메뉴 건너뛰기




Volumn 50, Issue 4, 2018, Pages 493-497

Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs

Author keywords

[No Author keywords available]

Indexed keywords

CIS ACTING ELEMENT; RNA; TRANSCRIPTOME;

EID: 85044715062     PISSN: 10614036     EISSN: 15461718     Source Type: Journal    
DOI: 10.1038/s41588-018-0089-9     Document Type: Article
Times cited : (224)

References (36)
  • 2
    • 84885018609 scopus 로고    scopus 로고
    • Systematic identification of trans eQTLs as putative drivers of known disease associations
    • Westra, H. J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238-1243 (2013).
    • (2013) Nat. Genet , vol.45 , pp. 1238-1243
    • Westra, H.J.1
  • 3
    • 84884611024 scopus 로고    scopus 로고
    • Integrative modeling of eQTLs and cis-regulatory elements suggests mechanisms underlying cell type specificity of eQTLs
    • Brown, C. D., Mangravite, L. M. & Engelhardt, B. E. Integrative modeling of eQTLs and cis-regulatory elements suggests mechanisms underlying cell type specificity of eQTLs. PLoS Genet. 9, e1003649 (2013).
    • (2013) PLoS Genet , vol.9 , pp. e1003649
    • Brown, C.D.1    Mangravite, L.M.2    Engelhardt, B.E.3
  • 4
    • 84860317030 scopus 로고    scopus 로고
    • Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles
    • Fairfax, B. P. et al. Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nat. Genet. 44, 502-510 (2012).
    • (2012) Nat. Genet , vol.44 , pp. 502-510
    • Fairfax, B.P.1
  • 5
    • 84857487802 scopus 로고    scopus 로고
    • Unraveling the regulatory mechanisms underlying tissuedependent genetic variation of gene expression
    • Fu, J. et al. Unraveling the regulatory mechanisms underlying tissuedependent genetic variation of gene expression. PLoS Genet. 8, e1002431 (2012).
    • (2012) PLoS Genet , vol.8 , pp. e1002431
    • Fu, J.1
  • 6
    • 85016646504 scopus 로고    scopus 로고
    • Pathogenic implications for autoimmune mechanisms derived by comparative eQTL analysis of CD4+ versus CD8+ T cells
    • Kasela, S. et al. Pathogenic implications for autoimmune mechanisms derived by comparative eQTL analysis of CD4+ versus CD8+ T cells. PLoS Genet. 13, e1006643 (2017).
    • (2017) PLoS Genet , vol.13 , pp. e1006643
    • Kasela, S.1
  • 7
    • 84936791693 scopus 로고    scopus 로고
    • Genomic modulators of gene expression in human neutrophils
    • Naranbhai, V. et al. Genomic modulators of gene expression in human neutrophils. Nat. Commun. 6, 7545 (2015).
    • (2015) Nat. Commun , vol.6 , pp. 7545
    • Naranbhai, V.1
  • 8
    • 85021722632 scopus 로고    scopus 로고
    • Polygenic burdens on cell-specific pathways underlie the risk of rheumatoid arthritis
    • Ishigaki, K. et al. Polygenic burdens on cell-specific pathways underlie the risk of rheumatoid arthritis. Nat. Genet. 49, 1120-1125 (2017).
    • (2017) Nat. Genet , vol.49 , pp. 1120-1125
    • Ishigaki, K.1
  • 9
    • 84930817087 scopus 로고    scopus 로고
    • Cell specific eQTL analysis without sorting cells
    • Westra, H. J. et al. Cell specific eQTL analysis without sorting cells. PLoS Genet. 11, e1005223 (2015).
    • (2015) PLoS Genet , vol.11 , pp. e1005223
    • Westra, H.J.1
  • 10
    • 0035224389 scopus 로고    scopus 로고
    • Separation of samples into their constituents using gene expression data
    • Venet, D., Pecasse, F., Maenhaut, C. & Bersini, H. Separation of samples into their constituents using gene expression data. Bioinformatics 17 (Suppl. 1), S279-S287 (2001).
    • (2001) Bioinformatics , vol.17 , pp. S279-S287
    • Venet, D.1    Pecasse, F.2    Maenhaut, C.3    Bersini, H.4
  • 11
