메뉴 건너뛰기




Volumn 34, Issue 10, 2018, Pages 790-805

Enter the Matrix: Factorization Uncovers Knowledge from Omics

(12)  Stein O'Brien, Genevieve L a,b   Arora, Raman c   Culhane, Aedin C d,e   Favorov, Alexander V a,f   Garmire, Lana X g   Greene, Casey S h,i   Goff, Loyal A b   Li, Yifeng j   Ngom, Aloune k   Ochs, Michael F l   Xu, Yanxun c   Fertig, Elana J a  


Author keywords

deconvolution; dimension reduction; genomics; matrix factorization; single cell; unsupervised learning

Indexed keywords

AUTOPSY; BRAIN REGION; CLONAL VARIATION; DECOMPOSITION; GENE EXPRESSION; GENETIC BACKGROUND; GENOTYPE; INDEPENDENT COMPONENT ANALYSIS; MATRIX FACTORIZATION; METHODOLOGY; NON NEGATIVE MATRIX FACTORIZATION; OMICS; PHENOTYPE; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; REVIEW; WORKFLOW; ALGORITHM; GENOMICS; HUMAN; PROTEOMICS; STATISTICAL ANALYSIS; STATISTICS AND NUMERICAL DATA; SYSTEMS BIOLOGY;

EID: 85051770269     PISSN: 01689525     EISSN: 13624555     Source Type: Journal    
DOI: 10.1016/j.tig.2018.07.003     Document Type: Review
Times cited : (164)

References (127)
  • 1
    • 62149144693 scopus 로고    scopus 로고
    • Beyond the data deluge
    • Bell, G., et al. Beyond the data deluge. Science 323 (2009), 1297–1298.
    • (2009) Science , vol.323 , pp. 1297-1298
    • Bell, G.1
  • 2
    • 84866740707 scopus 로고    scopus 로고
    • Data deluge and the human microbiome project
    • Sagoff, M., Data deluge and the human microbiome project. Issues Sci. Technol., 28, 2012 http://issues.org/28-4/sagoff-3/.
    • (2012) Issues Sci. Technol. , vol.28
    • Sagoff, M.1
  • 3
    • 33750808399 scopus 로고    scopus 로고
    • Discovery of principles of nature from mathematical modeling of DNA microarray data
    • Alter, O., Discovery of principles of nature from mathematical modeling of DNA microarray data. Proc. Natl. Acad. Sci. U. S. A. 103 (2006), 16063–16064.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 16063-16064
    • Alter, O.1
  • 4
    • 84921554067 scopus 로고    scopus 로고
    • Introns and gene expression: cellular constraints, transcriptional regulation, and evolutionary consequences
    • Heyn, P., et al. Introns and gene expression: cellular constraints, transcriptional regulation, and evolutionary consequences. Bioessays 37 (2015), 148–154.
    • (2015) Bioessays , vol.37 , pp. 148-154
    • Heyn, P.1
  • 6
    • 84874242975 scopus 로고    scopus 로고
    • Multiple factor analysis: principal component analysis for multitable and multiblock data sets
    • Abdi, H., et al. Multiple factor analysis: principal component analysis for multitable and multiblock data sets. WIREs Comp. Stat. 5 (2013), 149–179.
    • (2013) WIREs Comp. Stat. , vol.5 , pp. 149-179
    • Abdi, H.1
  • 7
    • 84991380039 scopus 로고    scopus 로고
    • Dimension reduction techniques for the integrative analysis of multi-omics data
    • Meng, C., et al. Dimension reduction techniques for the integrative analysis of multi-omics data. Brief. Bioinform. 17 (2016), 628–641.
    • (2016) Brief. Bioinform. , vol.17 , pp. 628-641
    • Meng, C.1
  • 8
    • 85049474548 scopus 로고    scopus 로고
    • A review on machine learning principles for multi-view biological data integration
    • Li, Y., et al. A review on machine learning principles for multi-view biological data integration. Brief. Bioinform. 19 (2016), 325–340.
    • (2016) Brief. Bioinform. , vol.19 , pp. 325-340
    • Li, Y.1
  • 9
    • 48249151183 scopus 로고    scopus 로고
    • Nonnegative matrix factorization: an analytical and interpretive tool in computational biology
    • Devarajan, K., Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput. Biol., 4, 2008, e1000029.
    • (2008) PLoS Comput. Biol. , vol.4
    • Devarajan, K.1
  • 10
    • 84926507971 scopus 로고    scopus 로고
    • limma powers differential expression analyses for RNA-sequencing and microarray studies
    • Ritchie, M.E., et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 43, 2015, e47.
    • (2015) Nucleic Acids Res. , vol.43 , pp. e47
    • Ritchie, M.E.1
  • 11
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders, S., Huber, W., Differential expression analysis for sequence count data. Genome Biol., 11, 2010, R106.
    • (2010) Genome Biol. , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 12
    • 85051789331 scopus 로고    scopus 로고
    • BayCount: a Bayesian decomposition method for inferring tumor heterogeneity using RNA-Seq counts
    • Published online November 13, 2017
    • Xie, F., et al. BayCount: a Bayesian decomposition method for inferring tumor heterogeneity using RNA-Seq counts. bioRxiv, 2017, 10.1101/218511 Published online November 13, 2017.
    • (2017) bioRxiv
    • Xie, F.1
  • 13
    • 84882837534 scopus 로고    scopus 로고
    • Signatures of mutational processes in human cancer
    • Alexandrov, L.B., et al. Signatures of mutational processes in human cancer. Nature 500 (2013), 415–421.
