-
1
-
-
84893905629
-
Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
-
Jaitin, D.A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776-779 (2014).
-
(2014)
Science
, vol.343
, pp. 776-779
-
-
Jaitin, D.A.1
-
2
-
-
84929684998
-
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
-
Klein, A.M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201 (2015).
-
(2015)
Cell
, vol.161
, pp. 1187-1201
-
-
Klein, A.M.1
-
3
-
-
84929684999
-
Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
-
Macosko, E.Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214 (2015).
-
(2015)
Cell
, vol.161
, pp. 1202-1214
-
-
MacOsko, E.Z.1
-
4
-
-
85012271992
-
Seq-Well: Portable, low-cost RNA sequencing of single cells at high throughput
-
Gierahn, T.M. et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat. Methods 14, 395-398 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 395-398
-
-
Gierahn, T.M.1
-
5
-
-
84961169621
-
-
Preprint at
-
Hicks, S.C., Townes, F.W., Teng, M. & Irizarry, R.A. Missing data and technical variability in single-cell RNA-sequencing experiments. Preprint at https://www. biorxiv.org/content/early/2017/05/08/025528/(2017).
-
(2017)
Missing Data and Technical Variability in Single-cell RNA-sequencing Experiments
-
-
Hicks, S.C.1
Townes, F.W.2
Teng, M.3
Irizarry, R.A.4
-
6
-
-
85008384488
-
Batch effects and the effective design of single-cell gene expression studies
-
Tung, P.Y. et al. Batch effects and the effective design of single-cell gene expression studies. Sci. Rep. 7, 39921 (2017).
-
(2017)
Sci. Rep
, vol.7
, pp. 39921
-
-
Tung, P.Y.1
-
7
-
-
84926507971
-
Limma powers differential expression analyses for RNAsequencing and microarray studies
-
Ritchie, M.E. et al. limma powers differential expression analyses for RNAsequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
-
(2015)
Nucleic Acids Res
, vol.43
, pp. e47
-
-
Ritchie, M.E.1
-
8
-
-
33845432928
-
Adjusting batch effects in microarray expression data using empirical Bayes methods
-
Johnson, W.E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118-127 (2007).
-
(2007)
Biostatistics
, vol.8
, pp. 118-127
-
-
Johnson, W.E.1
Li, C.2
Rabinovic, A.3
-
9
-
-
84909644283
-
Normalization of RNA-seq data using factor analysis of control genes or samples
-
Risso, D., Ngai, J., Speed, T.P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896-902 (2014).
-
(2014)
Nat. Biotechnol
, vol.32
, pp. 896-902
-
-
Risso, D.1
Ngai, J.2
Speed, T.P.3
Dudoit, S.4
-
10
-
-
84925226706
-
Svaseq: Removing batch effects and other unwanted noise from sequencing data
-
Leek, J.T. svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 42, e161 (2014).
-
(2014)
Nucleic Acids Res
, vol.42
, pp. e161
-
-
Leek, J.T.1
-
11
-
-
84937604921
-
An interactive reference framework for modeling a dynamic immune system
-
Spitzer, M.H. et al. An interactive reference framework for modeling a dynamic immune system. Science 349, 1259425 (2015).
-
(2015)
Science
, vol.349
, pp. 1259425
-
-
Spitzer, M.H.1
-
12
-
-
85009113270
-
A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation
-
Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128, e20-e31 (2016).
-
(2016)
Blood
, vol.128
, pp. e20-e31
-
-
Nestorowa, S.1
-
13
-
-
84978761773
-
Resolving early mesoderm diversification through single-cell expression profiling
-
Scialdone, A. et al. Resolving early mesoderm diversification through single-cell expression profiling. Nature 535, 289-293 (2016).
-
(2016)
Nature
, vol.535
, pp. 289-293
-
-
Scialdone, A.1
-
14
-
-
84994641696
-
A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure
-
Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure. Cell Syst. 3, 346-360.e4 (2016).
-
(2016)
Cell Syst
, vol.3
, pp. 346-346e4
-
-
Baron, M.1
-
15
-
-
84899574465
-
Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
-
Bendall, S.C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714-725 (2014).
-
(2014)
Cell
, vol.157
, pp. 714-725
-
-
Bendall, S.C.1
-
17
-
-
84887101406
-
Smart-seq2 for sensitive full-length transcriptome profiling in single cells
-
Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096-1098 (2013).
