메뉴 건너뛰기




Volumn 36, Issue 5, 2018, Pages 411-420

Integrating single-cell transcriptomic data across different conditions, technologies, and species

Author keywords

[No Author keywords available]

Indexed keywords

CELLS; CYTOLOGY; POPULATION STATISTICS;

EID: 85046298440     PISSN: 10870156     EISSN: 15461696     Source Type: Journal    
DOI: 10.1038/nbt.4096     Document Type: Article
Times cited : (7178)

References (71)
  • 1
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • Klein, A.M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201 (2015).
    • (2015) Cell , vol.161 , pp. 1187-1201
    • Klein, A.M.1
  • 2
    • 85010710363 scopus 로고    scopus 로고
    • Single-cell barcoding and sequencing using droplet microfluidics
    • Zilionis, R. et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat. Protoc. 12, 44-73 (2017).
    • (2017) Nat. Protoc , vol.12 , pp. 44-73
    • Zilionis, R.1
  • 3
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • Macosko, E.Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214 (2015).
    • (2015) Cell , vol.161 , pp. 1202-1214
    • Macosko, E.Z.1
  • 4
    • 85009446777 scopus 로고    scopus 로고
    • Massively parallel digital transcriptional profiling of single cells
    • Zheng, G.X.Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
    • (2017) Nat. Commun , vol.8 , pp. 14049
    • Zheng, G.X.Y.1
  • 5
    • 84983741021 scopus 로고    scopus 로고
    • Comprehensive classification of retinal bipolar neurons by singlecell transcriptomics
    • Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by singlecell transcriptomics. Cell 166, 1308-1323.e30 (2016).
    • (2016) Cell , vol.166 , pp. 1308-1323e30
    • Shekhar, K.1
  • 6
    • 85018582872 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
    • Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).
    • (2017) Science , vol.356 , pp. eaah4573
    • Villani, A.-C.1
  • 7
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386 (2014).
    • (2014) Nat. Biotechnol , vol.32 , pp. 381-386
    • Trapnell, C.1
  • 8
    • 84969505817 scopus 로고    scopus 로고
    • SLICER: Inferring branched, nonlinear cellular trajectories from single cell RNA-seq data
    • Welch, J.D., Hartemink, A.J. & Prins, J.F. SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data. Genome Biol. 17, 106 (2016).
    • (2016) Genome Biol , vol.17 , pp. 106
    • Welch, J.D.1    Hartemink, A.J.2    Prins, J.F.3
  • 10
    • 84929166604 scopus 로고    scopus 로고
    • High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin
    • Achim, K. et al. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat. Biotechnol. 33, 503-509 (2015).
    • (2015) Nat. Biotechnol , vol.33 , pp. 503-509
    • Achim, K.1
  • 11
    • 84997343111 scopus 로고    scopus 로고
    • Single-cell resolution of temporal gene expression during heart development
    • DeLaughter, D.M. et al. Single-cell resolution of temporal gene expression during heart development. Dev. Cell 39, 480-490 (2016).
    • (2016) Dev. Cell , vol.39 , pp. 480-490
    • DeLaughter, D.M.1
  • 12
    • 84899574465 scopus 로고    scopus 로고
    • Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
    • Bendall, S.C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714-725 (2014).
    • (2014) Cell , vol.157 , pp. 714-725
    • Bendall, S.C.1
  • 13
    • 84942163495 scopus 로고    scopus 로고
    • Defining the three cell lineages of the human blastocyst by single-cell RNA-seq
    • Blakeley, P. et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142, 3613 (2015).
    • (2015) Development , vol.142 , pp. 3613
    • Blakeley, P.1
  • 14
    • 84928706022 scopus 로고    scopus 로고
    • Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex
    • Johnson, M.B. et al. Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex. Nat. Neurosci. 18, 1-30 (2015).
    • (2015) Nat. Neurosci , vol.18 , pp. 1-30
    • Johnson, M.B.1
  • 15
    • 85040459896 scopus 로고    scopus 로고
    • The human cell atlas
    • Regev, A. et al. The Human Cell Atlas. Elife 6, 1-30 (2017).
    • (2017) Elife , vol.6 , pp. 1-30
    • Regev, A.1
  • 16
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko, P.V., Silberstein, L. & Scadden, D.T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740-742 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 17
    • 84951574149 scopus 로고    scopus 로고
    • MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
    • Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).