    • 85002486916 scopus 로고    scopus 로고
    • Identification of context-dependent expression quantitative trait loci in whole blood
    • Zhernakova, D. V. et al. Identification of context-dependent expression quantitative trait loci in whole blood. Nat. Genet. 49, 139-145 (2017).
    • (2017) Nat. Genet , vol.49 , pp. 139-145
    • Zhernakova, D.V.1
  • 12
    • 85018582872 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
    • Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573, https:// doi.org/10.1126/science.aah4573 (2017).
    • (2017) Science , vol.356 , pp. eaah4573
    • Villani, A.C.1
  • 13
    • 84882582801 scopus 로고    scopus 로고
    • Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments
    • Wills, Q. F. et al. Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments. Nat. Biotechnol. 31, 748-752 (2013).
    • (2013) Nat. Biotechnol , vol.31 , pp. 748-752
    • Wills, Q.F.1
  • 14
    • 84941588145 scopus 로고    scopus 로고
    • Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: Study design and baseline characteristics
    • Tigchelaar, E. F. et al. Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics. BMJ Open 5, e006772 (2015).
    • (2015) BMJ Open , vol.5 , pp. e006772
    • Tigchelaar, E.F.1
  • 15
    • 84879674031 scopus 로고    scopus 로고
    • DeepSAGE reveals genetic variants associated with alternative polyadenylation and expression of coding and non-coding transcripts
    • Zhernakova, D. V. et al. DeepSAGE reveals genetic variants associated with alternative polyadenylation and expression of coding and non-coding transcripts. PLoS Genet. 9, e1003594 (2013).
    • (2013) PLoS Genet , vol.9 , pp. e1003594
    • Zhernakova, D.V.1
  • 16
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214 (2015).
    • (2015) Cell , vol.161 , pp. 1202-1214
    • Macosko, E.Z.1
  • 17
    • 84995752772 scopus 로고    scopus 로고
    • Genetic drivers of epigenetic and transcriptional variation in human immune cells
    • Chen, L. et al. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell 167, 1398-1414.e24 (2016).
    • (2016) Cell , vol.167 , pp. 1398-1398e24
    • Chen, L.1
  • 18
    • 84878476783 scopus 로고    scopus 로고
    • A statistical framework for joint eQTL analysis in multiple tissues
    • Flutre, T., Wen, X., Pritchard, J. & Stephens, M. A statistical framework for joint eQTL analysis in multiple tissues. PLoS Genet. 9, e1003486 (2013).
    • (2013) PLoS Genet , vol.9 , pp. e1003486
    • Flutre, T.1    Wen, X.2    Pritchard, J.3    Stephens, M.4
  • 19
    • 84879653976 scopus 로고    scopus 로고
    • Effectively identifying eQTLs from multiple tissues by combining mixed model and meta-analytic approaches
    • Sul, J. H., Han, B., Ye, C., Choi, T. & Eskin, E. Effectively identifying eQTLs from multiple tissues by combining mixed model and meta-analytic approaches. PLoS Genet. 9, e1003491 (2013).
    • (2013) PLoS Genet , vol.9 , pp. e1003491
    • Sul, J.H.1    Han, B.2    Ye, C.3    Choi, T.4    Eskin, E.5
  • 20
    • 85024479281 scopus 로고    scopus 로고
    • Applying meta-analysis to genotype-tissue expression data from multiple tissues to identify eQTLs and increase the number of eGenes
    • Duong, D. et al. Applying meta-analysis to genotype-tissue expression data from multiple tissues to identify eQTLs and increase the number of eGenes. Bioinformatics 33, i67-i74 (2017).
    • (2017) Bioinformatics , vol.33 , pp. i67-i74
    • Duong, D.1
  • 21
    • 85027507858 scopus 로고    scopus 로고
    • Allele-specific expression reveals interactions between genetic variation and environment
