-
1
-
-
84929684998
-
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
-
Klein, A.M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201 (2015).
-
(2015)
Cell
, vol.161
, pp. 1187-1201
-
-
Klein, A.M.1
-
2
-
-
85010710363
-
Single-cell barcoding and sequencing using droplet microfluidics
-
Zilionis, R. et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat. Protoc. 12, 44-73 (2017).
-
(2017)
Nat. Protoc
, vol.12
, pp. 44-73
-
-
Zilionis, R.1
-
3
-
-
84929684999
-
Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
-
Macosko, E.Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214 (2015).
-
(2015)
Cell
, vol.161
, pp. 1202-1214
-
-
Macosko, E.Z.1
-
4
-
-
85009446777
-
Massively parallel digital transcriptional profiling of single cells
-
Zheng, G.X.Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
-
(2017)
Nat. Commun
, vol.8
, pp. 14049
-
-
Zheng, G.X.Y.1
-
5
-
-
84983741021
-
Comprehensive classification of retinal bipolar neurons by singlecell transcriptomics
-
Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by singlecell transcriptomics. Cell 166, 1308-1323.e30 (2016).
-
(2016)
Cell
, vol.166
, pp. 1308-1323e30
-
-
Shekhar, K.1
-
6
-
-
85018582872
-
Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
-
Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).
-
(2017)
Science
, vol.356
, pp. eaah4573
-
-
Villani, A.-C.1
-
7
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386 (2014).
-
(2014)
Nat. Biotechnol
, vol.32
, pp. 381-386
-
-
Trapnell, C.1
-
8
-
-
84969505817
-
SLICER: Inferring branched, nonlinear cellular trajectories from single cell RNA-seq data
-
Welch, J.D., Hartemink, A.J. & Prins, J.F. SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data. Genome Biol. 17, 106 (2016).
-
(2016)
Genome Biol
, vol.17
, pp. 106
-
-
Welch, J.D.1
Hartemink, A.J.2
Prins, J.F.3
-
9
-
-
84929151009
-
Spatial reconstruction of single-cell gene expression data
-
Satija, R., Farrell, J.A., Gennert, D., Schier, A.F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495-502 (2015).
-
(2015)
Nat. Biotechnol
, vol.33
, pp. 495-502
-
-
Satija, R.1
Farrell, J.A.2
Gennert, D.3
Schier, A.F.4
Regev, A.5
-
10
-
-
84929166604
-
High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin
-
Achim, K. et al. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat. Biotechnol. 33, 503-509 (2015).
-
(2015)
Nat. Biotechnol
, vol.33
, pp. 503-509
-
-
Achim, K.1
-
11
-
-
84997343111
-
Single-cell resolution of temporal gene expression during heart development
-
DeLaughter, D.M. et al. Single-cell resolution of temporal gene expression during heart development. Dev. Cell 39, 480-490 (2016).
-
(2016)
Dev. Cell
, vol.39
, pp. 480-490
-
-
DeLaughter, D.M.1
-
12
-
-
84899574465
-
Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
-
Bendall, S.C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714-725 (2014).
-
(2014)
Cell
, vol.157
, pp. 714-725
-
-
Bendall, S.C.1
-
13
-
-
84942163495
-
Defining the three cell lineages of the human blastocyst by single-cell RNA-seq
-
Blakeley, P. et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142, 3613 (2015).
-
(2015)
Development
, vol.142
, pp. 3613
-
-
Blakeley, P.1
-
14
-
-
84928706022
-
Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex
-
Johnson, M.B. et al. Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex. Nat. Neurosci. 18, 1-30 (2015).
-
(2015)
Nat. Neurosci
, vol.18
, pp. 1-30
-
-
Johnson, M.B.1
-
15
-
-
85040459896
-
The human cell atlas
-
Regev, A. et al. The Human Cell Atlas. Elife 6, 1-30 (2017).
-
(2017)
Elife
, vol.6
, pp. 1-30
-
-
Regev, A.1
-
16
-
-
84903574951
-
Bayesian approach to single-cell differential expression analysis
-
Kharchenko, P.V., Silberstein, L. & Scadden, D.T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740-742 (2014).
-
(2014)
Nat. Methods
, vol.11
, pp. 740-742
-
-
Kharchenko, P.V.1
Silberstein, L.2
Scadden, D.T.3
-
17
-
-
84951574149
-
MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
-
Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).