    • (2013) Nature , vol.500 , pp. 415-421
    • Alexandrov, L.B.1
  • 14
    • 84994470617 scopus 로고    scopus 로고
    • Mutational signatures associated with tobacco smoking in human cancer
    • Alexandrov, L.B., et al. Mutational signatures associated with tobacco smoking in human cancer. Science 354 (2016), 618–622.
    • (2016) Science , vol.354 , pp. 618-622
    • Alexandrov, L.B.1
  • 15
    • 33645127063 scopus 로고    scopus 로고
    • A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans
    • Favorov, A.V., et al. A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans. Genetics 171 (2005), 2113–2121.
    • (2005) Genetics , vol.171 , pp. 2113-2121
    • Favorov, A.V.1
  • 16
    • 85024483286 scopus 로고    scopus 로고
    • Improved data-driven likelihood factorizations for transcript abundance estimation
    • Zakeri, M., et al. Improved data-driven likelihood factorizations for transcript abundance estimation. Bioinformatics 33 (2017), i142–i151.
    • (2017) Bioinformatics , vol.33 , pp. i142-i151
    • Zakeri, M.1
  • 17
    • 84894248993 scopus 로고    scopus 로고
    • SVD identifies transcript length distribution functions from DNA microarray data and reveals evolutionary forces globally affecting GBM metabolism
    • Bertagnolli, N.M., et al. SVD identifies transcript length distribution functions from DNA microarray data and reveals evolutionary forces globally affecting GBM metabolism. PLoS One, 8, 2013, e78913.
    • (2013) PLoS One , vol.8
    • Bertagnolli, N.M.1
  • 18
    • 85051804034 scopus 로고    scopus 로고
    • Specter: linear deconvolution as a new paradigm for targeted analysis of data-independent acquisition mass spectrometry proteomics
    • Published online September 8, 2017
    • Peckner, R., et al. Specter: linear deconvolution as a new paradigm for targeted analysis of data-independent acquisition mass spectrometry proteomics. bioRxiv, 2017, 10.1101/152744 Published online September 8, 2017.
    • (2017) bioRxiv
    • Peckner, R.1
  • 19
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • Yeung, K.Y., et al. Model-based clustering and data transformations for gene expression data. Bioinformatics 17 (2001), 977–987.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1
  • 20
    • 13844276694 scopus 로고    scopus 로고
    • Cluster analysis for gene expression data: a survey
    • Jiang, D., et al. Cluster analysis for gene expression data: a survey. IEEE Trans. Knowl. Data Eng. 16 (2004), 1370–1386.
    • (2004) IEEE Trans. Knowl. Data Eng. , vol.16 , pp. 1370-1386
    • Jiang, D.1
  • 21
    • 0035224389 scopus 로고    scopus 로고
    • Separation of samples into their constituents using gene expression data
    • Venet, D., et al. Separation of samples into their constituents using gene expression data. Bioinformatics 17 (2001), S279–S287.
    • (2001) Bioinformatics , vol.17 , pp. S279-S287
    • Venet, D.1
  • 22
    • 67749112023 scopus 로고    scopus 로고
    • Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus
    • Abbas, A.R., et al. Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PLoS One, 4, 2009, e6098.
    • (2009) PLoS One , vol.4
    • Abbas, A.R.1
  • 23
    • 77957782844 scopus 로고    scopus 로고
    • Probabilistic analysis of gene expression measurements from heterogeneous tissues
    • Erkkilä T., et al. Probabilistic analysis of gene expression measurements from heterogeneous tissues. Bioinformatics 26 (2010), 2571–2577.
    • (2010) Bioinformatics , vol.26 , pp. 2571-2577
    • Erkkilä, T.1
  • 24
    • 79959362223 scopus 로고    scopus 로고
    • Asymptotic conditional singular value decomposition for high-dimensional genomic data
    • Leek, J.T., Asymptotic conditional singular value decomposition for high-dimensional genomic data. Biometrics 67 (2011), 344–352.
    • (2011) Biometrics , vol.67 , pp. 344-352
    • Leek, J.T.1
  • 26
    • 84991380039 scopus 로고    scopus 로고
    • Dimension reduction techniques for the integrative analysis of multi-omics data
    • Meng, C., et al. Dimension reduction techniques for the integrative analysis of multi-omics data. Brief. Bioinform. 17 (2016), 628–641.
    • (2016) Brief. Bioinform. , vol.17 , pp. 628-641
    • Meng, C.1
  • 27
    • 34547198396 scopus 로고    scopus 로고
    • Algorithms and applications for approximate nonnegative matrix factorization
    • Berry, M.W., et al. Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 52 (2007), 155–173.
    • (2007) Comput. Stat. Data Anal. , vol.52 , pp. 155-173
    • Berry, M.W.1
  • 28
    • 84897584251 scopus 로고    scopus 로고
    • Nonnegative matrix factorization: a comprehensive review
    • Wang, Y.-X., Zhang, Y.-J., Nonnegative matrix factorization: a comprehensive review. IEEE Trans. Knowl. Data Eng. 25 (2013), 1336–1353.
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , pp. 1336-1353
    • Wang, Y.-X.1    Zhang, Y.-J.2
  • 29
    • 85032751462 scopus 로고    scopus 로고
    • Nonnegative matrix and tensor factorizations: an algorithmic perspective
    • Zhou, G., et al. Nonnegative matrix and tensor factorizations: an algorithmic perspective. IEEE Signal Process. Mag. 31 (2014), 54–65.