    • Knowles, D. A. et al. Allele-specific expression reveals interactions between genetic variation and environment. Nat. Methods 14, 699-702 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 699-702
    • Knowles, D.A.1
  • 24
    • 85045314028 scopus 로고    scopus 로고
    • An accurate and robust imputation method scImpute for single-cell RNA-seq data
    • Li, W. V. & Li, J. J. An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat. Commun. 9, 997 (2018).
    • (2018) Nat. Commun , vol.9 , pp. 997
    • Li, W.V.1    Li, J.J.2
  • 25
    • 84969213492 scopus 로고    scopus 로고
    • Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls
    • Wellcome Trust Case Control Consortium. Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls. Nature 447, 661-678 (2007).
    • (2007) Nature , vol.447 , pp. 661-678
  • 26
    • 0001745298 scopus 로고
    • The interpretation of interaction in contingency tables
    • Simpson, E. H. The interpretation of interaction in contingency tables. J. R. Stat. Soc. Ser. B Methodol. 13, 238-241 (1951).
    • (1951) J. R. Stat. Soc. Ser. B Methodol , vol.13 , pp. 238-241
    • Simpson, E.H.1
  • 27
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386 (2014).
    • (2014) Nat. Biotechnol , vol.32 , pp. 381-386
    • Trapnell, C.1
  • 28
    • 84903185013 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
    • Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363-369 (2014).
    • (2014) Nature , vol.510 , pp. 363-369
    • Shalek, A.K.1
  • 29
    • 85009446777 scopus 로고    scopus 로고
    • Massively parallel digital transcriptional profiling of single cells
    • Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
    • (2017) Nat. Commun , vol.8 , pp. 14049
    • Zheng, G.X.Y.1
  • 30
    • 84989838868 scopus 로고    scopus 로고
    • Reference-based phasing using the Haplotype Reference Consortium panel
    • Loh, P. R. et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 48, 1443-1448 (2016).
    • (2016) Nat. Genet , vol.48 , pp. 1443-1448
    • Loh, P.R.1
  • 31
    • 84983479616 scopus 로고    scopus 로고
    • A reference panel of 64, 976 haplotypes for genotype imputation
    • McCarthy, S. et al. A reference panel of 64, 976 haplotypes for genotype imputation. Nat. Genet. 48, 1279-1283 (2016).
    • (2016) Nat. Genet , vol.48 , pp. 1279-1283
    • McCarthy, S.1
  • 32
    • 84984598118 scopus 로고    scopus 로고
    • Next-generation genotype imputation service and methods
    • Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284-1287 (2016).
    • (2016) Nat. Genet , vol.48 , pp. 1284-1287
    • Das, S.1
  • 33
    • 85040446434 scopus 로고    scopus 로고
    • Multiplexed droplet single-cell RNA-sequencing using natural genetic variation
    • Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89-94 (2018).
    • (2018) Nat. Biotechnol , vol.36 , pp. 89-94
    • Kang, H.M.1
  • 34
    • 67649628996 scopus 로고    scopus 로고
    • Gene conversion between the X chromosome and the male-specific region of the y chromosome at a translocation hotspot
    • Rosser, Z. H., Balaresque, P. & Jobling, M. A. Gene conversion between the X chromosome and the male-specific region of the Y chromosome at a translocation hotspot. Am. J. Hum. Genet. 85, 130-134 (2009).
    • (2009) Am. J. Hum. Genet , vol.85 , pp. 130-134
    • Rosser, Z.H.1    Balaresque, P.2    Jobling, M.A.3
  • 35
    • 84958058589 scopus 로고    scopus 로고
    • Classification of low quality cells from single-cell RNA-seq data
    • Ilicic, T. et al. Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 17, 29 (2016).
    • (2016) Genome Biol , vol.17 , pp. 29
    • Ilicic, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.