-
(2015)
Genome Biol
, vol.16
, pp. 278
-
-
Finak, G.1
-
18
-
-
85014528252
-
Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning
-
Wang, B., Zhu, J., Pierson, E., Ramazzotti, D. & Batzoglou, S. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods 14, 414-416 (2017).
-
(2017)
Nat Methods
, vol.14
, pp. 414-416
-
-
Wang, B.1
Zhu, J.2
Pierson, E.3
Ramazzotti, D.4
Batzoglou, S.5
-
19
-
-
85016121177
-
SC3: Consensus clustering of single-cell RNA-seq data
-
Kiselev, V.Y. et al. SC3: consensus clustering of single-cell RNA-seq data. Nat. Methods 14, 483-486 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 483-486
-
-
Kiselev, V.Y.1
-
20
-
-
85016502564
-
CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
-
Lin, P., Troup, M. & Ho, J.W.K. CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biol. 18, 59 (2017).
-
(2017)
Genome Biol
, vol.18
, pp. 59
-
-
Lin, P.1
Troup, M.2
Ho, J.W.K.3
-
21
-
-
84992108405
-
Dirichlet process mixture model for correcting technical variation in single-cell gene expression data
-
Prabhakaran, S., Azizi, E. & Pe'er, D. Dirichlet process mixture model for correcting technical variation in single-cell gene expression data. Proc. 33rd Int. Conf. Mach. Learn. 48, 1070-1079 (2016).
-
(2016)
Proc. 33rd Int. Conf. Mach. Learn
, vol.48
, pp. 1070-1079
-
-
Prabhakaran, S.1
Azizi, E.2
Pe'Er, D.3
-
22
-
-
84969856092
-
Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts
-
Ntranos, V., Kamath, G.M., Zhang, J.M., Pachter, L. & Tse, D.N. Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts. Genome Biol. 17, 112 (2016).
-
(2016)
Genome Biol
, vol.17
, pp. 112
-
-
Ntranos, V.1
Kamath, G.M.2
Zhang, J.M.3
Pachter, L.4
Tse, D.N.5
-
23
-
-
84931072284
-
Identification of cell types from single-cell transcriptomes using a novel clustering method
-
Xu, C. & Su, Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 31, 1974-1980 (2015).
-
(2015)
Bioinformatics
, vol.31
, pp. 1974-1980
-
-
Xu, C.1
Su, Z.2
-
24
-
-
51949105919
-
Face shape recovery from a single image using CCA mapping between tensor spaces
-
Lei, Z., Bai, Q., He, R. & Li, S.Z. Face shape recovery from a single image using CCA mapping between tensor spaces. 26th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR doi:10.1109/CVPR.2008.4587341 (2008).
-
(2008)
26th IEEE Conf. Comput. Vis. Pattern Recognition CVPR
-
-
Lei, Z.1
Bai, Q.2
He, R.3
Li, S.Z.4
-
25
-
-
85046740686
-
-
(eds Y Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I. & Culotta, A.) (Neural Information Processing Systems Foundation, Inc
-
Zhou, F. & Torre, F. in Advances in Neural Information Processing Systems 22; NIPS 2009 (eds. Y. Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I. & Culotta, A.) https://papers.nips.cc/paper/3728-canonical-time-warping-foralignment-of-human-behavior (Neural Information Processing Systems Foundation, Inc., 2009).
-
(2009)
Advances in Neural Information Processing Systems 22; NIPS 2009
-
-
Zhou, F.1
Torre, F.2
-
26
-
-
84863261451
-
-
ed. Walsh, T. (AAAI)
-
Wang, C. & Mahadevan, S. in Proc. Twenty-Second International Joint Conference on Artificial Intelligence, Vol. 2 (ed. Walsh, T.) 1541-1546 (AAAI, 2011).
-
(2011)
Proc. Twenty-Second International Joint Conference on Artificial Intelligence
, vol.2
, pp. 1541-1546
-
-
Wang, C.1
Mahadevan, S.2
-
27
-
-
77949487523
-
Super-resolution of human face image using canonical correlation analysis
-
Huang, H., He, H., Fan, X. & Zhang, J. Super-resolution of human face image using canonical correlation analysis. Pattern Recognit. 43, 2532-2543 (2010).
-
(2010)
Pattern Recognit
, vol.43
, pp. 2532-2543
-
-
Huang, H.1
He, H.2
Fan, X.3
Zhang, J.4
-
28
-
-
0000107975
-
Relations between two sets of variates
-
Hotelling, H. Relations between two sets of variates. Biometrika 28, 321-377 (1936).
