell RNA-seq experiments
    • Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093-1095 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 1093-1095
    • Brennecke, P.1
  • 7
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko, P.V., Silberstein, L., Scadden, D.T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740-742 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 8
    • 84951574149 scopus 로고    scopus 로고
    • MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
    • Finak, G. et al. MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).
    • (2015) Genome Biol. , vol.16 , pp. 278
    • Finak, G.1
  • 9
    • 84955706109 scopus 로고    scopus 로고
    • ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis
    • Pierson, E., Yau, C. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 16, 241 (2015).
    • (2015) Genome Biol. , vol.16 , pp. 241
    • Pierson, E.1    Yau, C.2
  • 10
    • 84962658087 scopus 로고    scopus 로고
    • Design and computational analysis of single-cell RNA-sequencing experiments
    • Bacher, R., Kendziorski, C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 17, 63 (2016).
    • (2016) Genome Biol. , vol.17 , pp. 63
    • Bacher, R.1    Kendziorski, C.2
  • 11
    • 84962861088 scopus 로고    scopus 로고
    • Beyond comparisons of means: Understanding changes in gene expression at the single-cell level
    • Vallejos, C.A., Richardson, S., Marioni, J.C. Beyond comparisons of means: Understanding changes in gene expression at the single-cell level. Genome Biol. 17, 70 (2016).
    • (2016) Genome Biol. , vol.17 , pp. 70
    • Vallejos, C.A.1    Richardson, S.2    Marioni, J.C.3
  • 12
    • 80052521697 scopus 로고    scopus 로고
    • Synthetic spike-in standards for RNA-seq experiments
    • Jiang, L. et al. Synthetic spike-in standards for RNA-seq experiments. Genome Res. 21, 1543-1551 (2011).
    • (2011) Genome Res. , vol.21 , pp. 1543-1551
    • Jiang, L.1
  • 14
    • 84964556059 scopus 로고    scopus 로고
    • Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
    • Lun, A.T., Bach, K., Marioni, J.C. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 17, 75 (2016).
    • (2016) Genome Biol. , vol.17 , pp. 75
    • Lun, A.T.1    Bach, K.2    Marioni, J.C.3
  • 15
    • 0242333835 scopus 로고    scopus 로고
    • Normalization of cDNA microarray data
    • Smyth, G.K., Speed, T. Normalization of cDNA microarray data. Methods 31, 265-273 (2003).
    • (2003) Methods , vol.31 , pp. 265-273
    • Smyth, G.K.1    Speed, T.2
  • 16
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
    • Bullard, J.H., Purdom, E., Hansen, K.D., Dudoit, S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11, 94 (2010).
    • (2010) BMC Bioinformatics , vol.11 , pp. 94
    • Bullard, J.H.1    Purdom, E.2    Hansen, K.D.3    Dudoit, S.4
  • 17
    • 84887791432 scopus 로고    scopus 로고
    • A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis
    • Dillies, M.-A. et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinform. 14, 671-683 (2013).
    • (2013) Brief. Bioinform. , vol.14 , pp. 671-683
    • Dillies, M.-A.1
  • 19
    • 84909644283 scopus 로고    scopus 로고
    • Normalization of RNA-seq data using factor analysis of control genes or samples
    • Risso, D., Ngai, J., Speed, T.P., Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896-902 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 896-902
    • Risso, D.1    Ngai, J.2    Speed, T.P.3    Dudoit, S.4
  • 20
    • 84925226706 scopus 로고    scopus 로고
    • Svaseq: Removing batch effects and other unwanted noise from sequencing data
    • Leek, J.T. svaseq: Removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 42, e161 (2014).
    • (2014) Nucleic Acids Res. , vol.42 , pp. e161
    • Leek, J.T.1
  • 21
    • 84895069488 scopus 로고    scopus 로고
    • Quantitative single-cell RNA-seq with unique molecular identifiers
    • Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11, 163-166 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 163-166
    • Islam, S.1
  • 22
    • 84946226911 scopus 로고    scopus 로고
    • Design and analysis of single-cell sequencing experiments
    • Grün, D., van Oudenaarden, A. Design and analysis of single-cell sequencing experiments. Cell 163, 799-810 (2015).
    • (2015) Cell , vol.163 , pp. 799-810
    • Grün, D.1    Van Oudenaarden, A.2
  • 23
    • 84953226880 scopus 로고    scopus 로고
    • BASiCS: Bayesian analysis of single-cell sequencing data
    • Vallejos, C.A., Marioni, J.C., Richardson, S. BASiCS: Bayesian analysis of single-cell sequencing data. PLoS Comput. Biol. 11, e1004333 (2015).
    • (2015) PLoS Comput. Biol. , vol.11 , pp. e1004333
    • Vallejos, C.A.1    Marioni, J.C.2    Richardson, S.3
  • 25
    • 77949507153 scopus 로고    scopus 로고
    • RNA-Seq gene expression estimation with read mapping uncertainty
    • Li, B., Ruotti, V., Stewart, R.M., Thomson, J.A., Dewey, C.N. RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26, 493-500 (2010).
