-
1
-
-
77958471357
-
Differential expression analysis for sequence count data
-
ANDERS, S. and HUBER, W. (2010). Differential expression analysis for sequence count data. Genome Biology 11, R106.
-
(2010)
Genome Biology
, vol.11
, pp. R106
-
-
Anders, S.1
Huber, W.2
-
2
-
-
84943645306
-
Fitting linear mixed-effects models using lme4
-
BATES, D., MÄCHLER, M., BOLKER, B. and WALKER, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 1-48.
-
(2015)
Journal of Statistical Software
, vol.67
, pp. 1-48
-
-
Bates, D.1
Mächler, M.2
Bolker, B.3
Walker, S.4
-
3
-
-
84951574149
-
MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
-
FINAK, G., MCDAV ID, A., YAJIMA, M., DENG, J., GERSUK, V., SHALEK, A. K., SLICHTER, C. K., MILLER, H. W., MCELRATH, M. J., PRLIC, M., LINSLEY, P. S. and OTHERS. (2015). MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biology 16, 278.
-
(2015)
Genome Biology
, vol.16
, pp. 278
-
-
Finak, G.1
Id, M.A.2
Yajima, M.3
Deng, J.4
Gersuk, V.5
Shalek, A.K.6
Slichter, C.K.7
Miller, H.W.8
McElrath, M.J.9
Prlic, M.10
Linsley, P.S.11
-
4
-
-
84961169621
-
On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-Seq data
-
HICKS, S. C., TENG, M. and IRIZARRY, R. A. (2015). On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-Seq data. bioRxiv. doi:10.1101/025528.
-
(2015)
BioRxiv
-
-
Hicks, S.C.1
Teng, M.2
Irizarry, R.A.3
-
5
-
-
84893905629
-
Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
-
JAITIN, D. A., KENIGSBERG, E., KEREN-SHAUL, H., ELEFANT, N., PAUL, F., ZARETSKY, I., MILDNER, A., COHEN, N., JUNG, S., TANAY, A. and OTHERS. (2014). Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343(6172), 776-779.
-
(2014)
Science
, vol.343
, Issue.6172
, pp. 776-779
-
-
Jaitin, D.A.1
Kenigsberg, E.2
Keren-Shaul, H.3
Elefant, N.4
Paul, F.5
Zaretsky, I.6
Mildner, A.7
Cohen, N.8
Jung, S.9
Tanay, A.10
-
6
-
-
84903574951
-
Bayesian approach to single-cell differential expression analysis
-
KHARCHENKO, P. V., SILBERSTEIN, L. and SCADDEN, D. T. (2014). Bayesian approach to single-cell differential expression analysis. Nature Methods 11(7), 740-742.
-
(2014)
Nature Methods
, vol.11
, Issue.7
, pp. 740-742
-
-
Kharchenko, P.V.1
Silberstein, L.2
Scadden, D.T.3
-
7
-
-
84929684998
-
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
-
KLEIN, A. M., MAZUTIS, L., AKARTUNA, I., TALLAPRAGADA, N., VERES, A., LI, V., PESHKIN, L., WEITZ, D. A. and KIRSCHNER, M. W. (2015). Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5), 1187-1201.
-
(2015)
Cell
, vol.161
, Issue.5
, pp. 1187-1201
-
-
Klein, A.M.1
Mazutis, L.2
Akartuna, I.3
Tallapragada, N.4
Veres, A.5
Li, V.6
Peshkin, L.7
Weitz, D.A.8
Kirschner, M.W.9
-
8
-
-
84947748539
-
Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation
-
KOLODZIEJCZYK, A. A., KIM, J. K., TSANG, J. C., ILICIC, T., HENRIKSSON, J., NATARAJAN, K. N., TUCK, A. C., GAO, X., BUHLER, M., LIU, P., MARIONI, J. C. and OTHERS. (2015). Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell 17(4), 471-485.
-
(2015)
Cell Stem Cell
, vol.17
, Issue.4
, pp. 471-485
-
-
Kolodziejczyk, A.A.1
Kim, J.K.2
Tsang, J.C.3
Ilicic, T.4
Henriksson, J.5
Natarajan, K.N.6
Tuck, A.C.7
Gao, X.8
Buhler, M.9
Liu, P.10
Marioni, J.C.11
-
9
-
-
84992327075
-
A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
-
KORTHAUER, K. D., CHU, L. F., NEWTON, M. A., LI, Y., THOMSON, J., STEWART, R. and KENDZIORSKI, C. (2016). A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biology 17(1), 222.
-
(2016)
Genome Biology
, vol.17
, Issue.1
, pp. 222
-
-
Korthauer, K.D.1
Chu, L.F.2
Newton, M.A.3
Li, Y.4
Thomson, J.5
Stewart, R.6
Kendziorski, C.7
-
10
-
-
84956599311
-
Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells
-
KOWALCZYK, M. S., TIROSH, I., HECKL, D., RAO, T. N., DIXIT, A., HAAS, B. J., SCHNEIDER, R. K., WAGERS, A. J., EBERT, B. L. and REGEV, A. (2015). Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Research 25(12), 1860-1872.
