메뉴 건너뛰기




Volumn 36, Issue 5, 2018, Pages 421-427

Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors

Author keywords

[No Author keywords available]

Indexed keywords

CELL CULTURE; CELL PROLIFERATION; RNA;

EID: 85046289733     PISSN: 10870156     EISSN: 15461696     Source Type: Journal    
DOI: 10.1038/nbt.4091     Document Type: Article
Times cited : (1379)

References (32)
  • 1
    • 84893905629 scopus 로고    scopus 로고
    • Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
    • Jaitin, D.A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776-779 (2014).
    • (2014) Science , vol.343 , pp. 776-779
    • Jaitin, D.A.1
  • 2
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • Klein, A.M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201 (2015).
    • (2015) Cell , vol.161 , pp. 1187-1201
    • Klein, A.M.1
  • 3
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • Macosko, E.Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214 (2015).
    • (2015) Cell , vol.161 , pp. 1202-1214
    • MacOsko, E.Z.1
  • 4
    • 85012271992 scopus 로고    scopus 로고
    • Seq-Well: Portable, low-cost RNA sequencing of single cells at high throughput
    • Gierahn, T.M. et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat. Methods 14, 395-398 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 395-398
    • Gierahn, T.M.1
  • 6
    • 85008384488 scopus 로고    scopus 로고
    • Batch effects and the effective design of single-cell gene expression studies
    • Tung, P.Y. et al. Batch effects and the effective design of single-cell gene expression studies. Sci. Rep. 7, 39921 (2017).
    • (2017) Sci. Rep , vol.7 , pp. 39921
    • Tung, P.Y.1
  • 7
    • 84926507971 scopus 로고    scopus 로고
    • Limma powers differential expression analyses for RNAsequencing and microarray studies
    • Ritchie, M.E. et al. limma powers differential expression analyses for RNAsequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
    • (2015) Nucleic Acids Res , vol.43 , pp. e47
    • Ritchie, M.E.1
  • 8
    • 33845432928 scopus 로고    scopus 로고
    • Adjusting batch effects in microarray expression data using empirical Bayes methods
    • Johnson, W.E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118-127 (2007).
    • (2007) Biostatistics , vol.8 , pp. 118-127
    • Johnson, W.E.1    Li, C.2    Rabinovic, A.3
  • 9
    • 84909644283 scopus 로고    scopus 로고
    • Normalization of RNA-seq data using factor analysis of control genes or samples
    • Risso, D., Ngai, J., Speed, T.P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896-902 (2014).
    • (2014) Nat. Biotechnol , vol.32 , pp. 896-902
    • Risso, D.1    Ngai, J.2    Speed, T.P.3    Dudoit, S.4
  • 10
    • 84925226706 scopus 로고    scopus 로고
    • Svaseq: Removing batch effects and other unwanted noise from sequencing data
    • Leek, J.T. svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 42, e161 (2014).
    • (2014) Nucleic Acids Res , vol.42 , pp. e161
    • Leek, J.T.1
  • 11
    • 84937604921 scopus 로고    scopus 로고
    • An interactive reference framework for modeling a dynamic immune system
    • Spitzer, M.H. et al. An interactive reference framework for modeling a dynamic immune system. Science 349, 1259425 (2015).
    • (2015) Science , vol.349 , pp. 1259425
    • Spitzer, M.H.1
  • 12
    • 85009113270 scopus 로고    scopus 로고
    • A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation
    • Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128, e20-e31 (2016).
    • (2016) Blood , vol.128 , pp. e20-e31
    • Nestorowa, S.1
  • 13
    • 84978761773 scopus 로고    scopus 로고
    • Resolving early mesoderm diversification through single-cell expression profiling
    • Scialdone, A. et al. Resolving early mesoderm diversification through single-cell expression profiling. Nature 535, 289-293 (2016).
    • (2016) Nature , vol.535 , pp. 289-293
    • Scialdone, A.1
  • 14
    • 84994641696 scopus 로고    scopus 로고
    • A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure
    • Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure. Cell Syst. 3, 346-360.e4 (2016).
    • (2016) Cell Syst , vol.3 , pp. 346-346e4
    • Baron, M.1
  • 15
    • 84899574465 scopus 로고    scopus 로고
    • Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
    • Bendall, S.C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714-725 (2014).
    • (2014) Cell , vol.157 , pp. 714-725
