메뉴 건너뛰기




Volumn 20, Issue 5, 2019, Pages 257-272

Integrative single-cell analysis

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; ARTICLE; CYTOMETRY; EPIGENETICS; GENE EXPRESSION; HUMAN; MATURATION; RNA SEQUENCE; SINGLE CELL ANALYSIS;

EID: 85060917516     PISSN: 14710056     EISSN: 14710064     Source Type: Journal    
DOI: 10.1038/s41576-019-0093-7     Document Type: Review
Times cited : (915)

References (120)
  • 1
    • 84866953427 scopus 로고    scopus 로고
    • CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification
    • COI: 1:CAS:528:DC%2BC38XhsFSmsL3J, PID: 22939981
    • Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2, 666–673 (2012).
    • (2012) Cell Rep. , vol.2 , pp. 666-673
    • Hashimshony, T.1    Wagner, F.2    Sher, N.3    Yanai, I.4
  • 2
    • 84864880991 scopus 로고    scopus 로고
    • Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells
    • PID: 22820318
    • Ramsköld, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).
    • (2012) Nat. Biotechnol. , vol.30 , pp. 777-782
    • Ramsköld, D.1
  • 3
    • 84893905629 scopus 로고    scopus 로고
    • Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
    • COI: 1:CAS:528:DC%2BC2cXit12ksr0%3D, PID: 24531970
    • Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).
    • (2014) Science , vol.343 , pp. 776-779
    • Jaitin, D.A.1
  • 4
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • COI: 1:CAS:528:DC%2BC2MXpt1Sgt7o%3D, PID: 26000488
    • Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).
    • (2015) Cell , vol.161 , pp. 1202-1214
    • Macosko, E.Z.1
  • 5
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • COI: 1:CAS:528:DC%2BC2MXpt1SgtL0%3D, PID: 26000487, References 4 and 5 are two of the first published high-cell-throughput droplet-based methods for scRNA-seq
    • Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015). References 4 and 5 are two of the first published high-cell-throughput droplet-based methods for scRNA-seq.
    • (2015) Cell , vol.161 , pp. 1187-1201
    • Klein, A.M.1
  • 6
    • 85009446777 scopus 로고    scopus 로고
    • Massively parallel digital transcriptional profiling of single cells
    • COI: 1:CAS:528:DC%2BC2sXht1WlsLo%3D, PID: 28091601
    • Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
    • (2017) Nat. Commun. , vol.8
    • Zheng, G.X.Y.1
  • 7
    • 85028303209 scopus 로고    scopus 로고
    • Comprehensive single-cell transcriptional profiling of a multicellular organism
    • COI: 1:CAS:528:DC%2BC2sXhtlehtL7P, PID: 28818938
    • Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017).
    • (2017) Science , vol.357 , pp. 661-667
    • Cao, J.1
  • 8
    • 85044434871 scopus 로고    scopus 로고
    • Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding
    • Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, eaam8999 (2018).
    • (2018) Science , vol.360
    • Rosenberg, A.B.1
  • 9
    • 79953766940 scopus 로고    scopus 로고
    • Tumour evolution inferred by single-cell sequencing
    • COI: 1:CAS:528:DC%2BC3MXjtVGnu7s%3D, PID: 21399628
    • Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).
    • (2011) Nature , vol.472 , pp. 90-94
    • Navin, N.1
  • 10
    • 85010982914 scopus 로고    scopus 로고
    • Sequencing thousands of single-cell genomes with combinatorial indexing
    • COI: 1:CAS:528:DC%2BC2sXhvV2hsrc%3D, PID: 28135258
    • Vitak, S. A. et al. Sequencing thousands of single-cell genomes with combinatorial indexing. Nat. Methods 14, 302–308 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 302-308
    • Vitak, S.A.1
  • 11
    • 85022345215 scopus 로고    scopus 로고
    • Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells
    • Pott, S. Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells. eLife 6, 1127 (2017).
    • (2017) eLife , vol.6 , pp. 1127
    • Pott, S.1
  • 12
    • 84982146199 scopus 로고    scopus 로고
    • Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution
    • COI: 1:CAS:528:DC%2BC28XhtlChsr3J, PID: 27526324
    • Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193–1203 (2016).
    • (2016) Nat. Genet. , vol.48 , pp. 1193-1203
    • Corces, M.R.1
  • 13
    • 84937857359 scopus 로고    scopus 로고
    • Single-cell chromatin accessibility reveals principles of regulatory variation
    • COI: 1:CAS:528:DC%2BC2MXhtFyltLrN, PID: 26083756
    • Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).
    • (2015) Nature , vol.523 , pp. 486-490
    • Buenrostro, J.D.1
  • 14
    • 84930006926 scopus 로고    scopus 로고
    • Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing
    • COI: 1:CAS:528:DC%2BC2MXosFaksLk%3D, PID: 25953818
    • Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).
    • (2015) Science , vol.348 , pp. 910-914
    • Cusanovich, D.A.1
  • 15
    • 85040463710 scopus 로고    scopus 로고
    • Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain
    • COI: 1:CAS:528:DC%2BC2sXhvFGmurrM, PID: 29227469
    • Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).
    • (2018) Nat. Biotechnol. , vol.36 , pp. 70-80
    • Lake, B.B.1
  • 16
    • 85027126307 scopus 로고    scopus 로고
    • Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex
    • COI: 1:CAS:528:DC%2BC2sXhtlehur%2FE, PID: 28798132
    • Luo, C. et al. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science 357, 600–604 (2017).
    • (2017) Science , vol.357 , pp. 600-604
    • Luo, C.1
  • 17
    • 84905405443 scopus 로고    scopus 로고
    • Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity
    • COI: 1:CAS:528:DC%2BC2cXhslelsLvN, PID: 25042786
    • Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 817-820
    • Smallwood, S.A.1
  • 18
    • 84890526238 scopus 로고    scopus 로고
    • Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing
    • COI: 1:CAS:528:DC%2BC3sXhvFCisLjN, PID: 24179143
    • Guo, H. et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 23, 2126–2135 (2013).