    • (2010) Bioinformatics , vol.26 , pp. 493-500
    • Li, B.1    Ruotti, V.2    Stewart, R.M.3    Thomson, J.A.4    Dewey, C.N.5
  • 26
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders, S., Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
    • (2010) Genome Biol. , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 27
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson, M.D., Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).
    • (2010) Genome Biol. , vol.11 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 28
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • Klein, A.M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201 (2015).
    • (2015) Cell , vol.161 , pp. 1187-1201
    • Klein, A.M.1
  • 29
    • 84922321862 scopus 로고    scopus 로고
    • Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
    • Pollen, A.A. et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 32, 1053-1058 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 1053-1058
    • Pollen, A.A.1
  • 30
    • 84924565530 scopus 로고    scopus 로고
    • Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
    • Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138-1142 (2015).
    • (2015) Science , vol.347 , pp. 1138-1142
    • Zeisel, A.1
  • 31
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • Macosko, E.Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214 (2015).
    • (2015) Cell , vol.161 , pp. 1202-1214
    • MacOsko, E.Z.1
  • 32
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 381-386
    • Trapnell, C.1
  • 33
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    • Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155-160 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 155-160
    • Buettner, F.1
  • 35
    • 84936803955 scopus 로고    scopus 로고
    • Normalization and noise reduction for single cell RNA-seq experiments
    • Ding, B. et al. Normalization and noise reduction for single cell RNA-seq experiments. Bioinformatics 31, 2225-2227 (2015).
    • (2015) Bioinformatics , vol.31 , pp. 2225-2227
    • Ding, B.1
  • 36
    • 84890060756 scopus 로고    scopus 로고
    • SAMstrt: Statistical test for differential expression in single-cell transcriptome with spike-in normalization
    • Katayama, S., Töhönen, V., Linnarsson, S., Kere, J. SAMstrt: Statistical test for differential expression in single-cell transcriptome with spike-in normalization. Bioinformatics 29, 2943-2945 (2013).
    • (2013) Bioinformatics , vol.29 , pp. 2943-2945
    • Katayama, S.1    Töhönen, V.2    Linnarsson, S.3    Kere, J.4
  • 37
    • 85017522016 scopus 로고    scopus 로고
    • SCnorm: A quantile-regression based approach for robust normalization of single-cell RNA-seq data
    • Bacher, R. et al. SCnorm: A quantile-regression based approach for robust normalization of single-cell RNA-seq data. Nat. Methods http://dx.doi.org/10.1038/nmeth.4263 (2017).
    • (2017) Nat. Methods
    • Bacher, R.1
  • 38
    • 85010878111 scopus 로고    scopus 로고
    • Single-cell mRNA quantification and differential analysis with Census
    • Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309-315 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 309-315
    • Qiu, X.1
  • 39
    • 79959403670 scopus 로고    scopus 로고
    • Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
    • Islam, S. et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 21, 1160-1167 (2011).
    • (2011) Genome Res. , vol.21 , pp. 1160-1167
    • Islam, S.1
  • 40
    • 84923358731 scopus 로고    scopus 로고
    • Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures
    • Munro, S.A. et al. Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures. Nat. Commun. 5, 5125 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 5125
    • Munro, S.A.1
  • 41
    • 84961775163 scopus 로고    scopus 로고
    • Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos
    • Goolam, M. et al. Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos. Cell 165, 61-74 (2016).
    • (2016) Cell , vol.165 , pp. 61-74
    • Goolam, M.1
  • 42
    • 84939772971 scopus 로고    scopus 로고
    • Computational assignment of cell-cycle stage from single-cell transcriptome data
    • Scialdone, A. et al. Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods 85, 54-61 (2015).
    • (2015) Methods , vol.85 , pp. 54-61
    • Scialdone, A.1
  • 43
    • 84981274155 scopus 로고    scopus 로고
    • Spliced synthetic genes as internal controls in RNA sequencing experiments
    • Hardwick, S.A. et al. Spliced synthetic genes as internal controls in RNA sequencing experiments. Nat. Methods 13, 792-798 (2016).
    • (2016) Nat. Methods , vol.13 , pp. 792-798
    • Hardwick, S.A.1
  • 44
    • 84868010349 scopus 로고    scopus 로고
    • Revisiting global gene expression analysis
    • Lovén, J. et al. Revisiting global gene expression analysis. Cell 151, 476-482 (2012).
    • (2012) Cell , vol.151 , pp. 476-482
    • Lovén, J.1
  • 46
    • 84947748539 scopus 로고    scopus 로고
    • Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation
    • Kolodziejczyk, A.A. et al. Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell 17, 471-485 (2015).
    • (2015) Cell Stem Cell , vol.17 , pp. 471-485
    • Kolodziejczyk, A.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.