    • (2014) IEEE Signal Process. Mag. , vol.31 , pp. 54-65
    • Zhou, G.1
  • 30
    • 1542473171 scopus 로고    scopus 로고
    • Application of independent component analysis to microarrays
    • Lee, S.-I., Batzoglou, S., Application of independent component analysis to microarrays. Genome Biol., 4, 2003, R76.
    • (2003) Genome Biol. , vol.4 , pp. R76
    • Lee, S.-I.1    Batzoglou, S.2
  • 31
    • 78649334862 scopus 로고    scopus 로고
    • Independent component analysis: mining microarray data for fundamental human gene expression modules
    • Engreitz, J.M., et al. Independent component analysis: mining microarray data for fundamental human gene expression modules. J. Biomed. Bioinf. 43 (2010), 932–944.
    • (2010) J. Biomed. Bioinf. , vol.43 , pp. 932-944
    • Engreitz, J.M.1
  • 32
    • 34548444625 scopus 로고    scopus 로고
    • Elucidating the altered transcriptional programs in breast cancer using independent component analysis
    • Teschendorff, A.E., et al. Elucidating the altered transcriptional programs in breast cancer using independent component analysis. PLoS Comput. Biol., 3, 2007, e161.
    • (2007) PLoS Comput. Biol. , vol.3 , pp. e161
    • Teschendorff, A.E.1
  • 33
    • 0033093826 scopus 로고    scopus 로고
    • A new method for spectral decomposition using a bilinear Bayesian approach
    • Ochs, M.F., et al. A new method for spectral decomposition using a bilinear Bayesian approach. J. Magn. Reson. 137 (1999), 161–176.
    • (1999) J. Magn. Reson. , vol.137 , pp. 161-176
    • Ochs, M.F.1
  • 34
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee, D.D., Seung, H.S., Learning the parts of objects by non-negative matrix factorization. Nature 401 (1999), 788–791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 35
    • 0035999975 scopus 로고    scopus 로고
    • Application of Bayesian decomposition for analysing microarray data
    • Moloshok, T.D., et al. Application of Bayesian decomposition for analysing microarray data. Bioinformatics 18 (2002), 566–575.
    • (2002) Bioinformatics , vol.18 , pp. 566-575
    • Moloshok, T.D.1
  • 36
    • 35748970508 scopus 로고    scopus 로고
    • Determining transcription factor activity from microarray data using Bayesian Markov chain Monte Carlo sampling
    • Kossenkov, A.V., et al. Determining transcription factor activity from microarray data using Bayesian Markov chain Monte Carlo sampling. Stud. Health Technol. Inform. 129 (2007), 1250–1254.
    • (2007) Stud. Health Technol. Inform. , vol.129 , pp. 1250-1254
    • Kossenkov, A.V.1
  • 37
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • Mairal, J., et al. Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 11 (2010), 19–60.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 19-60
    • Mairal, J.1
  • 38
    • 84964344204 scopus 로고    scopus 로고
    • Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks
    • Wu, S., et al. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 4290–4295.
    • (2016) Proc. Natl. Acad. Sci. U. S. A. , vol.113 , pp. 4290-4295
    • Wu, S.1
  • 39
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: algorithms and applications
    • Hyvärinen, A., Oja, E., Independent component analysis: algorithms and applications. Neural Netw. 13 (2000), 411–430.
    • (2000) Neural Netw. , vol.13 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 40
    • 77958479692 scopus 로고    scopus 로고
    • CoGAPS: an R/C++ package to identify patterns and biological process activity in transcriptomic data
    • Fertig, E.J., et al. CoGAPS: an R/C++ package to identify patterns and biological process activity in transcriptomic data. Bioinformatics 26 (2010), 2792–2793.
    • (2010) Bioinformatics , vol.26 , pp. 2792-2793
    • Fertig, E.J.1
  • 41
    • 85021369455 scopus 로고    scopus 로고
    • PatternMarkers & GWCoGAPS for novel data-driven biomarkers via whole transcriptome NMF
    • Stein-O'Brien, G.L., et al. PatternMarkers & GWCoGAPS for novel data-driven biomarkers via whole transcriptome NMF. Bioinformatics 33 (2017), 1892–1894.
    • (2017) Bioinformatics , vol.33 , pp. 1892-1894
    • Stein-O'Brien, G.L.1
  • 42
    • 85016564624 scopus 로고    scopus 로고
    • Visualizing the structure of RNA-seq expression data using grade of membership models
    • Dey, K.K., et al. Visualizing the structure of RNA-seq expression data using grade of membership models. PLoS Genet., 13, 2017, e1006599.
    • (2017) PLoS Genet. , vol.13
    • Dey, K.K.1
  • 43
    • 84912071423 scopus 로고    scopus 로고
    • Independent component analysis uncovers the landscape of the bladder tumor transcriptome and reveals insights into luminal and basal subtypes
    • Biton, A., et al. Independent component analysis uncovers the landscape of the bladder tumor transcriptome and reveals insights into luminal and basal subtypes. Cell Rep. 9 (2014), 1235–1245.
    • (2014) Cell Rep. , vol.9 , pp. 1235-1245
    • Biton, A.1
  • 44
    • 84892405276 scopus 로고    scopus 로고
    • Preferential activation of the hedgehog pathway by epigenetic modulations in HPV negative HNSCC identified with meta-pathway analysis
    • Fertig, E.J., et al. Preferential activation of the hedgehog pathway by epigenetic modulations in HPV negative HNSCC identified with meta-pathway analysis. PLoS One, 8, 2013, e78127.