    • (2013) Genome Res. , vol.23 , pp. 2126-2135
    • Guo, H.1
  • 19
    • 85046700026 scopus 로고    scopus 로고
    • Highly scalable generation of DNA methylation profiles in single cells
    • COI: 1:CAS:528:DC%2BC1cXntlCku74%3D, PID: 29644997
    • Mulqueen, R. M. et al. Highly scalable generation of DNA methylation profiles in single cells. Nat. Biotechnol. 36, 428–431 (2018).
    • (2018) Nat. Biotechnol. , vol.36 , pp. 428-431
    • Mulqueen, R.M.1
  • 20
    • 85028316331 scopus 로고    scopus 로고
    • Simultaneous epitope and transcriptome measurement in single cells
    • This study presents a method for simultaneously measuring gene expression and proteins single cells through an innovative barcoding strategy
    • Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 9, 2579 (2017). This study presents a method for simultaneously measuring gene expression and proteins in single cells through an innovative barcoding strategy.
    • (2017) Nat. Methods , vol.9 , pp. 2579
    • Stoeckius, M.1
  • 21
    • 85064583121 scopus 로고    scopus 로고
    • Multiplexed quantification of proteins and transcripts in single cells
    • Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 161, 1202 (2017).
    • (2017) Nat. Biotechnol. , vol.161 , pp. 1202
    • Peterson, V.M.1
  • 22
    • 85003530619 scopus 로고    scopus 로고
    • Single-cell sequencing of the small-RNA transcriptome
    • COI: 1:CAS:528:DC%2BC28Xhsl2hs7fM, PID: 27798564
    • Faridani, O. R. et al. Single-cell sequencing of the small-RNA transcriptome. Nat. Biotechnol. 34, 1264–1266 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 1264-1266
    • Faridani, O.R.1
  • 23
    • 84873383204 scopus 로고    scopus 로고
    • Detection of histone modifications at specific gene loci in single cells in histological sections
    • COI: 1:CAS:528:DC%2BC3sXntFOntw%3D%3D, PID: 23314172
    • Gomez, D., Shankman, L. S., Nguyen, A. T. & Owens, G. K. Detection of histone modifications at specific gene loci in single cells in histological sections. Nat. Methods 10, 171–177 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 171-177
    • Gomez, D.1    Shankman, L.S.2    Nguyen, A.T.3    Owens, G.K.4
  • 24
    • 84946545109 scopus 로고    scopus 로고
    • Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state
    • COI: 1:CAS:528:DC%2BC2MXhs1ChurfK, PID: 26458175
    • Rotem, A. et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. 33, 1165–1172 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 1165-1172
    • Rotem, A.1
  • 25
    • 85011003039 scopus 로고    scopus 로고
    • Massively multiplex single-cell Hi-C
    • Ramani, V. et al. Massively multiplex single-cell Hi-C. Nat. Methods 14, 1–6 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 1-6
    • Ramani, V.1
  • 26
    • 84885617426 scopus 로고    scopus 로고
    • Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
    • COI: 1:CAS:528:DC%2BC3sXhsFaksbvN, PID: 24067610
    • Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).
    • (2013) Nature , vol.502 , pp. 59-64
    • Nagano, T.1
  • 27
    • 85016160400 scopus 로고    scopus 로고
    • Synthetic recording and in situ readout of lineage information in single cells
    • COI: 1:CAS:528:DC%2BC2sXjs1Kktw%3D%3D, PID: 27869821
    • Frieda, K. L. et al. Synthetic recording and in situ readout of lineage information in single cells. Nature 541, 107–111 (2017).
    • (2017) Nature , vol.541 , pp. 107-111
    • Frieda, K.L.1
  • 28
    • 84974576984 scopus 로고    scopus 로고
    • Whole-organism lineage tracing by combinatorial and cumulative genome editing
    • PID: 27229144
    • McKenna, A. et al. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353, aaf7907 (2016).
    • (2016) Science , vol.353 , pp. aaf7907
    • McKenna, A.1
  • 29
    • 84992437479 scopus 로고    scopus 로고
    • In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus
    • COI: 1:CAS:528:DC%2BC28XhslSqtr%2FM, PID: 27764670
    • Shah, S., Lubeck, E., Zhou, W. & Cai, L. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron 92, 342–357 (2016).
    • (2016) Neuron , vol.92 , pp. 342-357
    • Shah, S.1    Lubeck, E.2    Zhou, W.3    Cai, L.4
  • 30
    • 84897090228 scopus 로고    scopus 로고
    • Highly multiplexed subcellular RNA sequencing in situ
    • COI: 1:CAS:528:DC%2BC2cXktl2gs7k%3D, PID: 24578530
    • Lee, J. H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).
    • (2014) Science , vol.343 , pp. 1360-1363
    • Lee, J.H.1
  • 31
    • 85048929494 scopus 로고    scopus 로고
    • Three-dimensional intact-tissue sequencing of single-cell transcriptional states
    • PID: 29930089, This study greatly increases the number of genes able to be spatially profiled a single experiment through the development of combinatorial smFISH indexing and tissue clearing methods
    • Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018). This study greatly increases the number of genes able to be spatially profiled in a single experiment through the development of combinatorial smFISH indexing and tissue clearing methods.
    • (2018) Science , vol.361
    • Wang, X.1
  • 32
    • 85045131214 scopus 로고    scopus 로고
    • Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain
    • COI: 1:CAS:528:DC%2BC1cXmslKrtLw%3D, PID: 29608178, This study is one of the first to simultaneously measure the transcriptome and cell lineage relationships
    • Raj, B. et al. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nat. Biotechnol. 36, 442–450 (2018). This is one of the first studies to simultaneously measure the transcriptome and cell lineage relationships.