-
(1936)
Biometrika
, vol.28
, pp. 321-377
-
-
Hotelling, H.1
-
29
-
-
10044285992
-
Canonical correlation analysis: An overview with application to learning methods
-
Hardoon, D.R., Szedmak, S. & Shawe-Taylor, J. Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 16, 2639-2664 (2004).
-
(2004)
Neural Comput
, vol.16
, pp. 2639-2664
-
-
Hardoon, D.R.1
Szedmak, S.2
Shawe-Taylor, J.3
-
30
-
-
70149096300
-
A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
-
Witten, D.M., Tibshirani, R. & Hastie, T. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10, 515-534 (2009).
-
(2009)
Biostatistics
, vol.10
, pp. 515-534
-
-
Witten, D.M.1
Tibshirani, R.2
Hastie, T.3
-
31
-
-
60849113429
-
Sparse canonical methods for biological data integration: Application to a cross-platform study
-
Lê Cao, K.-A., Martin, P.G., Robert-Granié, C. & Besse, P. Sparse canonical methods for biological data integration: application to a cross-platform study. BMC Bioinformatics 10, 34 (2009).
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 34
-
-
Lê Cao, K.-A.1
Martin, P.G.2
Robert-Granié, C.3
Besse, P.4
-
32
-
-
38849098283
-
Quantifying the association between gene expressions and DNA-markers by penalized canonical correlation analysis
-
Waaijenborg, S., Verselewel de Witt Hamer, P.C. & Zwinderman, A.H. Quantifying the association between gene expressions and DNA-markers by penalized canonical correlation analysis. Stat. Appl. Genet. Mol. Biol. 7, e3 (2008).
-
(2008)
Stat. Appl. Genet. Mol. Biol
, vol.7
, pp. e3
-
-
Waaijenborg, S.1
De Witt Hamer, V.P.C.2
Zwinderman, A.H.3
-
33
-
-
0000020007
-
Canonical analysis of several sets of variables
-
Kettenring, J. Canonical analysis of several sets of variables. Biometrika 58, 433-451 (1971).
-
(1971)
Biometrika
, vol.58
, pp. 433-451
-
-
Kettenring, J.1
-
34
-
-
0036505017
-
Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data
-
Nielsen, A.A. Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data. IEEE Trans. Image Process. 11, 293-305 (2002).
-
(2002)
IEEE Trans. Image Process
, vol.11
, pp. 293-305
-
-
Nielsen, A.A.1
-
35
-
-
0000286376
-
Using dynamic time warping to find patterns in time series
-
Berndt, D. & Clifford, J. Using dynamic time warping to find patterns in time series. Work. Knowl. Knowl. Discov. Databases 398, 359-370 (1994).
-
(1994)
Work. Knowl. Knowl. Discov. Databases
, vol.398
, pp. 359-370
-
-
Berndt, D.1
Clifford, J.2
-
36
-
-
85040446434
-
Multiplexed droplet single-cell RNA-sequencing using natural genetic variation
-
Kang, H.M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89-94 (2018).
-
(2018)
Nat. Biotechnol
, vol.36
, pp. 89-94
-
-
Kang, H.M.1
-
37
-
-
85009113270
-
A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation
-
Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128, e20-e31 (2016).
-
(2016)
Blood
, vol.128
, pp. e20-e31
-
-
Nestorowa, S.1
-
38
-
-
84950290139
-
Transcriptional heterogeneity and lineage commitment in myeloid progenitors
-
Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663-1677 (2015).
-
(2015)
Cell
, vol.163
, pp. 1663-1677
-
-
Paul, F.1
-
39
-
-
20244387299
-
Identification of Flt3+ lympho-myeloid stem cells lacking erythromegakaryocytic potential a revised road map for adult blood lineage commitment
-
Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythromegakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121, 295-306 (2005).
-
(2005)
Cell
, vol.121
, pp. 295-306
-
-
Adolfsson, J.1
-
40
-
-
85046763324
-
Corrigendum: Nuclear RNA-seq of single neurons reveals molecular signatures of activation
-
Lacar, B. et al. Corrigendum: nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat. Commun. 8, 15047 (2017).
-
(2017)
Nat. Commun
, vol.8
, pp. 15047
-
-
Lacar, B.1
-
41
-
-
61449115971
-
CD56bright natural killer (NK) cells: An important NK cell subset
-
Poli, A. et al. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology 126, 458-465 (2009).