    • (2015) Genome Biol , vol.16 , pp. 278
    • Finak, G.1
  • 18
    • 85014528252 scopus 로고    scopus 로고
    • Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning
    • Wang, B., Zhu, J., Pierson, E., Ramazzotti, D. & Batzoglou, S. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods 14, 414-416 (2017).
    • (2017) Nat Methods , vol.14 , pp. 414-416
    • Wang, B.1    Zhu, J.2    Pierson, E.3    Ramazzotti, D.4    Batzoglou, S.5
  • 19
    • 85016121177 scopus 로고    scopus 로고
    • SC3: Consensus clustering of single-cell RNA-seq data
    • Kiselev, V.Y. et al. SC3: consensus clustering of single-cell RNA-seq data. Nat. Methods 14, 483-486 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 483-486
    • Kiselev, V.Y.1
  • 20
    • 85016502564 scopus 로고    scopus 로고
    • CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
    • Lin, P., Troup, M. & Ho, J.W.K. CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biol. 18, 59 (2017).
    • (2017) Genome Biol , vol.18 , pp. 59
    • Lin, P.1    Troup, M.2    Ho, J.W.K.3
  • 21
    • 84992108405 scopus 로고    scopus 로고
    • Dirichlet process mixture model for correcting technical variation in single-cell gene expression data
    • Prabhakaran, S., Azizi, E. & Pe'er, D. Dirichlet process mixture model for correcting technical variation in single-cell gene expression data. Proc. 33rd Int. Conf. Mach. Learn. 48, 1070-1079 (2016).
    • (2016) Proc. 33rd Int. Conf. Mach. Learn , vol.48 , pp. 1070-1079
    • Prabhakaran, S.1    Azizi, E.2    Pe'Er, D.3
  • 22
    • 84969856092 scopus 로고    scopus 로고
    • Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts
    • Ntranos, V., Kamath, G.M., Zhang, J.M., Pachter, L. & Tse, D.N. Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts. Genome Biol. 17, 112 (2016).
    • (2016) Genome Biol , vol.17 , pp. 112
    • Ntranos, V.1    Kamath, G.M.2    Zhang, J.M.3    Pachter, L.4    Tse, D.N.5
  • 23
    • 84931072284 scopus 로고    scopus 로고
    • Identification of cell types from single-cell transcriptomes using a novel clustering method
    • Xu, C. & Su, Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 31, 1974-1980 (2015).
    • (2015) Bioinformatics , vol.31 , pp. 1974-1980
    • Xu, C.1    Su, Z.2
  • 25
    • 85046740686 scopus 로고    scopus 로고
    • (eds Y Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I. & Culotta, A.) (Neural Information Processing Systems Foundation, Inc
    • Zhou, F. & Torre, F. in Advances in Neural Information Processing Systems 22; NIPS 2009 (eds. Y. Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I. & Culotta, A.) https://papers.nips.cc/paper/3728-canonical-time-warping-foralignment-of-human-behavior (Neural Information Processing Systems Foundation, Inc., 2009).
    • (2009) Advances in Neural Information Processing Systems 22; NIPS 2009
    • Zhou, F.1    Torre, F.2
  • 27
    • 77949487523 scopus 로고    scopus 로고
    • Super-resolution of human face image using canonical correlation analysis
    • Huang, H., He, H., Fan, X. & Zhang, J. Super-resolution of human face image using canonical correlation analysis. Pattern Recognit. 43, 2532-2543 (2010).
    • (2010) Pattern Recognit , vol.43 , pp. 2532-2543
    • Huang, H.1    He, H.2    Fan, X.3    Zhang, J.4
  • 28
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • Hotelling, H. Relations between two sets of variates. Biometrika 28, 321-377 (1936).
    • (1936) Biometrika , vol.28 , pp. 321-377
    • Hotelling, H.1
  • 29
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • Hardoon, D.R., Szedmak, S. & Shawe-Taylor, J. Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 16, 2639-2664 (2004).
    • (2004) Neural Comput , vol.16 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 30
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • Witten, D.M., Tibshirani, R. & Hastie, T. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10, 515-534 (2009).