    • (2013) PLoS One , vol.8
    • Fertig, E.J.1
  • 45
    • 84885700265 scopus 로고    scopus 로고
    • Interpreting and comparing clustering experiments through graph visualization and ontology statistical enrichment with the ClutrFree Package
    • M.F. Ochs Springer
    • Bidaut, G., et al. Interpreting and comparing clustering experiments through graph visualization and ontology statistical enrichment with the ClutrFree Package. Ochs, M.F., (eds.) Biomedical Informatics for Cancer Research, 2010, Springer, 315–333.
    • (2010) Biomedical Informatics for Cancer Research , pp. 315-333
    • Bidaut, G.1
  • 46
    • 33645233956 scopus 로고    scopus 로고
    • Determination of strongly overlapping signaling activity from microarray data
    • Bidaut, G., et al. Determination of strongly overlapping signaling activity from microarray data. BMC Bioinformatics, 7, 2006, 99.
    • (2006) BMC Bioinformatics , vol.7 , pp. 99
    • Bidaut, G.1
  • 47
    • 84936771017 scopus 로고    scopus 로고
    • MAD Bayes for tumor heterogeneity – feature allocation with exponential family sampling
    • Xu, Y., et al. MAD Bayes for tumor heterogeneity – feature allocation with exponential family sampling. J. Am. Stat. Assoc. 110 (2015), 503–514.
    • (2015) J. Am. Stat. Assoc. , vol.110 , pp. 503-514
    • Xu, Y.1
  • 48
    • 55549115654 scopus 로고    scopus 로고
    • Genes mirror geography within Europe
    • Novembre, J., et al. Genes mirror geography within Europe. Nature 456 (2008), 98–101.
    • (2008) Nature , vol.456 , pp. 98-101
    • Novembre, J.1
  • 49
    • 78049415423 scopus 로고    scopus 로고
    • Analysis of population structure: a unifying framework and novel methods based on sparse factor analysis
    • Engelhardt, B.E., Stephens, M., Analysis of population structure: a unifying framework and novel methods based on sparse factor analysis. PLoS Genet., 6, 2010, e1001117.
    • (2010) PLoS Genet. , vol.6
    • Engelhardt, B.E.1    Stephens, M.2
  • 50
    • 42349112088 scopus 로고    scopus 로고
    • Genome-wide association studies for complex traits: consensus, uncertainty and challenges
    • McCarthy, M.I., et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9 (2008), 356–369.
    • (2008) Nat. Rev. Genet. , vol.9 , pp. 356-369
    • McCarthy, M.I.1
  • 51
    • 84976869597 scopus 로고    scopus 로고
    • Computational genomics tools for dissecting tumour-immune cell interactions
    • Hackl, H., et al. Computational genomics tools for dissecting tumour-immune cell interactions. Nat. Rev. Genet. 17 (2016), 441–458.
    • (2016) Nat. Rev. Genet. , vol.17 , pp. 441-458
    • Hackl, H.1
  • 52
    • 84934444680 scopus 로고    scopus 로고
    • Pattern identification in time-course gene expression data with the CoGAPS matrix factorization
    • Fertig, E.J., et al. Pattern identification in time-course gene expression data with the CoGAPS matrix factorization. Methods Mol. Biol. 1101 (2014), 87–112.
    • (2014) Methods Mol. Biol. , vol.1101 , pp. 87-112
    • Fertig, E.J.1
  • 53
    • 84861550476 scopus 로고    scopus 로고
    • The life history of 21 breast cancers
    • Nik-Zainal, S., et al. The life history of 21 breast cancers. Cell 149 (2012), 994–1007.
    • (2012) Cell , vol.149 , pp. 994-1007
    • Nik-Zainal, S.1
  • 54
    • 84897954204 scopus 로고    scopus 로고
    • PyClone: statistical inference of clonal population structure in cancer
    • Roth, A., et al. PyClone: statistical inference of clonal population structure in cancer. Nat. Methods 11 (2014), 396–398.
    • (2014) Nat. Methods , vol.11 , pp. 396-398
    • Roth, A.1
  • 55
    • 84935825808 scopus 로고    scopus 로고
    • PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors
    • Deshwar, A.G., et al. PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors. Genome Biol., 16, 2015, 35.
    • (2015) Genome Biol. , vol.16 , pp. 35
    • Deshwar, A.G.1
  • 56
    • 84954285015 scopus 로고    scopus 로고
    • Bayesian inference for intratumour heterogeneity in mutations and copy number variation
    • Lee, J., et al. Bayesian inference for intratumour heterogeneity in mutations and copy number variation. J. R. Stat. Soc. Ser. C. Appl. Stat. 65 (2016), 547–563.
    • (2016) J. R. Stat. Soc. Ser. C. Appl. Stat. , vol.65 , pp. 547-563
    • Lee, J.1
  • 57
    • 84863887694 scopus 로고    scopus 로고
    • Studying and modelling dynamic biological processes using time-series gene expression data
    • Bar-Joseph, Z., et al. Studying and modelling dynamic biological processes using time-series gene expression data. Nat. Rev. Genet. 13 (2012), 552–564.
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 552-564
    • Bar-Joseph, Z.1
  • 58
    • 85056495311 scopus 로고    scopus 로고
    • Dynamic modeling and network approaches for omics time course data: overview of computational approaches and applications
    • Published online April 18, 2017
    • Liang, Y., Kelemen, A., Dynamic modeling and network approaches for omics time course data: overview of computational approaches and applications. Brief. Bioinform., 2017, 10.1093/bib/bbx036 Published online April 18, 2017.