-
(2013)
Nat. Methods
, vol.10
, pp. 1096-1098
-
-
Picelli, S.1
-
18
-
-
84950290139
-
Transcriptional heterogeneity and lineage commitment in myeloid progenitors
-
Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663-1677 (2015).
-
(2015)
Cell
, vol.163
, pp. 1663-1677
-
-
Paul, F.1
-
19
-
-
84966667709
-
Destiny: Diffusion maps for large-scale single-cell data in R
-
Angerer, P. et al. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241-1243 (2016).
-
(2016)
Bioinformatics
, vol.32
, pp. 1241-1243
-
-
Angerer, P.1
-
20
-
-
84990895380
-
De novo prediction of stem cell identity using single-cell transcriptome data
-
Grün, D. et al. De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 19, 266-277 (2016).
-
(2016)
Cell Stem Cell
, vol.19
, pp. 266-277
-
-
Grün, D.1
-
21
-
-
84994589771
-
A single-cell transcriptome atlas of the human pancreas
-
Muraro, M.J. et al. A single-cell transcriptome atlas of the human pancreas. Cell Syst. 3, 385-394.e3 (2016).
-
(2016)
Cell Syst
, vol.3
, pp. 385-385e3
-
-
Muraro, M.J.1
-
22
-
-
85012994420
-
Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes
-
Lawlor, N. et al. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res. 27, 208-222 (2017).
-
(2017)
Genome Res
, vol.27
, pp. 208-222
-
-
Lawlor, N.1
-
23
-
-
84992364302
-
Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes
-
Segerstolpe, Å. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24, 593-607 (2016).
-
(2016)
Cell Metab
, vol.24
, pp. 593-607
-
-
Segerstolpe, Å.1
-
24
-
-
85009446777
-
Massively parallel digital transcriptional profiling of single cells
-
Zheng, G.X.Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
-
(2017)
Nat. Commun
, vol.8
, pp. 14049
-
-
Zheng, G.X.Y.1
-
25
-
-
84887109584
-
Accounting for technical noise in single-cell RNA-seq experiments
-
Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093-1095 (2013).
-
(2013)
Nat. Methods
, vol.10
, pp. 1093-1095
-
-
Brennecke, P.1
-
26
-
-
84871809302
-
STAR ultrafast universal RNA-seq aligner
-
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 (2013).
-
(2013)
Bioinformatics
, vol.29
, pp. 15-21
-
-
Dobin, A.1
-
27
-
-
84897397058
-
Featurecounts: An efficient general purpose program for assigning sequence reads to genomic features
-
Liao, Y., Smyth, G.K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930 (2014).
-
(2014)
Bioinformatics
, vol.30
, pp. 923-930
-
-
Liao, Y.1
Smyth, G.K.2
Shi, W.3
-
28
-
-
84964556059
-
Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
-
Lun, A.T., Bach, K. & Marioni, J.C. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 17, 75 (2016).
-
(2016)
Genome Biol
, vol.17
, pp. 75
-
-
Lun, A.T.1
Bach, K.2
Marioni, J.C.3
-
29
-
-
84931072284
-
Identification of cell types from single-cell transcriptomes using a novel clustering method
-
Xu, C. & Su, Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 31, 1974-1980 (2015).
-
(2015)
Bioinformatics
, vol.31
, pp. 1974-1980
-
-
Xu, C.1
Su, Z.2
-
30
-
-
33646530046
-
Computing communities in large networks using random walks
-
Pons, P. & Latapy, M. Computing communities in large networks using random walks. ISCIS 3733, 284-293 (2005).
-
(2005)
ISCIS
, vol.3733
, pp. 284-293
-
-
Pons, P.1
Latapy, M.2
-
31
-
-
85046700621
-
-
Preprint at
-
Buttner, M., Miao, Z., Wolf, A., Teichmann, S.A. & Theis, F.J. Assessment of batchcorrection methods for scRNA-seq data with a new test metric. Preprint at https://www.biorxiv.org/content/early/2017/10/09/200345/(2017).
-
(2017)
Assessment of Batchcorrection Methods for ScRNA-seq Data with a New Test Metric
-
-
Buttner, M.1
Miao, Z.2
Wolf, A.3
Teichmann, S.A.4
Theis, F.J.5
-
32
-
-
84878843233
-
Quantifying disorder through conditional entropy: An application to fluid mixing
-
Brandani, G.B. et al. Quantifying disorder through conditional entropy: an application to fluid mixing. PloS One 6, e65617 (2013).
-
(2013)
PloS One
, vol.6
, pp. e65617
-
-
Brandani, G.B.1
|