    • (2018) Nat. Biotechnol. , vol.36 , pp. 442-450
    • Raj, B.1
  • 33
    • 85045151597 scopus 로고    scopus 로고
    • Whole-organism clone tracing using single-cell sequencing
    • COI: 1:CAS:528:DC%2BC1cXmt1aqtL4%3D, PID: 29590089
    • Alemany, A., Florescu, M., Baron, C. S., Peterson-Maduro, J. & van Oudenaarden, A. Whole-organism clone tracing using single-cell sequencing. Nature 556, 108–112 (2018).
    • (2018) Nature , vol.556 , pp. 108-112
    • Alemany, A.1    Florescu, M.2    Baron, C.S.3    Peterson-Maduro, J.4    van Oudenaarden, A.5
  • 34
    • 85045136951 scopus 로고    scopus 로고
    • Simultaneous lineage tracing and cell-type identification using CRISPR–Cas9-induced genetic scars
    • COI: 1:CAS:528:DC%2BC1cXntlCkurc%3D, PID: 29644996
    • Spanjaard, B. et al. Simultaneous lineage tracing and cell-type identification using CRISPR–Cas9-induced genetic scars. Nat. Biotechnol. 36, 469–473 (2018).
    • (2018) Nat. Biotechnol. , vol.36 , pp. 469-473
    • Spanjaard, B.1
  • 35
    • 85055838715 scopus 로고    scopus 로고
    • Spatial organization of the somatosensory cortex revealed by osmFISH
    • COI: 1:CAS:528:DC%2BC1cXitVCks7nK, PID: 30377364
    • Codeluppi, S. et al. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat. Methods 15, 932–935 (2018).
    • (2018) Nat. Methods , vol.15 , pp. 932-935
    • Codeluppi, S.1
  • 36
    • 0026588147 scopus 로고
    • Analysis of gene expression in single live neurons
    • COI: 1:CAS:528:DyaK38XitVyrs7g%3D, PID: 1557406
    • Eberwine, J. et al. Analysis of gene expression in single live neurons. Proc. Natl Acad. Sci. USA 89, 3010–3014 (1992).
    • (1992) Proc. Natl Acad. Sci. USA , vol.89 , pp. 3010-3014
    • Eberwine, J.1
  • 37
    • 67349146589 scopus 로고    scopus 로고
    • mRNA-Seq whole-transcriptome analysis of a single cell
    • COI: 1:CAS:528:DC%2BD1MXktVKgu78%3D, PID: 19349980
    • Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).
    • (2009) Nat. Methods , vol.6 , pp. 377-382
    • Tang, F.1
  • 38
    • 84887101406 scopus 로고    scopus 로고
    • Smart-seq2 for sensitive full-length transcriptome profiling in single cells
    • COI: 1:CAS:528:DC%2BC3sXhsVyqtb%2FM, PID: 24056875
    • Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 1096-1098
    • Picelli, S.1
  • 39
    • 74549115234 scopus 로고    scopus 로고
    • Single-cell gene profiling of planarian stem cells using fluorescent activated cell sorting and its ‘index sorting’ function for stem cell research
    • COI: 1:CAS:528:DC%2BC3cXisVamu7c%3D, PID: 20078655
    • Hayashi, T. et al. Single-cell gene profiling of planarian stem cells using fluorescent activated cell sorting and its ‘index sorting’ function for stem cell research. Dev. Growth Differ. 52, 131–144 (2010).
    • (2010) Dev. Growth Differ. , vol.52 , pp. 131-144
    • Hayashi, T.1
  • 40
    • 84940446838 scopus 로고    scopus 로고
    • Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations
    • COI: 1:CAS:528:DC%2BC2MXovVCmsL0%3D, PID: 26004780
    • Wilson, N. K. et al. Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 16, 712–724 (2015).
    • (2015) Cell Stem Cell , vol.16 , pp. 712-724
    • Wilson, N.K.1
  • 41
    • 84950290139 scopus 로고    scopus 로고
    • Transcriptional heterogeneity and lineage commitment in myeloid progenitors
    • COI: 1:CAS:528:DC%2BC2MXhvFagur7P, This study performs index sorting coupled to scRNA-seq on myeloid progenitor cells and identifies transcriptional heterogeneity within sorted populations
    • Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663–1677 (2015). This study performs index sorting coupled to scRNA-seq on myeloid progenitor cells and identifies transcriptional heterogeneity within sorted populations.
    • (2015) Cell , vol.163 , pp. 1663-1677
    • Paul, F.1
  • 42
    • 85009113270 scopus 로고    scopus 로고
    • A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation
    • COI: 1:CAS:528:DC%2BC28XhslOktrjE, PID: 27365425
    • Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128, e20–e31 (2016).
    • (2016) Blood , vol.128 , pp. e20-e31
    • Nestorowa, S.1
  • 43
    • 85035343759 scopus 로고    scopus 로고
    • STRT-seq-2i: dual-index 5ʹ single cell and nucleus RNA-seq on an addressable microwell array
    • PID: 29180631
    • Hochgerner, H. et al. STRT-seq-2i: dual-index 5' single cell and nucleus RNA-seq on an addressable microwell array. Sci. Rep. 7, 16327 (2017).
    • (2017) Sci. Rep. , vol.7
    • Hochgerner, H.1
  • 44
    • 84930178333 scopus 로고    scopus 로고
    • G&T-seq: parallel sequencing of single-cell genomes and transcriptomes
    • COI: 1:CAS:528:DC%2BC2MXnslOnsrs%3D, PID: 25915121
    • Macaulay, I. C. et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12, 519–522 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 519-522
    • Macaulay, I.C.1
  • 45
    • 84924423596 scopus 로고    scopus 로고
    • Integrated genome and transcriptome sequencing of the same cell
    • COI: 1:CAS:528:DC%2BC2MXhtFOjuro%3D, PID: 25599178
    • Dey, S. S., Kester, L., Spanjaard, B., Bienko, M. & van Oudenaarden, A. Integrated genome and transcriptome sequencing of the same cell. Nat. Biotechnol. 33, 285–289 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 285-289
    • Dey, S.S.1    Kester, L.2    Spanjaard, B.3    Bienko, M.4    van Oudenaarden, A.5
  • 46
    • 84959255113 scopus 로고    scopus 로고
    • Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity
    • COI: 1:CAS:528:DC%2BC28XmslyhsQ%3D%3D, PID: 26752769, This study performs parallel DNA methylome and transcriptome sequencing the same cell and examines the relationships between DNA methylation and gene expression
    • Angermueller, C. et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods 13, 229–232 (2016). This study performs parallel DNA methylome and transcriptome sequencing in the same cell and examines the relationships between DNA methylation and gene expression.