    • (2017) Brief. Bioinform.
    • Liang, Y.1    Kelemen, A.2
  • 59
    • 0035999975 scopus 로고    scopus 로고
    • Application of Bayesian decomposition for analysing microarray data
    • Moloshok, T.D., et al. Application of Bayesian decomposition for analysing microarray data. Bioinformatics 18 (2002), 566–575.
    • (2002) Bioinformatics , vol.18 , pp. 566-575
    • Moloshok, T.D.1
  • 60
    • 0036166753 scopus 로고    scopus 로고
    • Linear modes of gene expression determined by independent component analysis
    • Liebermeister, W., Linear modes of gene expression determined by independent component analysis. Bioinformatics 18 (2002), 51–60.
    • (2002) Bioinformatics , vol.18 , pp. 51-60
    • Liebermeister, W.1
  • 61
    • 71549130141 scopus 로고    scopus 로고
    • Detection of treatment-Induced changes in signaling pathways in gastrointestinal stromal tumors using transcriptomic data
    • Ochs, M.F., et al. Detection of treatment-Induced changes in signaling pathways in gastrointestinal stromal tumors using transcriptomic data. Cancer Res. 69 (2009), 9125–9132.
    • (2009) Cancer Res. , vol.69 , pp. 9125-9132
    • Ochs, M.F.1
  • 62
    • 84978621488 scopus 로고    scopus 로고
    • Inferring causal molecular networks: empirical assessment through a community-based effort
    • Hill, S.M., et al. Inferring causal molecular networks: empirical assessment through a community-based effort. Nat. Methods 13 (2016), 310–318.
    • (2016) Nat. Methods , vol.13 , pp. 310-318
    • Hill, S.M.1
  • 63
    • 85051774334 scopus 로고    scopus 로고
    • Integrated time-course omics analysis distinguishes immediate therapeutic response from acquired resistance
    • Published online August 1, 2017
    • Stein-O'Brien, G., et al. Integrated time-course omics analysis distinguishes immediate therapeutic response from acquired resistance. bioRxiv, 2017, 10.1101/136564 Published online August 1, 2017.
    • (2017) bioRxiv
    • Stein-O'Brien, G.1
  • 64
    • 84861123691 scopus 로고    scopus 로고
    • Ten years of pathway analysis: current approaches and outstanding challenges
    • Khatri, P., et al. Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput. Biol., 8, 2012, e1002375.
    • (2012) PLoS Comput. Biol. , vol.8
    • Khatri, P.1
  • 65
    • 73449134439 scopus 로고    scopus 로고
    • Gene set enrichment analysis made simple
    • Irizarry, R.A., et al. Gene set enrichment analysis made simple. Stat. Methods Med. Res. 18 (2009), 565–575.
    • (2009) Stat. Methods Med. Res. , vol.18 , pp. 565-575
    • Irizarry, R.A.1
  • 66
    • 68749099453 scopus 로고    scopus 로고
    • Pathway databases and tools for their exploitation: benefits, current limitations and challenges
    • Bauer-Mehren, A., et al. Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Mol. Syst. Biol., 5, 2009, 290.
    • (2009) Mol. Syst. Biol. , vol.5 , pp. 290
    • Bauer-Mehren, A.1
  • 67
    • 49649129873 scopus 로고    scopus 로고
    • Public databases and software for the pathway analysis of cancer genomes
    • Tsui, I.F.L., et al. Public databases and software for the pathway analysis of cancer genomes. Cancer Inform. 3 (2007), 379–397.
    • (2007) Cancer Inform. , vol.3 , pp. 379-397
    • Tsui, I.F.L.1
  • 68
    • 84929001104 scopus 로고    scopus 로고
    • The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans
    • The GTEx Consortium, The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348 (2015), 648–660.
    • (2015) Science , vol.348 , pp. 648-660
    • The GTEx Consortium1
  • 69
    • 85023158178 scopus 로고    scopus 로고
    • Unsupervised extraction of stable expression signatures from public compendia with an ensemble of neural networks
    • Tan, J., et al. Unsupervised extraction of stable expression signatures from public compendia with an ensemble of neural networks. Cell Syst. 5 (2017), 63–71.
    • (2017) Cell Syst. , vol.5 , pp. 63-71
    • Tan, J.1
  • 70
    • 85028340650 scopus 로고    scopus 로고
    • Decomposing oncogenic transcriptional signatures to generate maps of divergent cellular states
    • 105–18.e9
    • Kim, J.W., et al. Decomposing oncogenic transcriptional signatures to generate maps of divergent cellular states. Cell Syst., 5, 2017 105–18.e9.
    • (2017) Cell Syst. , vol.5
    • Kim, J.W.1
  • 71
    • 84861832789 scopus 로고    scopus 로고
    • Gene expression signatures modulated by epidermal growth factor receptor activation and their relationship to cetuximab resistance in head and neck squamous cell carcinoma
    • Fertig, E.J., et al. Gene expression signatures modulated by epidermal growth factor receptor activation and their relationship to cetuximab resistance in head and neck squamous cell carcinoma. BMC Genomics, 13, 2012, 160.