-
(2015)
Genome Research
, vol.25
, Issue.12
, pp. 1860-1872
-
-
Kowalczyk, M.S.1
Tirosh, I.2
Heckl, D.3
Rao, T.N.4
Dixit, A.5
Haas, B.J.6
Schneider, R.K.7
Wagers, A.J.8
Ebert, B.L.9
Regev, A.10
-
11
-
-
84923188586
-
Deconstructing transcriptional heterogeneity in pluripotent stem cells
-
KUMAR, R. M., CAHAN, P., SHALEK, A. K., SATIJA, R., DALEYKEYSER, A. J., LI, H., ZHANG, J., PARDEE, K., GENNERT, D., TROMBETTA, J. J., FERRANTE, T. C., REGEV, A., DALEY, G. Q. and OTHERS. (2014). Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature 516(7529), 56-61.
-
(2014)
Nature
, vol.516
, Issue.7529
, pp. 56-61
-
-
Kumar, R.M.1
Cahan, P.2
Shalek, A.K.3
Satija, R.4
Daleykeyser, A.J.5
Li, H.6
Zhang, J.7
Pardee, K.8
Gennert, D.9
Trombetta, J.J.10
Ferrante, T.C.11
Regev, A.12
Daley, G.Q.13
-
12
-
-
84896735766
-
Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
-
LAW, C. W., CHEN, Y., SHI, W. and SMYTH, G. K. (2014). Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology 15, R29.
-
(2014)
Genome Biology
, vol.15
, pp. R29
-
-
Law, C.W.1
Chen, Y.2
Shi, W.3
Smyth, G.K.4
-
13
-
-
84924629414
-
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
-
LOVE, M. I., HUBER, W. and ANDERS, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15(12), 550.
-
(2014)
Genome Biology
, vol.15
, Issue.12
, pp. 550
-
-
Love, M.I.1
Huber, W.2
Anders, S.3
-
14
-
-
84964556059
-
Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
-
LUN, A. T., BACH, K. and MARIONI, J. C. (2016). Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biology, 17, 75.
-
(2016)
Genome Biology
, vol.17
, pp. 75
-
-
Lun, A.T.1
Bach, K.2
Marioni, J.C.3
-
15
-
-
84879198972
-
Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates
-
LUND, S. P., NETTLETON, D., MCCARTHY, D. J. and SMYTH, G. K. (2012). Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Statistical Applications in Genetics and Molecular Biology 11(5), Article 8, doi:10.1515/1544-6115.1826.
-
(2012)
Statistical Applications in Genetics and Molecular Biology
, vol.11
, Issue.5
-
-
Lund, S.P.1
Nettleton, D.2
McCarthy, D.J.3
Smyth, G.K.4
-
16
-
-
84858041341
-
Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
-
MCCARTHY, D. J., CHEN, Y. and SMYTH, G. K. (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Research 40(10), 4288-4297.
-
(2012)
Nucleic Acids Research
, vol.40
, Issue.10
, pp. 4288-4297
-
-
McCarthy, D.J.1
Chen, Y.2
Smyth, G.K.3
-
17
-
-
84979917177
-
Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression
-
PHIPSON, B., LEE, S., MAJEWSKI, I. J., ALEXANDER, W. S. and SMYTH, G. K. (2016). Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Annals of Applied Statistics 10(2), 946-963.
-
(2016)
Annals of Applied Statistics
, vol.10
, Issue.2
, pp. 946-963
-
-
Phipson, B.1
Lee, S.2
Majewski, I.J.3
Alexander, W.S.4
Smyth, G.K.5
-
18
-
-
84891677425
-
Full-length RNA-seq from single cells using smart-seq2
-
PICELLI, S., FARIDANI, O. R., BJORKLUND, A. K., WINBERG, G., SAGASSER, S. and SANDBERG, R. (2014). Full-length RNA-seq from single cells using smart-seq2. Nature Protocols 9(1), 171-181.
-
(2014)
Nature Protocols
, vol.9
, Issue.1
, pp. 171-181
-
-
Picelli, S.1
Faridani, O.R.2
Bjorklund, A.K.3
Winberg, G.4
Sagasser, S.5
Sandberg, R.6
-
19
-
-
84922321862
-
Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
-
POLLEN, A. A., NOWAKOWSKI, T. J., SHUGA, J., WANG, X., LEYRAT, A. A., LUI, J. H., LI, N., SZPANKOWSKI, L., FOWLER, B., CHEN, P., RAMALINGAM, N., SUN, G., THU, M., NORRIS, M., LEBOFSKY, R., TOPPANI, D., KEMP, D. W., WONG, M., CLERKSON, B., JONES, B. N., WU, S., KNUTSSON, L., ALVARADO, B., WANG, J., WEAVER, L. S., MAY, A. P., JONES, R. C., UNGER, M. A., KRIEGSTEIN, A. R. and OTHERS. (2014). Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nature Biotechnology 32(10), 1053-1058.