    • (2009) Biostatistics , vol.10 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.2    Hastie, T.3
  • 31
    • 60849113429 scopus 로고    scopus 로고
    • Sparse canonical methods for biological data integration: Application to a cross-platform study
    • Lê Cao, K.-A., Martin, P.G., Robert-Granié, C. & Besse, P. Sparse canonical methods for biological data integration: application to a cross-platform study. BMC Bioinformatics 10, 34 (2009).
    • (2009) BMC Bioinformatics , vol.10 , pp. 34
    • Lê Cao, K.-A.1    Martin, P.G.2    Robert-Granié, C.3    Besse, P.4
  • 32
    • 38849098283 scopus 로고    scopus 로고
    • Quantifying the association between gene expressions and DNA-markers by penalized canonical correlation analysis
    • Waaijenborg, S., Verselewel de Witt Hamer, P.C. & Zwinderman, A.H. Quantifying the association between gene expressions and DNA-markers by penalized canonical correlation analysis. Stat. Appl. Genet. Mol. Biol. 7, e3 (2008).
    • (2008) Stat. Appl. Genet. Mol. Biol , vol.7 , pp. e3
    • Waaijenborg, S.1    De Witt Hamer, V.P.C.2    Zwinderman, A.H.3
  • 33
    • 0000020007 scopus 로고
    • Canonical analysis of several sets of variables
    • Kettenring, J. Canonical analysis of several sets of variables. Biometrika 58, 433-451 (1971).
    • (1971) Biometrika , vol.58 , pp. 433-451
    • Kettenring, J.1
  • 34
    • 0036505017 scopus 로고    scopus 로고
    • Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data
    • Nielsen, A.A. Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data. IEEE Trans. Image Process. 11, 293-305 (2002).
    • (2002) IEEE Trans. Image Process , vol.11 , pp. 293-305
    • Nielsen, A.A.1
  • 35
    • 0000286376 scopus 로고
    • Using dynamic time warping to find patterns in time series
    • Berndt, D. & Clifford, J. Using dynamic time warping to find patterns in time series. Work. Knowl. Knowl. Discov. Databases 398, 359-370 (1994).
    • (1994) Work. Knowl. Knowl. Discov. Databases , vol.398 , pp. 359-370
    • Berndt, D.1    Clifford, J.2
  • 36
    • 85040446434 scopus 로고    scopus 로고
    • Multiplexed droplet single-cell RNA-sequencing using natural genetic variation
    • Kang, H.M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89-94 (2018).
    • (2018) Nat. Biotechnol , vol.36 , pp. 89-94
    • Kang, H.M.1
  • 37
    • 85009113270 scopus 로고    scopus 로고
    • A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation
    • Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128, e20-e31 (2016).
    • (2016) Blood , vol.128 , pp. e20-e31
    • Nestorowa, S.1
  • 38
    • 84950290139 scopus 로고    scopus 로고
    • Transcriptional heterogeneity and lineage commitment in myeloid progenitors
    • Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663-1677 (2015).
    • (2015) Cell , vol.163 , pp. 1663-1677
    • Paul, F.1
  • 39
    • 20244387299 scopus 로고    scopus 로고
    • Identification of Flt3+ lympho-myeloid stem cells lacking erythromegakaryocytic potential a revised road map for adult blood lineage commitment
    • Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythromegakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121, 295-306 (2005).
    • (2005) Cell , vol.121 , pp. 295-306
    • Adolfsson, J.1
  • 40
    • 85046763324 scopus 로고    scopus 로고
    • Corrigendum: Nuclear RNA-seq of single neurons reveals molecular signatures of activation
    • Lacar, B. et al. Corrigendum: nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat. Commun. 8, 15047 (2017).
    • (2017) Nat. Commun , vol.8 , pp. 15047
    • Lacar, B.1
  • 41
    • 61449115971 scopus 로고    scopus 로고
    • CD56bright natural killer (NK) cells: An important NK cell subset
    • Poli, A. et al. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology 126, 458-465 (2009).
    • (2009) Immunology , vol.126 , pp. 458-465
    • Poli, A.1
  • 42
    • 84994641696 scopus 로고    scopus 로고
    • A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure
    • Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure. Cell Syst. 3, 346-360.e4 (2016).
    • (2016) Cell Syst , vol.3 , pp. 346-3464
    • Baron, M.1
  • 43
    • 43549105167 scopus 로고    scopus 로고
    • The unfolded protein response: A pathway that links insulin demand with-cell failure and diabetes
    • Scheuner, D. & Kaufman, R.J. The unfolded protein response: a pathway that links insulin demand with-cell failure and diabetes. Endocr. Rev. 29, 317-333 (2008).