    • (2016) Nat. Methods , vol.13 , pp. 229-232
    • Angermueller, C.1
  • 47
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
    • (2012) Nature , vol.489 , pp. 57-74
  • 48
    • 85054154765 scopus 로고    scopus 로고
    • Joint profiling of chromatin accessibility and gene expression in thousands of single cells
    • COI: 1:CAS:528:DC%2BC1cXhslOrur3I, PID: 30166440
    • Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).
    • (2018) Science , vol.361 , pp. 1380-1385
    • Cao, J.1
  • 49
    • 84955371502 scopus 로고    scopus 로고
    • Simultaneous multiplexed measurement of RNA and proteins in single cells
    • COI: 1:CAS:528:DC%2BC28XhvFaqsw%3D%3D, PID: 26748716
    • Darmanis, S. et al. Simultaneous multiplexed measurement of RNA and proteins in single cells. Cell Rep. 14, 380–389 (2016).
    • (2016) Cell Rep. , vol.14 , pp. 380-389
    • Darmanis, S.1
  • 50
    • 84988014533 scopus 로고    scopus 로고
    • Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction
    • Genshaft, A. S. et al. Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction. Genome Biol. 17, 1–15 (2016).
    • (2016) Genome Biol. , vol.17 , pp. 1-15
    • Genshaft, A.S.1
  • 52
    • 85006488344 scopus 로고    scopus 로고
    • Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens
    • COI: 1:CAS:528:DC%2BC28XitFWlsrvI, PID: 27984732
    • Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016).
    • (2016) Cell , vol.167 , pp. 1853-1866
    • Dixit, A.1
  • 53
    • 85006345820 scopus 로고    scopus 로고
    • A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response
    • COI: 1:CAS:528:DC%2BC28XitFWlsrjK, PID: 27984733
    • Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1873 (2016).
    • (2016) Cell , vol.167 , pp. 1867-1873
    • Adamson, B.1
  • 54
    • 85010898455 scopus 로고    scopus 로고
    • Pooled CRISPR screening with single-cell transcriptome readout
    • COI: 1:CAS:528:DC%2BC2sXhtlKjsrk%3D, PID: 28099430
    • Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 297-301
    • Datlinger, P.1
  • 55
    • 85006269827 scopus 로고    scopus 로고
    • Dissecting immune circuits by linking CRISPR- pooled screens with single-cell RNA-Seq
    • COI: 1:CAS:528:DC%2BC28XitFWlsrvP, PID: 27984734, References 52–55 are the first to perform pooled genetic screens using CRISPR–Cas9 coupled to scRNA-seq to infer causal relationships gene regulatory networks
    • Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR- pooled screens with single-cell RNA-Seq. Cell 167, 1883–1888 (2016). References 52–55 are the first to perform pooled genetic screens using CRISPR–Cas9 coupled to scRNA-seq to infer causal relationships in gene regulatory networks.
    • (2016) Cell , vol.167 , pp. 1883-1888
    • Jaitin, D.A.1
  • 56
    • 85020467141 scopus 로고    scopus 로고
    • CRISPR–Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome
    • COI: 1:CAS:528:DC%2BC2sXltl2ru7w%3D, PID: 28369033
    • Klann, T. S. et al. CRISPR–Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat. Biotechnol. 35, 561 (2017).
    • (2017) Nat. Biotechnol. , vol.35 , pp. 561
    • Klann, T.S.1
  • 57
    • 84961290066 scopus 로고    scopus 로고
    • Editing the epigenome: technologies for programmable transcription and epigenetic modulation
    • COI: 1:CAS:528:DC%2BC28Xhs12hsLk%3D, PID: 26820547
    • Thakore, P. I., Black, J. B., Hilton, I. B. & Gersbach, C. A. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat. Methods 13, 127–137 (2016).
    • (2016) Nat. Methods , vol.13 , pp. 127-137
    • Thakore, P.I.1    Black, J.B.2    Hilton, I.B.3    Gersbach, C.A.4
  • 58
    • 84988569121 scopus 로고    scopus 로고
    • Editing DNA methylation in the mammalian genome
    • COI: 1:CAS:528:DC%2BC28XhsFKmtbfF, PID: 27662091
    • Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247 (2016).
    • (2016) Cell , vol.167 , pp. 233-247
    • Liu, X.S.1
  • 59
    • 84929135130 scopus 로고    scopus 로고
    • Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
    • COI: 1:CAS:528:DC%2BC2MXmtVarsr0%3D, PID: 25849900
    • Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 510-517
    • Hilton, I.B.1
  • 60
    • 84923096541 scopus 로고    scopus 로고
    • Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
    • COI: 1:CAS:528:DC%2BC2MXhvVWhtbo%3D
    • Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).
    • (2015) Nature , vol.517 , pp. 583-588
    • Konermann, S.1
  • 61
    • 84908352138 scopus 로고    scopus 로고
    • Genome-scale CRISPR-mediated control of gene repression and activation
    • COI: 1:CAS:528:DC%2BC2cXhslelsrfJ, PID: 4253859
    • Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).
    • (2014) Cell , vol.159 , pp. 647-661
    • Gilbert, L.A.1
  • 62
    • 85041478284 scopus 로고    scopus 로고
    • Dual gene activation and knockout screen reveals directional dependencies in genetic networks
    • COI: 1:CAS:528:DC%2BC1cXovVCitQ%3D%3D, PID: 29334369
    • Boettcher, M. et al. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nat. Biotechnol. 36, 170–178 (2018).