-
(2014)
Nature Biotechnology
, vol.32
, Issue.10
, pp. 1053-1058
-
-
Pollen, A.A.1
Nowakowski, T.J.2
Shuga, J.3
Wang, X.4
Leyrat, A.A.5
Lui, J.H.6
Li, N.7
Szpankowski, L.8
Fowler, B.9
Chen, P.10
Ramalingam, N.11
Sun, G.12
Thu, M.13
Norris, M.14
Lebofsky, R.15
Toppani, D.16
Kemp, D.W.17
Wong, M.18
Clerkson, B.19
Jones, B.N.20
Wu, S.21
Knutsson, L.22
Alvarado, B.23
Wang, J.24
Weaver, L.S.25
May, A.P.26
Jones, R.C.27
Unger, M.A.28
Kriegstein, A.R.29
more..
-
20
-
-
77953176036
-
A scaling normalization method for differential expression analysis of RNA-seq data
-
ROBINSON, M. D. and OSHLACK, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 11(3), R25.
-
(2010)
Genome Biology
, vol.11
, Issue.3
, pp. R25
-
-
Robinson, M.D.1
Oshlack, A.2
-
21
-
-
75249087100
-
EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
-
ROBINSON, M. D., MCCARTHY, D. J. and SMYTH, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1), 139-140.
-
(2010)
Bioinformatics
, vol.26
, Issue.1
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
22
-
-
18744369640
-
Use of within-array replicate spots for assessing differential expression in microarray experiments
-
SMYTH, G. K., MICHAUD, J. and SCOTT, H. S. (2005). Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21(9), 2067-2075.
-
(2005)
Bioinformatics
, vol.21
, Issue.9
, pp. 2067-2075
-
-
Smyth, G.K.1
Michaud, J.2
Scott, H.S.3
-
23
-
-
84923647450
-
Computational and analytical challenges in single-cell transcriptomics
-
STEGLE, O., TEICHMANN, S. A. and MARIONI, J. C. (2015). Computational and analytical challenges in single-cell transcriptomics. Nature Reviews Genetics 16(3), 133-145.
-
(2015)
Nature Reviews Genetics
, vol.16
, Issue.3
, pp. 133-145
-
-
Stegle, O.1
Teichmann, S.A.2
Marioni, J.C.3
-
24
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
TRAPNELL, C., CACCHIARELLI, D., GRIMSBY, J., POKHAREL, P., LI, S., MORSE, M., LENNON, N. J., LIVAK, K. J., MIKKELSEN, T. S. and RINN, J. L. (2014). The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology 32(4), 381-386.
-
(2014)
Nature Biotechnology
, vol.32
, Issue.4
, pp. 381-386
-
-
Trapnell, C.1
Cacchiarelli, D.2
Grimsby, J.3
Pokharel, P.4
Li, S.5
Morse, M.6
Lennon, N.J.7
Livak, K.J.8
Mikkelsen, T.S.9
Rinn, J.L.10
-
25
-
-
85010276990
-
-
TUNG, P.-Y., BLISCHAK, J. D., HSIAO, C., KNOWLES, D. A., BURNETT, J. E., PRITCHARD, J. K. and GILAD, Y. (2016). Batch effects and the effective design of single-cell gene expression studies. bioRxiv. doi:10.1101/062919.
-
(2016)
Batch Effects and the Effective Design of Single-cell Gene Expression Studies. BioRxiv
-
-
Tung, P.-Y.1
Blischak, J.D.2
Hsiao, C.3
Knowles, D.A.4
Burnett, J.E.5
Pritchard, J.K.6
Gilad, Y.7
-
26
-
-
84962861088
-
Beyond comparisons of means: Understanding changes in gene expression at the single-cell level
-
VALLEJOS, C. A., RICHARDSON, S. and MARIONI, J. C. (2016). Beyond comparisons of means: understanding changes in gene expression at the single-cell level. Genome Biology 17(1), 70.
-
(2016)
Genome Biology
, vol.17
, Issue.1
, pp. 70
-
-
Vallejos, C.A.1
Richardson, S.2
Marioni, J.C.3
-
27
-
-
48749097940
-
Regression models for count data in R
-
ZEILEIS, A., KLEIBER, C. and JACKMAN, S. (2008). Regression models for count data in R. Journal of Statistical Software 27(1), 1-25.
-
(2008)
Journal of Statistical Software
, vol.27
, Issue.1
, pp. 1-25
-
-
Zeileis, A.1
Kleiber, C.2
Jackman, S.3
|