-
(2009)
Immunology
, vol.126
, pp. 458-465
-
-
Poli, A.1
-
42
-
-
84994641696
-
A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure
-
Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure. Cell Syst. 3, 346-360.e4 (2016).
-
(2016)
Cell Syst
, vol.3
, pp. 346-3464
-
-
Baron, M.1
-
43
-
-
43549105167
-
The unfolded protein response: A pathway that links insulin demand with-cell failure and diabetes
-
Scheuner, D. & Kaufman, R.J. The unfolded protein response: a pathway that links insulin demand with-cell failure and diabetes. Endocr. Rev. 29, 317-333 (2008).
-
(2008)
Endocr. Rev
, vol.29
, pp. 317-333
-
-
Scheuner, D.1
Kaufman, R.J.2
-
44
-
-
84940778813
-
GOplot: An R package for visually combining expression data with functional analysis
-
Walter, W., Sánchez-Cabo, F. & Ricote, M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 31, 2912-2914 (2015).
-
(2015)
Bioinformatics
, vol.31
, pp. 2912-2914
-
-
Walter, W.1
Sánchez-Cabo, F.2
Ricote, M.3
-
45
-
-
1642458354
-
Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response
-
Jiang, H.-Y. et al. Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol. Cell. Biol. 24, 1365-1377 (2004).
-
(2004)
Mol. Cell. Biol
, vol.24
, pp. 1365-1377
-
-
Jiang, H.-Y.1
-
46
-
-
84872194492
-
Endoplasmic reticulum stress, pancreatic-cell degeneration, and diabetes Cold Spring Harb
-
Papa, F.R. Endoplasmic reticulum stress, pancreatic-cell degeneration, and diabetes. Cold Spring Harb. Perspect. Med. 2, a007666 (2012).
-
(2012)
Perspect. Med
, vol.2
, pp. a007666
-
-
Papa, F.R.1
-
47
-
-
84955439663
-
A survey of best practices for RNA-seq data analysis
-
Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13 (2016).
-
(2016)
Genome Biol
, vol.17
, pp. 13
-
-
Conesa, A.1
-
48
-
-
33845432928
-
Adjusting batch effects in microarray expression data using empirical Bayes methods
-
Johnson, W.E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118-127 (2007).
-
(2007)
Biostatistics
, vol.8
, pp. 118-127
-
-
Johnson, W.E.1
Li, C.2
Rabinovic, A.3
-
49
-
-
84926507971
-
Limma powers differential expression analyses for RNAsequencing and microarray studies
-
Ritchie, M.E. et al. limma powers differential expression analyses for RNAsequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
-
(2015)
Nucleic Acids Res
, vol.43
, pp. e47
-
-
Ritchie, M.E.1
-
50
-
-
84976276942
-
Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain
-
Lake, B.B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352, 1586-1590 (2016).
-
(2016)
Science
, vol.352
, pp. 1586-1590
-
-
Lake, B.B.1
-
51
-
-
85013200683
-
Comparative analysis of single-cell RNA sequencing methods
-
Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631-643.e4 (2017).
-
(2017)
Mol. Cell
, vol.65
, pp. 631-6314
-
-
Ziegenhain, C.1
-
52
-
-
85014524493
-
Power analysis of single-cell RNA-sequencing experiments
-
Svensson, V. et al. Power analysis of single-cell RNA-sequencing experiments. Nat. Methods 14, 381-387 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 381-387
-
-
Svensson, V.1
-
53
-
-
84908338722
-
Genome-wide RNA tomography in the zebrafish embryo
-
Junker, J.P. et al. Genome-wide RNA tomography in the zebrafish embryo. Cell 159, 662-675 (2014).
-
(2014)
Cell
, vol.159
, pp. 662-675
-
-
Junker, J.P.1
-
54
-
-
84897090228
-
Highly multiplexed subcellular RNA sequencing in situ
-
Lee, J.H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360-1363 (2014).
-
(2014)
Science
, vol.343
, pp. 1360-1363
-
-
Lee, J.H.1
-
55
-
-
84976875145
-
Visualization and analysis of gene expression in tissue sections by spatial transcriptomics
-
Sthl, P.L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78-82 (2016).