    • (2018) Nat. Biotechnol. , vol.36 , pp. 170-178
    • Boettcher, M.1
  • 63
    • 85019143041 scopus 로고    scopus 로고
    • Quantitative analysis of synthetic cell lineage tracing using nuclease barcoding
    • COI: 1:CAS:528:DC%2BC2sXjs12gu7c%3D, PID: 28264564
    • Schmidt, S. T., Zimmerman, S. M., Wang, J., Kim, S. K. & Quake, S. R. Quantitative analysis of synthetic cell lineage tracing using nuclease barcoding. ACS Synth. Biol. 6, 936–942 (2017).
    • (2017) ACS Synth. Biol. , vol.6 , pp. 936-942
    • Schmidt, S.T.1    Zimmerman, S.M.2    Wang, J.3    Kim, S.K.4    Quake, S.R.5
  • 64
    • 84945278558 scopus 로고    scopus 로고
    • Somatic mutation in single human neurons tracks developmental and transcriptional history
    • COI: 1:CAS:528:DC%2BC2MXhsFOksL3N, PID: 26430121
    • Lodato, M. A. et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350, 94–98 (2015).
    • (2015) Science , vol.350 , pp. 94-98
    • Lodato, M.A.1
  • 65
    • 84963614956 scopus 로고    scopus 로고
    • Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq
    • COI: 1:CAS:528:DC%2BC28XlsFSmurk%3D, PID: 27124452
    • Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).
    • (2016) Science , vol.352 , pp. 189-196
    • Tirosh, I.1
  • 66
    • 85050862007 scopus 로고    scopus 로고
    • Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data
    • COI: 1:CAS:528:DC%2BC1cXhs1emurbJ, PID: 29898899
    • Fan, J. et al. Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data. Genome Res. 28, 1217–1227 (2018).
    • (2018) Genome Res. , vol.28 , pp. 1217-1227
    • Fan, J.1
  • 67
    • 85040446434 scopus 로고    scopus 로고
    • Multiplexed droplet single-cell RNA-sequencing using natural genetic variation
    • COI: 1:CAS:528:DC%2BC2sXhvFGmur3F, PID: 29227470
    • Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018).
    • (2018) Nat. Biotechnol. , vol.36 , pp. 89-94
    • Kang, H.M.1
  • 68
    • 85044715062 scopus 로고    scopus 로고
    • Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs
    • PID: 29610479
    • van der Wijst, M. G. P. et al. Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs. Nat. Genet. 50, 493–497 (2018).
    • (2018) Nat. Genet. , vol.50 , pp. 493-497
    • van der Wijst, M.G.P.1
  • 69
    • 85031313737 scopus 로고    scopus 로고
    • Genetic effects on gene expression across human tissues
    • Aguet, F. et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).
    • (2017) Nature , vol.550 , pp. 204-213
    • Aguet, F.1
  • 70
    • 85052109231 scopus 로고    scopus 로고
    • RNA velocity of single cells
    • PID: 30089906, This study develops a method of deriving the rate of change gene expression from scRNA-seq data through the measurement of intronic RNA read abundance each cell
    • La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018). This study develops a method of deriving the rate of change in gene expression from scRNA-seq data through the measurement of intronic RNA read abundance in each cell.
    • (2018) Nature , vol.560 , pp. 494-498
    • La Manno, G.1
  • 71
    • 85031017685 scopus 로고    scopus 로고
    • Reversed graph embedding resolves complex single-cell trajectories
    • COI: 1:CAS:528:DC%2BC2sXhtlKjtbbK, PID: 28825705
    • Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 979-982
    • Qiu, X.1
  • 72
    • 84984643819 scopus 로고    scopus 로고
    • Diffusion pseudotime robustly reconstructs lineage branching
    • COI: 1:CAS:528:DC%2BC28XhsVWrs7zI
    • Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).
    • (2016) Nat. Methods , vol.13 , pp. 845-848
    • Haghverdi, L.1    Büttner, M.2    Wolf, F.A.3    Buettner, F.4    Theis, F.J.5
  • 73
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • COI: 1:CAS:528:DC%2BC2cXks12ku7c%3D, PID: 24658644, This study introduces the first method to order individual cells along a pseudotime trajectory
    • Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014). This study introduces the first method to order individual cells along a pseudotime trajectory.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 381-386
    • Trapnell, C.1
  • 74
    • 84974587998 scopus 로고    scopus 로고
    • Wishbone identifies bifurcating developmental trajectories from single-cell data
    • COI: 1:CAS:528:DC%2BC28XmvFOqsrs%3D, PID: 27136076
    • Setty, M. et al. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat. Biotechnol. 34, 637–645 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 637-645
    • Setty, M.1
  • 75
    • 85042766930 scopus 로고    scopus 로고
    • Fundamental limits on dynamic inference from single-cell snapshots
    • COI: 1:CAS:528:DC%2BC1cXht1egtb3O, PID: 29463712
    • Weinreb, C., Wolock, S., Tusi, B. K., Socolovsky, M. & Klein, A. M. Fundamental limits on dynamic inference from single-cell snapshots. Proc. Natl Acad. Sci. USA 115, E2467–E2476 (2018).
    • (2018) Proc. Natl Acad. Sci. USA , vol.115 , pp. E2467-E2476
    • Weinreb, C.1    Wolock, S.2    Tusi, B.K.3    Socolovsky, M.4    Klein, A.M.5
  • 76
    • 84991380039 scopus 로고    scopus 로고
    • Dimension reduction techniques for the integrative analysis of multi-omics data
    • COI: 1:CAS:528:DC%2BC1cXlsVSqs7o%3D, PID: 26969681
    • Meng, C. et al. Dimension reduction techniques for the integrative analysis of multi-omics data. Brief. Bioinform. 17, 628–641 (2016).