    • (2012) BMC Genomics , vol.13 , pp. 160
    • Fertig, E.J.1
  • 72
    • 84883347632 scopus 로고    scopus 로고
    • Identifying context-specific transcription factor targets from prior knowledge and gene expression data
    • Fertig, E.J., et al. Identifying context-specific transcription factor targets from prior knowledge and gene expression data. IEEE Trans. Nanobioscience 12 (2012), 142–149.
    • (2012) IEEE Trans. Nanobioscience , vol.12 , pp. 142-149
    • Fertig, E.J.1
  • 73
    • 6944244084 scopus 로고    scopus 로고
    • A module map showing conditional activity of expression modules in cancer
    • Segal, E., et al. A module map showing conditional activity of expression modules in cancer. Nat. Genet. 36 (2004), 1090–1098.
    • (2004) Nat. Genet. , vol.36 , pp. 1090-1098
    • Segal, E.1
  • 74
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
    • Subramanian, A., et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102 (2005), 15545–15550.
    • (2005) Proc. Natl. Acad. Sci. , vol.102 , pp. 15545-15550
    • Subramanian, A.1
  • 75
    • 85013204492 scopus 로고    scopus 로고
    • Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization
    • Zhu, X., et al. Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization. Peer J., 5, 2017, e2888.
    • (2017) Peer J. , vol.5 , pp. e2888
    • Zhu, X.1
  • 76
    • 84983250200 scopus 로고    scopus 로고
    • FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data
    • DeTomaso, D., Yosef, N., FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data. BMC Bioinformatics, 17, 2016, 315.
    • (2016) BMC Bioinformatics , vol.17 , pp. 315
    • DeTomaso, D.1    Yosef, N.2
  • 77
    • 84883347632 scopus 로고    scopus 로고
    • Identifying context-specific transcription factor targets from prior knowledge and gene expression data
    • Fertig, E.J., et al. Identifying context-specific transcription factor targets from prior knowledge and gene expression data. IEEE Trans. Nanobiosci. 12 (2013), 142–149.
    • (2013) IEEE Trans. Nanobiosci. , vol.12 , pp. 142-149
    • Fertig, E.J.1
  • 78
    • 18244384210 scopus 로고    scopus 로고
    • Multiple-laboratory comparison of microarray platforms
    • Irizarry, R.A., et al. Multiple-laboratory comparison of microarray platforms. Nat. Methods 2 (2005), 345–350.
    • (2005) Nat. Methods , vol.2 , pp. 345-350
    • Irizarry, R.A.1
  • 79
    • 84959189722 scopus 로고    scopus 로고
    • Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis
    • Fan, J., et al. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat. Methods 3 (2016), 241–244.
    • (2016) Nat. Methods , vol.3 , pp. 241-244
    • Fan, J.1
  • 80
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell, C., et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32 (2014), 381–386.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 381-386
    • Trapnell, C.1
  • 81
    • 85051763468 scopus 로고    scopus 로고
    • Varying-censoring aware matrix factorization for single cell RNA-sequencing
    • Published online July 21, 2017
    • Townes, F.W., et al. Varying-censoring aware matrix factorization for single cell RNA-sequencing. bioRxiv, 2017, 10.1101/166736 Published online July 21, 2017.
    • (2017) bioRxiv
    • Townes, F.W.1
  • 82
    • 85045337236 scopus 로고    scopus 로고
    • PHATE: a dimensionality reduction method for visualizing trajectory structures in high-dimensional biological data
    • Published online March 24, 2017
    • Moon, K.R., et al. PHATE: a dimensionality reduction method for visualizing trajectory structures in high-dimensional biological data. bioRxiv, 2017, 10.1101/120378 Published online March 24, 2017.
    • (2017) bioRxiv
    • Moon, K.R.1
  • 83
    • 85035813065 scopus 로고    scopus 로고
    • Single-vell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer
    • Puram, S.V., et al. Single-vell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171 (2017), 1611–1624.
    • (2017) Cell , vol.171 , pp. 1611-1624
    • Puram, S.V.1
  • 84
    • 85050866963 scopus 로고    scopus 로고
    • Deciphering programs of transcriptional regulation by combined deconvolution of multiple omics layers
    • Published online October 8, 2017
    • Hübschmann, D., et al. Deciphering programs of transcriptional regulation by combined deconvolution of multiple omics layers. bioRxiv, 2017, 10.1101/199547 Published online October 8, 2017.
    • (2017) bioRxiv
    • Hübschmann, D.1
  • 85
    • 85033389355 scopus 로고    scopus 로고
    • f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq
    • Buettner, F., et al. f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq. Genome Biol., 18, 2017, 212.
    • (2017) Genome Biol. , vol.18 , pp. 212
    • Buettner, F.1
  • 86
    • 85042089855 scopus 로고    scopus 로고
    • Scalable latent-factor models applied to single-cell RNA-seq data separate biological drivers from confounding effects
    • Published online November 15, 2016
    • Buettner, F., et al. Scalable latent-factor models applied to single-cell RNA-seq data separate biological drivers from confounding effects. bioRxiv, 2016, 10.1101/087775 Published online November 15, 2016.
    • (2016) bioRxiv
    • Buettner, F.1
  • 87
    • 85028022371 scopus 로고    scopus 로고
    • MAGIC: a diffusion-based imputation method reveals gene-gene interactions in single-cell RNA-sequencing data
    • Published online February 25, 2017
    • van Dijk, D., et al. MAGIC: a diffusion-based imputation method reveals gene-gene interactions in single-cell RNA-sequencing data. bioRxiv, 2017, 10.1101/111591 Published online February 25, 2017.