    • (2008) Endocr. Rev , vol.29 , pp. 317-333
    • Scheuner, D.1    Kaufman, R.J.2
  • 44
    • 84940778813 scopus 로고    scopus 로고
    • GOplot: An R package for visually combining expression data with functional analysis
    • Walter, W., Sánchez-Cabo, F. & Ricote, M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 31, 2912-2914 (2015).
    • (2015) Bioinformatics , vol.31 , pp. 2912-2914
    • Walter, W.1    Sánchez-Cabo, F.2    Ricote, M.3
  • 45
    • 1642458354 scopus 로고    scopus 로고
    • Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response
    • Jiang, H.-Y. et al. Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol. Cell. Biol. 24, 1365-1377 (2004).
    • (2004) Mol. Cell. Biol , vol.24 , pp. 1365-1377
    • Jiang, H.-Y.1
  • 46
    • 84872194492 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress, pancreatic-cell degeneration, and diabetes Cold Spring Harb
    • Papa, F.R. Endoplasmic reticulum stress, pancreatic-cell degeneration, and diabetes. Cold Spring Harb. Perspect. Med. 2, a007666 (2012).
    • (2012) Perspect. Med , vol.2 , pp. a007666
    • Papa, F.R.1
  • 47
    • 84955439663 scopus 로고    scopus 로고
    • A survey of best practices for RNA-seq data analysis
    • Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13 (2016).
    • (2016) Genome Biol , vol.17 , pp. 13
    • Conesa, A.1
  • 48
    • 33845432928 scopus 로고    scopus 로고
    • Adjusting batch effects in microarray expression data using empirical Bayes methods
    • Johnson, W.E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118-127 (2007).
    • (2007) Biostatistics , vol.8 , pp. 118-127
    • Johnson, W.E.1    Li, C.2    Rabinovic, A.3
  • 49
    • 84926507971 scopus 로고    scopus 로고
    • Limma powers differential expression analyses for RNAsequencing and microarray studies
    • Ritchie, M.E. et al. limma powers differential expression analyses for RNAsequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
    • (2015) Nucleic Acids Res , vol.43 , pp. e47
    • Ritchie, M.E.1
  • 50
    • 84976276942 scopus 로고    scopus 로고
    • Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain
    • Lake, B.B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352, 1586-1590 (2016).
    • (2016) Science , vol.352 , pp. 1586-1590
    • Lake, B.B.1
  • 51
    • 85013200683 scopus 로고    scopus 로고
    • Comparative analysis of single-cell RNA sequencing methods
    • Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631-643.e4 (2017).
    • (2017) Mol. Cell , vol.65 , pp. 631-6314
    • Ziegenhain, C.1
  • 52
    • 85014524493 scopus 로고    scopus 로고
    • Power analysis of single-cell RNA-sequencing experiments
    • Svensson, V. et al. Power analysis of single-cell RNA-sequencing experiments. Nat. Methods 14, 381-387 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 381-387
    • Svensson, V.1
  • 53
    • 84908338722 scopus 로고    scopus 로고
    • Genome-wide RNA tomography in the zebrafish embryo
    • Junker, J.P. et al. Genome-wide RNA tomography in the zebrafish embryo. Cell 159, 662-675 (2014).
    • (2014) Cell , vol.159 , pp. 662-675
    • Junker, J.P.1
  • 54
    • 84897090228 scopus 로고    scopus 로고
    • Highly multiplexed subcellular RNA sequencing in situ
    • Lee, J.H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360-1363 (2014).
    • (2014) Science , vol.343 , pp. 1360-1363
    • Lee, J.H.1
  • 55
    • 84976875145 scopus 로고    scopus 로고
    • Visualization and analysis of gene expression in tissue sections by spatial transcriptomics
    • Sthl, P.L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78-82 (2016).
    • (2016) Science , vol.353 , pp. 78-82
    • Sthl, P.L.1
  • 56
    • 84978761773 scopus 로고    scopus 로고
    • Resolving early mesoderm diversification through single-cell expression profiling
    • Scialdone, A. et al. Resolving early mesoderm diversification through single-cell expression profiling. Nature 535, 289-293 (2016).