    • (2016) Brief. Bioinform. , vol.17 , pp. 628-641
    • Meng, C.1
  • 77
    • 85049250191 scopus 로고    scopus 로고
    • Multi-omics factor analysis-a framework for unsupervised integration of multi-omics data sets
    • PID: 29925568
    • Argelaguet, R. et al. Multi-omics factor analysis-a framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol. 14, e8124 (2018).
    • (2018) Mol. Syst. Biol. , vol.14
    • Argelaguet, R.1
  • 78
  • 79
    • 84925226706 scopus 로고    scopus 로고
    • T. svaseq: removing batch effects and other unwanted noise from sequencing data
    • Leek, J. T. svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 42, e161 (2014).
    • (2014) Nucleic Acids Res. , vol.42
    • Leek, J.1
  • 80
    • 85046298440 scopus 로고    scopus 로고
    • Integrating single-cell transcriptomic data across different conditions, technologies, and species
    • COI: 1:CAS:528:DC%2BC1cXmslKrtL0%3D, PID: 29608179, This study pioneers the use of CCA to jointly reduce dimensionality for a pair of scRNA-seq data sets, allowing common cell states to be identified across data sets
    • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018). This study pioneers the use of CCA to jointly reduce dimensionality for a pair of scRNA-seq data sets, allowing common cell states to be identified across data sets.
    • (2018) Nat. Biotechnol. , vol.36 , pp. 411-420
    • Butler, A.1    Hoffman, P.2    Smibert, P.3    Papalexi, E.4    Satija, R.5
  • 81
    • 85046289733 scopus 로고    scopus 로고
    • Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors
    • COI: 1:CAS:528:DC%2BC1cXmslKrtLo%3D, PID: 29608177, This study introduces the concept of using MNNs as a method for identifying equivalent cell states across data sets
    • Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018). This study introduces the concept of using MNNs as a method for identifying equivalent cell states across data sets.
    • (2018) Nat. Biotechnol. , vol.36 , pp. 421-427
    • Haghverdi, L.1    Lun, A.T.L.2    Morgan, M.D.3    Marioni, J.C.4
  • 82
    • 84929151009 scopus 로고    scopus 로고
    • Spatial reconstruction of single-cell gene expression data
    • COI: 1:CAS:528:DC%2BC2MXmtlKktLo%3D, PID: 25867923
    • Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 495-502
    • Satija, R.1    Farrell, J.A.2    Gennert, D.3    Schier, A.F.4    Regev, A.5
  • 84
    • 85059447728 scopus 로고    scopus 로고
    • Panoramic stitching of heterogeneous single-cell transcriptomic data
    • Preprint at
    • Hie, B. L., Bryson, B. & Berger, B. Panoramic stitching of heterogeneous single-cell transcriptomic data. Preprint at bioRxiv 10.1101/371179 (2018).
    • (2018) bioRxiv
    • Hie, B.L.1    Bryson, B.2    Berger, B.3
  • 85
    • 85059469747 scopus 로고    scopus 로고
    • Wiring together large single-cell RNA-seq sample collections
    • Preprint at
    • Barkas, N. et al. Wiring together large single-cell RNA-seq sample collections. Preprint at bioRxiv 10.1101/460246 (2018).
    • (2018) bioRxiv
    • Barkas, N.1
  • 86
    • 85064586448 scopus 로고    scopus 로고
    • Fast batch alignment of single cell transcriptomes unifies multiple mouse cell atlases into an integrated landscape
    • Preprint at
    • Park, J.-E., Polanski, K., Meyer, K. & Teichmann, S. A. Fast batch alignment of single cell transcriptomes unifies multiple mouse cell atlases into an integrated landscape. Preprint at bioRxiv 10.1101/397042 (2018).
    • (2018) bioRxiv
    • Park, J.-E.1    Polanski, K.2    Meyer, K.3    Teichmann, S.A.4
  • 87
    • 85064584387 scopus 로고    scopus 로고
    • Fast, sensitive, and flexible integration of single cell data with Harmony
    • Preprint at
    • Korsunsky, I. et al. Fast, sensitive, and flexible integration of single cell data with Harmony. Preprint at bioRxiv 10.1101/461954 (2018).
    • (2018) bioRxiv
    • Korsunsky, I.1
  • 88
    • 85058917218 scopus 로고    scopus 로고
    • Comprehensive integration of single cell data
    • Preprint at
    • Stuart, T. et al. Comprehensive integration of single cell data. Preprint at bioRxiv 10.1101/460147 (2018).
    • (2018) bioRxiv
    • Stuart, T.1
  • 89
    • 85059455396 scopus 로고    scopus 로고
    • Integrative inference of brain cell similarities and differences from single-cell genomics
    • Preprint at
    • Welch, J. et al. Integrative inference of brain cell similarities and differences from single-cell genomics. Preprint at bioRxiv 10.1101/459891 (2018).
    • (2018) bioRxiv
    • Welch, J.1
  • 90
    • 85028864573 scopus 로고    scopus 로고
    • The Drosophila embryo at single-cell transcriptome resolution
    • This study combines scRNA-seq and situ hybridization data to predict spatial patterns of gene expression the Drosophila embryo
    • Karaiskos, N. et al. The Drosophila embryo at single-cell transcriptome resolution. Science 358, 194–198 (2017). This study combines scRNA-seq and in situ hybridization data to predict spatial patterns of gene expression in the Drosophila embryo.
    • (2017) Science , vol.8
    • Karaiskos, N.1
  • 91
    • 85046552723 scopus 로고    scopus 로고
    • Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles
    • COI: 1:CAS:528:DC%2BC1cXpvFGjsbg%3D, PID: 29724907
    • Tosches, M. A. et al. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science 360, 881–888 (2018).
    • (2018) Science , vol.360 , pp. 881-888
    • Tosches, M.A.1
  • 92
    • 84994641696 scopus 로고    scopus 로고
    • A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure
    • COI: 1:CAS:528:DC%2BC2sXhtFalsrk%3D, PID: 27667365
    • Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst. 3, 346–360 (2016).