    • Bendall, S.C.1
  • 17
    • 84887101406 scopus 로고    scopus 로고
    • Smart-seq2 for sensitive full-length transcriptome profiling in single cells
    • Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096-1098 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 1096-1098
    • Picelli, S.1
  • 18
    • 84950290139 scopus 로고    scopus 로고
    • Transcriptional heterogeneity and lineage commitment in myeloid progenitors
    • Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663-1677 (2015).
    • (2015) Cell , vol.163 , pp. 1663-1677
    • Paul, F.1
  • 19
    • 84966667709 scopus 로고    scopus 로고
    • Destiny: Diffusion maps for large-scale single-cell data in R
    • Angerer, P. et al. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241-1243 (2016).
    • (2016) Bioinformatics , vol.32 , pp. 1241-1243
    • Angerer, P.1
  • 20
    • 84990895380 scopus 로고    scopus 로고
    • De novo prediction of stem cell identity using single-cell transcriptome data
    • Grün, D. et al. De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 19, 266-277 (2016).
    • (2016) Cell Stem Cell , vol.19 , pp. 266-277
    • Grün, D.1
  • 21
    • 84994589771 scopus 로고    scopus 로고
    • A single-cell transcriptome atlas of the human pancreas
    • Muraro, M.J. et al. A single-cell transcriptome atlas of the human pancreas. Cell Syst. 3, 385-394.e3 (2016).
    • (2016) Cell Syst , vol.3 , pp. 385-385e3
    • Muraro, M.J.1
  • 22
    • 85012994420 scopus 로고    scopus 로고
    • Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes
    • Lawlor, N. et al. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res. 27, 208-222 (2017).
    • (2017) Genome Res , vol.27 , pp. 208-222
    • Lawlor, N.1
  • 23
    • 84992364302 scopus 로고    scopus 로고
    • Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes
    • Segerstolpe, Å. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24, 593-607 (2016).
    • (2016) Cell Metab , vol.24 , pp. 593-607
    • Segerstolpe, Å.1
  • 24
    • 85009446777 scopus 로고    scopus 로고
    • Massively parallel digital transcriptional profiling of single cells
    • Zheng, G.X.Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
    • (2017) Nat. Commun , vol.8 , pp. 14049
    • Zheng, G.X.Y.1
  • 25
    • 84887109584 scopus 로고    scopus 로고
    • Accounting for technical noise in single-cell RNA-seq experiments
    • Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093-1095 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 1093-1095
    • Brennecke, P.1
  • 26
    • 84871809302 scopus 로고    scopus 로고
    • STAR ultrafast universal RNA-seq aligner
    • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 (2013).
    • (2013) Bioinformatics , vol.29 , pp. 15-21
    • Dobin, A.1
  • 27
    • 84897397058 scopus 로고    scopus 로고
    • Featurecounts: An efficient general purpose program for assigning sequence reads to genomic features
    • Liao, Y., Smyth, G.K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930 (2014).
    • (2014) Bioinformatics , vol.30 , pp. 923-930
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 28
    • 84964556059 scopus 로고    scopus 로고
    • Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
    • Lun, A.T., Bach, K. & Marioni, J.C. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 17, 75 (2016).
    • (2016) Genome Biol , vol.17 , pp. 75
    • Lun, A.T.1    Bach, K.2    Marioni, J.C.3
  • 29
    • 84931072284 scopus 로고    scopus 로고
    • Identification of cell types from single-cell transcriptomes using a novel clustering method
    • Xu, C. & Su, Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 31, 1974-1980 (2015).
    • (2015) Bioinformatics , vol.31 , pp. 1974-1980
    • Xu, C.1    Su, Z.2
  • 30
    • 33646530046 scopus 로고    scopus 로고
    • Computing communities in large networks using random walks
    • Pons, P. & Latapy, M. Computing communities in large networks using random walks. ISCIS 3733, 284-293 (2005).
    • (2005) ISCIS , vol.3733 , pp. 284-293
    • Pons, P.1    Latapy, M.2
  • 32
    • 84878843233 scopus 로고    scopus 로고
    • Quantifying disorder through conditional entropy: An application to fluid mixing
    • Brandani, G.B. et al. Quantifying disorder through conditional entropy: an application to fluid mixing. PloS One 6, e65617 (2013).
    • (2013) PloS One , vol.6 , pp. e65617
    • Brandani, G.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.