    • (2016) Nature , vol.535 , pp. 289-293
    • Scialdone, A.1
  • 57
    • 84963614956 scopus 로고    scopus 로고
    • Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq
    • Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189-196 (2016).
    • (2016) Science , vol.352 , pp. 189-196
    • Tirosh, I.1
  • 58
    • 84958058589 scopus 로고    scopus 로고
    • Classification of low quality cells from single-cell RNA-seq data
    • Ilicic, T. et al. Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 17, 29 (2016).
    • (2016) Genome Biol , vol.17 , pp. 29
    • Ilicic, T.1
  • 59
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit, S., Fridlyans, J. & Speed, T.P. Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97, 77-87 (2002).
    • (2002) J. Am. Stat. Assoc , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyans, J.2    Speed, T.P.3
  • 60
    • 2342533421 scopus 로고    scopus 로고
    • Class prediction by nearest shrunken centroids, with applications to DNA microarrays
    • Tibshirani, R., Hastie, T., Narasimhan, B. & Chu, G. Class prediction by nearest shrunken centroids, with applications to DNA microarrays. Stat. Sci. 18, 104-117 (2003).
    • (2003) Stat. Sci , vol.18 , pp. 104-117
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3    Chu, G.4
  • 61
    • 33244482488 scopus 로고    scopus 로고
    • Augmented implicitly restarted lanczos bidiagonalization methods
    • Baglama, J. & Reichel, L. Augmented implicitly restarted lanczos bidiagonalization methods. SIAM J. Sci. Comput. (2005).
    • (2005) SIAM J. Sci. Comput
    • Baglama, J.1    Reichel, L.2
  • 62
    • 70349448250 scopus 로고    scopus 로고
    • Computing and visualizing dynamic time warping alignments in R: The dtw package
    • Giorgino, T. Computing and visualizing dynamic time warping alignments in R: the dtw package. J. Stat. Softw. 31, 1-24 (2009).
    • (2009) J. Stat. Softw , vol.31 , pp. 1-24
    • Giorgino, T.1
  • 63
    • 84888352905 scopus 로고    scopus 로고
    • A smart local moving algorithm for large-scale modularity-based community detection
    • Waltman, L. & Van Eck, N.J. A smart local moving algorithm for large-scale modularity-based community detection. Eur. Phys. J. B 86, 1-33 (2013).
    • (2013) Eur. Phys. J. B , vol.86 , pp. 1-33
    • Waltman, L.1    Van Eck, N.J.2
  • 64
    • 84998524866 scopus 로고    scopus 로고
    • Accelerating t-SNE using tree-based algorithms
    • Van Der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 1-21 (2014).
    • (2014) J. Mach. Learn. Res , vol.15 , pp. 1-21
    • Van Der Maaten, L.1
  • 67
    • 85046824981 scopus 로고    scopus 로고
    • princurve: Fits a Principal Curve in Arbitrary Dimension
    • S original by Trevor Hastie R port by Andreas Weingessel. princurve: Fits a Principal Curve in Arbitrary Dimension. https://cran.r-project.org/package=princurve (2013).
    • (2013) Soriginal by Trevor Hastie R Port by Andreas Weingessel
  • 68
    • 84861414639 scopus 로고    scopus 로고
    • Comprehensive literature review and statistical considerations for microarray meta-analysis
    • Tseng, G.C., Ghosh, D. & Feingold, E. Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Res. 40, 3785-3799 (2012).
    • (2012) Nucleic Acids Res , vol.40 , pp. 3785-3799
    • Tseng, G.C.1    Ghosh, D.2    Feingold, E.3
  • 69
    • 84987663170 scopus 로고    scopus 로고
    • Enrichr: A comprehensive gene set enrichment analysis web server 2016 update
    • Kuleshov, M.V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90-W97 (2016).
    • (2016) Nucleic Acids Res , vol.44 , pp. W90-W97
    • Kuleshov, M.V.1
  • 70
    • 85044322264 scopus 로고    scopus 로고
    • Developmental diversification of cortical inhibitory interneurons
    • Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons. Nature 555, 457-462 (2018).
    • (2018) Nature , vol.555 , pp. 457-462
    • Mayer, C.1
  • 71
    • 84891677425 scopus 로고    scopus 로고
    • Full-length RNA-seq from single cells using Smart-seq2
    • Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171-181 (2014).
    • (2014) Nat. Protoc , vol.9 , pp. 171-181
    • Picelli, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.