    • (2016) Cell Syst. , vol.3 , pp. 346-360
    • Baron, M.1
  • 93
    • 85044974461 scopus 로고    scopus 로고
    • Alignment of single-cell trajectories to compare cellular expression dynamics
    • COI: 1:CAS:528:DC%2BC1cXktlGlsL8%3D, PID: 29529018
    • Alpert, A., Moore, L. S., Dubovik, T. & Shen-Orr, S. S. Alignment of single-cell trajectories to compare cellular expression dynamics. Nat. Methods 15, 267–270 (2018).
    • (2018) Nat. Methods , vol.15 , pp. 267-270
    • Alpert, A.1    Moore, L.S.2    Dubovik, T.3    Shen-Orr, S.S.4
  • 94
    • 85040459896 scopus 로고    scopus 로고
    • Science forum: the human cell atlas
    • PID: 29206104
    • Regev, A. et al. Science forum: the human cell atlas. eLife 6, e27041 (2017).
    • (2017) eLife , vol.6
    • Regev, A.1
  • 95
    • 85046289245 scopus 로고    scopus 로고
    • scmap: projection of single-cell RNA-seq data across data sets
    • COI: 1:CAS:528:DC%2BC1cXmslKrurw%3D, PID: 29608555
    • Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell RNA-seq data across data sets. Nat. Methods 15, 359–362 (2018).
    • (2018) Nat. Methods , vol.15 , pp. 359-362
    • Kiselev, V.Y.1    Yiu, A.2    Hemberg, M.3
  • 96
    • 85059476027 scopus 로고    scopus 로고
    • scPred: single cell prediction using singular value decomposition and machine learning classification
    • Preprint at
    • Alquicira-Hernandez, J., Nguyen, Q. & Powell, J. E. scPred: single cell prediction using singular value decomposition and machine learning classification. Preprint at bioRxiv 10.1101/369538 (2018).
    • (2018) bioRxiv
    • Alquicira-Hernandez, J.1    Nguyen, Q.2    Powell, J.E.3
  • 97
    • 85072188604 scopus 로고    scopus 로고
    • Mapping transcriptionally equivalent populations across single cell RNA-seq datasets
    • Preprint at
    • Boufea, K., Seth, S. & Batada, N. N. Mapping transcriptionally equivalent populations across single cell RNA-seq datasets. Preprint at bioRxiv 10.1101/470203 (2018).
    • (2018) bioRxiv
    • Boufea, K.1    Seth, S.2    Batada, N.N.3
  • 98
    • 85064582461 scopus 로고    scopus 로고
    • Moana: a robust and scalable cell type classification framework for single-cell RNA-Seq data
    • Preprint at
    • Wagner, F. & Yanai, I. Moana: a robust and scalable cell type classification framework for single-cell RNA-Seq data. Preprint at bioRxiv 10.1101/456129 (2018).
    • (2018) bioRxiv
    • Wagner, F.1    Yanai, I.2
  • 99
    • 85025599203 scopus 로고    scopus 로고
    • MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics
    • PID: 28738873, This study presents a method of aligning pseudotime trajectories developed from different data modalities as a way to compare pseudotemporal changes each modality
    • Welch, J. D., Hartemink, A. J. & Prins, J. F. MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics. Genome Biol. 18, 138 (2017). This study presents a method of aligning pseudotime trajectories developed from different data modalities as a way to compare pseudotemporal changes in each modality.
    • (2017) Genome Biol. , vol.18
    • Welch, J.D.1    Hartemink, A.J.2    Prins, J.F.3
  • 100
    • 85050885385 scopus 로고    scopus 로고
    • Molecular diversity and specializations among the cells of the adult mouse brain
    • COI: 1:CAS:528:DC%2BC1cXhsVyltrrK, PID: 30096299
    • Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030 (2018).
    • (2018) Cell , vol.174 , pp. 1015-1030
    • Saunders, A.1
  • 101
    • 0023644185 scopus 로고
    • The segmentation and homeotic gene network in early Drosophila development
    • COI: 1:CAS:528:DyaL1cXltlShsA%3D%3D, PID: 2890437
    • Scott, M. P. & Carroll, S. B. The segmentation and homeotic gene network in early Drosophila development. Cell 51, 689–698 (1987).
    • (1987) Cell , vol.51 , pp. 689-698
    • Scott, M.P.1    Carroll, S.B.2
  • 102
    • 53349161901 scopus 로고    scopus 로고
    • Imaging individual mRNA molecules using multiple singly labeled probes
    • COI: 1:CAS:528:DC%2BD1cXhtFKktLbL, PID: 18806792
    • Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).
    • (2008) Nat. Methods , vol.5 , pp. 877-879
    • Raj, A.1    van den Bogaard, P.2    Rifkin, S.A.3    van Oudenaarden, A.4    Tyagi, S.5
  • 103
    • 84887115231 scopus 로고    scopus 로고
    • Image-based transcriptomics in thousands of single human cells at single-molecule resolution
    • COI: 1:CAS:528:DC%2BC3sXhsFOiu7jN, PID: 24097269
    • Battich, N., Stoeger, T. & Pelkmans, L. Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat. Methods 10, 1127–1133 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 1127-1133
    • Battich, N.1    Stoeger, T.2    Pelkmans, L.3
  • 104
    • 84928395184 scopus 로고    scopus 로고
    • Spatially resolved, highly multiplexed RNA profiling in single cells
    • PID: 25858977
    • Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).
    • (2015) Science , vol.348 , pp. aaa6090
    • Chen, K.H.1    Boettiger, A.N.2    Moffitt, J.R.3    Wang, S.4    Zhuang, X.5
  • 105
    • 85020075574 scopus 로고    scopus 로고
    • seqFISH accurately detects transcripts in single cells and reveals robust spatial organization in the hippocampus
    • COI: 1:CAS:528:DC%2BC2sXotVCis70%3D, PID: 28521130
    • Shah, S., Lubeck, E., Zhou, W. & Cai, L. seqFISH accurately detects transcripts in single cells and reveals robust spatial organization in the hippocampus. Neuron 94, 752–758 (2017).