-
(2016)
Science
, vol.353
, pp. 78-82
-
-
Sthl, P.L.1
-
56
-
-
84978761773
-
Resolving early mesoderm diversification through single-cell expression profiling
-
Scialdone, A. et al. Resolving early mesoderm diversification through single-cell expression profiling. Nature 535, 289-293 (2016).
-
(2016)
Nature
, vol.535
, pp. 289-293
-
-
Scialdone, A.1
-
57
-
-
84963614956
-
Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq
-
Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189-196 (2016).
-
(2016)
Science
, vol.352
, pp. 189-196
-
-
Tirosh, I.1
-
58
-
-
84958058589
-
Classification of low quality cells from single-cell RNA-seq data
-
Ilicic, T. et al. Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 17, 29 (2016).
-
(2016)
Genome Biol
, vol.17
, pp. 29
-
-
Ilicic, T.1
-
59
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
Dudoit, S., Fridlyans, J. & Speed, T.P. Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97, 77-87 (2002).
-
(2002)
J. Am. Stat. Assoc
, vol.97
, pp. 77-87
-
-
Dudoit, S.1
Fridlyans, J.2
Speed, T.P.3
-
60
-
-
2342533421
-
Class prediction by nearest shrunken centroids, with applications to DNA microarrays
-
Tibshirani, R., Hastie, T., Narasimhan, B. & Chu, G. Class prediction by nearest shrunken centroids, with applications to DNA microarrays. Stat. Sci. 18, 104-117 (2003).
-
(2003)
Stat. Sci
, vol.18
, pp. 104-117
-
-
Tibshirani, R.1
Hastie, T.2
Narasimhan, B.3
Chu, G.4
-
61
-
-
33244482488
-
Augmented implicitly restarted lanczos bidiagonalization methods
-
Baglama, J. & Reichel, L. Augmented implicitly restarted lanczos bidiagonalization methods. SIAM J. Sci. Comput. (2005).
-
(2005)
SIAM J. Sci. Comput
-
-
Baglama, J.1
Reichel, L.2
-
62
-
-
70349448250
-
Computing and visualizing dynamic time warping alignments in R: The dtw package
-
Giorgino, T. Computing and visualizing dynamic time warping alignments in R: the dtw package. J. Stat. Softw. 31, 1-24 (2009).
-
(2009)
J. Stat. Softw
, vol.31
, pp. 1-24
-
-
Giorgino, T.1
-
63
-
-
84888352905
-
A smart local moving algorithm for large-scale modularity-based community detection
-
Waltman, L. & Van Eck, N.J. A smart local moving algorithm for large-scale modularity-based community detection. Eur. Phys. J. B 86, 1-33 (2013).
-
(2013)
Eur. Phys. J. B
, vol.86
, pp. 1-33
-
-
Waltman, L.1
Van Eck, N.J.2
-
64
-
-
84998524866
-
Accelerating t-SNE using tree-based algorithms
-
Van Der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 1-21 (2014).
-
(2014)
J. Mach. Learn. Res
, vol.15
, pp. 1-21
-
-
Van Der Maaten, L.1
-
67
-
-
85046824981
-
-
princurve: Fits a Principal Curve in Arbitrary Dimension
-
S original by Trevor Hastie R port by Andreas Weingessel. princurve: Fits a Principal Curve in Arbitrary Dimension. https://cran.r-project.org/package=princurve (2013).
-
(2013)
Soriginal by Trevor Hastie R Port by Andreas Weingessel
-
-
-
68
-
-
84861414639
-
Comprehensive literature review and statistical considerations for microarray meta-analysis
-
Tseng, G.C., Ghosh, D. & Feingold, E. Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Res. 40, 3785-3799 (2012).
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 3785-3799
-
-
Tseng, G.C.1
Ghosh, D.2
Feingold, E.3
-
69
-
-
84987663170
-
Enrichr: A comprehensive gene set enrichment analysis web server 2016 update
-
Kuleshov, M.V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90-W97 (2016).
-
(2016)
Nucleic Acids Res
, vol.44
, pp. W90-W97
-
-
Kuleshov, M.V.1
-
70
-
-
85044322264
-
Developmental diversification of cortical inhibitory interneurons
-
Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons. Nature 555, 457-462 (2018).
-
(2018)
Nature
, vol.555
, pp. 457-462
-
-
Mayer, C.1
-
71
-
-
84891677425
-
Full-length RNA-seq from single cells using Smart-seq2
-
Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171-181 (2014).
-
(2014)
Nat. Protoc
, vol.9
, pp. 171-181
-
-
Picelli, S.1
|