    • (2017) bioRxiv
    • van Dijk, D.1
  • 88
    • 85028020054 scopus 로고    scopus 로고
    • ZINB-WaVE: a general and flexible method for signal extraction from single-cell RNA-seq data
    • Published online November 2, 2017
    • Risso, D., et al. ZINB-WaVE: a general and flexible method for signal extraction from single-cell RNA-seq data. bioRxiv, 2017, 10.1101/125112 Published online November 2, 2017.
    • (2017) bioRxiv
    • Risso, D.1
  • 89
    • 84955706109 scopus 로고    scopus 로고
    • ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis
    • Pierson, E., Yau, C., ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol., 16, 2015, 241.
    • (2015) Genome Biol. , vol.16 , pp. 241
    • Pierson, E.1    Yau, C.2
  • 90
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • van der, M.L., Hinton, G., Visualizing data using t-SNE. J. Mach. Learn Res. 9 (2008), 2579–2605.
    • (2008) J. Mach. Learn Res. , vol.9 , pp. 2579-2605
    • van der, M.L.1    Hinton, G.2
  • 91
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • Alter, O., et al. Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. U. S. A. 97 (2000), 10101–10106.
    • (2000) Proc. Natl. Acad. Sci. U. S. A. , vol.97 , pp. 10101-10106
    • Alter, O.1
  • 92
    • 0035845501 scopus 로고    scopus 로고
    • Correspondence analysis applied to microarray data
    • Fellenberg, K., et al. Correspondence analysis applied to microarray data. Proc. Natl. Acad. Sci. U. S. A. 98 (2001), 10781–10786.
    • (2001) Proc. Natl. Acad. Sci. U. S. A. , vol.98 , pp. 10781-10786
    • Fellenberg, K.1
  • 93
    • 1642529511 scopus 로고    scopus 로고
    • Metagenes and molecular pattern discovery using matrix factorization
    • Brunet, J.P., et al. Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl. Acad. Sci. U. S. A. 101 (2004), 4164–4169.
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , pp. 4164-4169
    • Brunet, J.P.1
  • 94
    • 77957553895 scopus 로고    scopus 로고
    • Principal component analysis
    • Abdi, H., Williams, L.J., Principal component analysis. WIREs Comp. Stat. 2 (2010), 433–459.
    • (2010) WIREs Comp. Stat. , vol.2 , pp. 433-459
    • Abdi, H.1    Williams, L.J.2
  • 95
    • 0003905759 scopus 로고    scopus 로고
    • Independent Component Analysis
    • John Wiley & Sons
    • Hyvärinen, A., et al. Independent Component Analysis. 2004, John Wiley & Sons.
    • (2004)
    • Hyvärinen, A.1
  • 96
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: an overview with application to learning methods
    • Hardoon, D.R., et al. Canonical correlation analysis: an overview with application to learning methods. Neural. Comput. 16 (2004), 2639–2664.
    • (2004) Neural. Comput. , vol.16 , pp. 2639-2664
    • Hardoon, D.R.1
  • 102
    • 84887890691 scopus 로고    scopus 로고
    • Metric learning: a survey
    • Kulis, B., Metric learning: a survey. Found. Trends Mach. Learn. 5 (2013), 287–364.
    • (2013) Found. Trends Mach. Learn. , vol.5 , pp. 287-364
    • Kulis, B.1
  • 103
    • 0034118493 scopus 로고    scopus 로고
    • Inference of population structure using multilocus genotype data
    • Pritchard, J.K., et al. Inference of population structure using multilocus genotype data. Genetics 155 (2000), 945–959.
    • (2000) Genetics , vol.155 , pp. 945-959
    • Pritchard, J.K.1
  • 104
    • 0141742284 scopus 로고    scopus 로고
    • A framework for robust subspace learning
    • De la Torre, F., Black, M.J., A framework for robust subspace learning. Int. J. Comput. Vis. 54 (2003), 117–142.
    • (2003) Int. J. Comput. Vis. , vol.54 , pp. 117-142
    • De la Torre, F.1    Black, M.J.2
  • 105
    • 77954740485 scopus 로고    scopus 로고
    • Computer Vision: Algorithms and Applications
    • Published online September 3, 2010
    • Szeliski, R., Computer Vision: Algorithms and Applications. 2010 Published online September 3, 2010 http://szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf.
    • (2010)
    • Szeliski, R.1
  • 106
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis?
    • Candès, E.J., et al. Robust principal component analysis?. J. ACM, 58, 2011, 11.
    • (2011) J. ACM , vol.58 , pp. 11
    • Candès, E.J.1
  • 108
    • 84898944356 scopus 로고    scopus 로고
    • Stochastic optimization of PCA with capped MSG
    • C.J.C. Burges Curran Associates
    • Arora, R., et al. Stochastic optimization of PCA with capped MSG. Burges, C.J.C., (eds.) Advances in Neural Information Processing Systems, Vol. 26, 2013, Curran Associates, 1815–1823.
    • (2013) Advances in Neural Information Processing Systems , vol.26 , pp. 1815-1823
    • Arora, R.1
  • 109
    • 84955462631 scopus 로고    scopus 로고
    • Robust stochastic principal component analysis. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics (Kaski, S. and Corander, J., eds), PMLR
    • Goes, J. et al. (2014) Robust stochastic principal component analysis. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics (Kaski, S. and Corander, J., eds), pp. 266–274, PMLR.
    • (2014) , pp. 266-274
    • Goes, J.1
  • 111
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • Candès, E.J., Recht, B., Exact matrix completion via convex optimization. Found Comut. Math., 9, 2009, 717.