    • (2017) Neuron , vol.94 , pp. 752-758
    • Shah, S.1    Lubeck, E.2    Zhou, W.3    Cai, L.4
  • 106
    • 84989818902 scopus 로고    scopus 로고
    • High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization
    • COI: 1:CAS:528:DC%2BC28XhsFSltLfO, PID: 27625426
    • Moffitt, J. R. et al. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proc. Natl Acad. Sci. USA 113, 11046–11051 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. 11046-11051
    • Moffitt, J.R.1
  • 107
    • 85006056275 scopus 로고    scopus 로고
    • High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing
    • COI: 1:CAS:528:DC%2BC28XhvFSlsbvJ, PID: 27911841
    • Moffitt, J. R. et al. High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc. Natl Acad. Sci. USA 113, 14456–14461 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. 14456-14461
    • Moffitt, J.R.1
  • 108
    • 85056571109 scopus 로고    scopus 로고
    • Molecular, spatial and functional single-cell profiling of the hypothalamic preoptic region
    • PID: 30385464
    • Moffitt, J. R. et al. Molecular, spatial and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018).
    • (2018) Science , vol.362
    • Moffitt, J.R.1
  • 109
    • 85030646641 scopus 로고    scopus 로고
    • The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing
    • COI: 1:CAS:528:DC%2BC2sXhsF2jtLrJ, PID: 28983044
    • Lein, E., Borm, L. E. & Linnarsson, S. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science 358, 64–69 (2017).
    • (2017) Science , vol.358 , pp. 64-69
    • Lein, E.1    Borm, L.E.2    Linnarsson, S.3
  • 110
    • 84976875145 scopus 로고    scopus 로고
    • Visualization and analysis of gene expression in tissue sections by spatial transcriptomics
    • COI: 1:CAS:528:DC%2BC28XhtVOgtLrF, PID: 27365449
    • Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).
    • (2016) Science , vol.353 , pp. 78-82
    • Stahl, P.L.1
  • 111
    • 84878997106 scopus 로고    scopus 로고
    • Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells
    • COI: 1:CAS:528:DC%2BC3sXotFSmtr4%3D, PID: 23685454
    • Shalek, A. K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236–240 (2013).
    • (2013) Nature , vol.498 , pp. 236-240
    • Shalek, A.K.1
  • 112
    • 84929166604 scopus 로고    scopus 로고
    • High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin
    • COI: 1:CAS:528:DC%2BC2MXmtlKktLs%3D, PID: 25867922
    • Achim, K. et al. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat. Biotechnol. 33, 503–509 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 503-509
    • Achim, K.1
  • 113
    • 85016148799 scopus 로고    scopus 로고
    • Single-cell spatial reconstruction reveals global division of labour in the mammalian liver
    • COI: 1:CAS:528:DC%2BC2sXisV2ktLY%3D, PID: 28166538
    • Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352–356 (2017).
    • (2017) Nature , vol.542 , pp. 352-356
    • Halpern, K.B.1
  • 114
    • 85045478047 scopus 로고    scopus 로고
    • SpatialDE: identification of spatially variable genes
    • COI: 1:CAS:528:DC%2BC1cXltVKnsL4%3D, PID: 29553579
    • Svensson, V., Teichmann, S. A. & Stegle, O. SpatialDE: identification of spatially variable genes. Nat. Methods 15, 343–346 (2018).
    • (2018) Nat. Methods , vol.15 , pp. 343-346
    • Svensson, V.1    Teichmann, S.A.2    Stegle, O.3
  • 115
    • 85045437597 scopus 로고    scopus 로고
    • Identification of spatial expression trends in single-cell gene expression data
    • PID: 29553578
    • Edsgärd, D., Johnsson, P. & Sandberg, R. Identification of spatial expression trends in single-cell gene expression data. Nat. Methods 15, 339–342 (2018).
    • (2018) Nat. Methods , vol.15 , pp. 339-342
    • Edsgärd, D.1    Johnsson, P.2    Sandberg, R.3
  • 116
    • 85035813065 scopus 로고    scopus 로고
    • Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer
    • COI: 1:CAS:528:DC%2BC2sXhvFWms7nE, PID: 29198524
    • Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624 (2017).
    • (2017) Cell , vol.171 , pp. 1611-1624
    • Puram, S.V.1
  • 117
    • 85044604944 scopus 로고    scopus 로고
    • Comprehensive identification and spatial mapping of habenular neuronal types using single-cell RNA-Seq
    • COI: 1:CAS:528:DC%2BC1cXlvVOhtbc%3D, PID: 6042852
    • Pandey, S., Shekhar, K., Regev, A. & Schier, A. F. Comprehensive identification and spatial mapping of habenular neuronal types using single-cell RNA-Seq. Curr. Biol. 28, 1052–1065 (2018).
    • (2018) Curr. Biol. , vol.28 , pp. 1052-1065
    • Pandey, S.1    Shekhar, K.2    Regev, A.3    Schier, A.F.4
  • 118
    • 85042789715 scopus 로고    scopus 로고
    • Highly parallel direct RNA sequencing on an array of nanopores
    • COI: 1:CAS:528:DC%2BC1cXovVCitg%3D%3D, PID: 29334379
    • Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15, 201–206 (2018).
    • (2018) Nat. Methods , vol.15 , pp. 201-206
    • Garalde, D.R.1
  • 119
    • 85013157844 scopus 로고    scopus 로고
    • Mapping DNA methylation with high-throughput nanopore sequencing
    • COI: 1:CAS:528:DC%2BC2sXis1yltr8%3D, PID: 28218897
    • Rand, A. C. et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat. Methods 14, 411–413 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 411-413
    • Rand, A.C.1
  • 120
    • 85061976141 scopus 로고    scopus 로고
    • Nanopore native RNA sequencing of a human poly(A) transcriptome
    • Preprint at
    • Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Preprint at bioRxiv. 10.1101/459529 (2018).
    • (2018) bioRxiv
    • Workman, R.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.