    • (2009) Found Comut. Math. , vol.9 , pp. 717
    • Candès, E.J.1    Recht, B.2
  • 113
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Ando, R.K., Zhang, T., A framework for learning predictive structures from multiple tasks and unlabeled data. J. Mach. Learn. Res. 6 (2005), 1817–1853.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 114
    • 85051773287 scopus 로고    scopus 로고
    • Composite measurements and molecular compressed sensing for highly efficient transcriptomics
    • Published online January 2, 2017
    • Cleary, B., Composite measurements and molecular compressed sensing for highly efficient transcriptomics. bioRxiv, 2017, 10.1101/091926 Published online January 2, 2017.
    • (2017) bioRxiv
    • Cleary, B.1
  • 115
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha, D.W., et al. Instance-based learning algorithms. Mach. Learn. 6 (1991), 37–66.
    • (1991) Mach. Learn. , vol.6 , pp. 37-66
    • Aha, D.W.1
  • 116
    • 84884241562 scopus 로고    scopus 로고
    • Similarity-based clustering by left-stochastic matrix factorization
    • Arora, R., et al. Similarity-based clustering by left-stochastic matrix factorization. J. Mach. Learn. Res. 14 (2013), 1715–1746.
    • (2013) J. Mach. Learn. Res. , vol.14 , pp. 1715-1746
    • Arora, R.1
  • 117
    • 84894281219 scopus 로고    scopus 로고
    • CloudNMF: a MapReduce implementation of nonnegative matrix factorization for large-scale biological datasets
    • Liao, R., et al. CloudNMF: a MapReduce implementation of nonnegative matrix factorization for large-scale biological datasets. Genomics Proteomics Bioinf. 12 (2014), 48–51.
    • (2014) Genomics Proteomics Bioinf. , vol.12 , pp. 48-51
    • Liao, R.1
  • 118
    • 84894283376 scopus 로고    scopus 로고
    • Discovering subgroups of patients from DNA copy number data using NMF on compacted matrices
    • de Campos, C.P., et al. Discovering subgroups of patients from DNA copy number data using NMF on compacted matrices. PLoS One, 8, 2013, e79720.
    • (2013) PLoS One , vol.8
    • de Campos, C.P.1
  • 119
    • 85021210336 scopus 로고    scopus 로고
    • More is better: recent progress in multi-omics data integration methods
    • Huang, S., et al. More is better: recent progress in multi-omics data integration methods. Front. Genet., 8, 2017, 84.
    • (2017) Front. Genet. , vol.8 , pp. 84
    • Huang, S.1
  • 120
    • 84980335767 scopus 로고    scopus 로고
    • Tensor decomposition for multiple-tissue gene expression experiments
    • Hore, V., et al. Tensor decomposition for multiple-tissue gene expression experiments. Nat. Genet. 48 (2016), 1094–1100.
    • (2016) Nat. Genet. , vol.48 , pp. 1094-1100
    • Hore, V.1
  • 121
    • 85045409459 scopus 로고    scopus 로고
    • PREDICTD parallel epigenomics data Imputation with cloud-based tensor decomposition
    • Durham, T.J., et al. PREDICTD parallel epigenomics data Imputation with cloud-based tensor decomposition. Nat. Commun., 9, 2018, 1402.
    • (2018) Nat. Commun. , vol.9 , pp. 1402
    • Durham, T.J.1
  • 122
    • 84960877099 scopus 로고    scopus 로고
    • Constructing 3D interaction maps from 1D epigenomes
    • Zhu, Y., et al. Constructing 3D interaction maps from 1D epigenomes. Nat. Commun., 7, 2016, 10812.
    • (2016) Nat. Commun. , vol.7 , pp. 10812
    • Zhu, Y.1
  • 123
    • 85051806692 scopus 로고    scopus 로고
    • Three-way clustering of multi-tissue multi-individual gene expression data using constrained tensor decomposition
    • Published online December 5, 2017
    • Wang, M., et al. Three-way clustering of multi-tissue multi-individual gene expression data using constrained tensor decomposition. bioRxiv, 2017, 10.1101/229245 Published online December 5, 2017.
    • (2017) bioRxiv
    • Wang, M.1
  • 124
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • Kolda, T., Bader, B., Tensor decompositions and applications. SIAM Rev. 51 (2009), 455–500.
    • (2009) SIAM Rev. , vol.51 , pp. 455-500
    • Kolda, T.1    Bader, B.2
  • 125
    • 85051825558 scopus 로고    scopus 로고
    • Pathway-level information extractor (PLIER): a generative model for gene expression data
    • Published online December 16 2017
    • Mao, W., et al. Pathway-level information extractor (PLIER): a generative model for gene expression data. bioRxiv, 2017, 10.1101/116061 Published online December 16 2017.
    • (2017) bioRxiv
    • Mao, W.1
  • 126
    • 84887084951 scopus 로고    scopus 로고
    • Network-based stratification of tumor mutations
    • Hofree, M., et al. Network-based stratification of tumor mutations. Nat. Methods, 10, 2013, 1108.
    • (2013) Nat. Methods , vol.10 , pp. 1108
    • Hofree, M.1
  • 127
    • 0345824737 scopus 로고    scopus 로고
    • Network component analysis: reconstruction of regulatory signals in biological systems
    • Liao, J.C., et al. Network component analysis: reconstruction of regulatory signals in biological systems. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), 15522–15527.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 15522-15527
    • Liao, J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.