메뉴 건너뛰기




Volumn 37, Issue 2, 2015, Pages 148-154

Introns and gene expression: Cellular constraints, transcriptional regulation, and evolutionary consequences

Author keywords

Cell cycle constraints; Gene length; Macro evolutionary patterns; Splicing

Indexed keywords

ARTICLE; CELL CYCLE; CELL CYCLE PROGRESSION; CELL FUNCTION; DROSOPHILA MELANOGASTER; EMBRYO DEVELOPMENT; FLUORESCENCE IN SITU HYBRIDIZATION; GENE EXPRESSION; GENOME ANALYSIS; HUMAN; INTRON; INTRON RETENTION; NEGATIVE FEEDBACK; NONHUMAN; ONTOGENY; PHYLOGENY; RNA PROCESSING; SPLICING DEFECT; TRANSCRIPTION INITIATION SITE; TRANSCRIPTION REGULATION; XENOPUS LAEVIS; ZEBRA FISH; ANIMAL; EVOLUTION; GENE EXPRESSION REGULATION; GENETICS; PHYSIOLOGY; RNA SPLICING;

EID: 84921554067     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201400138     Document Type: Article
Times cited : (81)

References (74)
  • 3
    • 84901855485 scopus 로고    scopus 로고
    • Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications
    • Veloso A, Kirkconnell KS, Magnuson B, Biewen B, et al. 2014. Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications. Genome Res 24: 896-905.
    • (2014) Genome Res , vol.24 , pp. 896-905
    • Veloso, A.1    Kirkconnell, K.S.2    Magnuson, B.3    Biewen, B.4
  • 4
    • 84899796207 scopus 로고    scopus 로고
    • Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons
    • Jonkers I, Kwak H, Lis JT. 2014. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. eLife 3: e02407.
    • (2014) eLife , vol.3 , pp. e02407
    • Jonkers, I.1    Kwak, H.2    Lis, J.T.3
  • 5
    • 84876842759 scopus 로고    scopus 로고
    • Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells
    • Danko CG, Hah N, Luo X, Martins AL, et al. 2013. Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells. Mol Cell 50: 212-22.
    • (2013) Mol Cell , vol.50 , pp. 212-222
    • Danko, C.G.1    Hah, N.2    Luo, X.3    Martins, A.L.4
  • 6
    • 60349104299 scopus 로고    scopus 로고
    • The spliceosome: design principles of a dynamic RNP machine
    • Wahl MC, Will CL, Lührmann R. 2009. The spliceosome: design principles of a dynamic RNP machine. Cell 136: 701-18.
    • (2009) Cell , vol.136 , pp. 701-718
    • Wahl, M.C.1    Will, C.L.2    Lührmann, R.3
  • 7
    • 77954968805 scopus 로고    scopus 로고
    • Distinct patterns of expression and evolution of intronless and intron-containing mammalian genes
    • Shabalina SA, Ogurtsov AY, Spiridonov AN, Novichkov PS, et al. 2010. Distinct patterns of expression and evolution of intronless and intron-containing mammalian genes. Mol Biol Evol 27: 1745-9.
    • (2010) Mol Biol Evol , vol.27 , pp. 1745-1749
    • Shabalina, S.A.1    Ogurtsov, A.Y.2    Spiridonov, A.N.3    Novichkov, P.S.4
  • 8
    • 0028837312 scopus 로고
    • The human dystrophin gene requires 16hours to be transcribed and is cotranscriptionally spliced
    • Tennyson CN, Klamut HJ, Worton RG. 1995. The human dystrophin gene requires 16hours to be transcribed and is cotranscriptionally spliced. Nat Genet 9: 184-90.
    • (1995) Nat Genet , vol.9 , pp. 184-190
    • Tennyson, C.N.1    Klamut, H.J.2    Worton, R.G.3
  • 9
    • 84855327164 scopus 로고    scopus 로고
    • Changes in exon-intron structure during vertebrate evolution affect the splicing pattern of exons
    • Gelfman S, Burstein D, Penn O, Savchenko A, et al. 2012. Changes in exon-intron structure during vertebrate evolution affect the splicing pattern of exons. Genome Res 22: 35-50.
    • (2012) Genome Res , vol.22 , pp. 35-50
    • Gelfman, S.1    Burstein, D.2    Penn, O.3    Savchenko, A.4
  • 10
    • 69949132191 scopus 로고    scopus 로고
    • Chromatin organization marks exon-intron structure
    • Schwartz S, Meshorer E, Ast G. 2009. Chromatin organization marks exon-intron structure. Nat Struct Mol Biol 16: 990-5.
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 990-995
    • Schwartz, S.1    Meshorer, E.2    Ast, G.3
  • 11
    • 60849108914 scopus 로고    scopus 로고
    • Splicing of designer exons reveals unexpected complexity in pre-mRNA splicing
    • Zhang XH-F, Arias MA, Ke S, Chasin LA. 2009. Splicing of designer exons reveals unexpected complexity in pre-mRNA splicing. RNA 15: 367-76.
    • (2009) RNA , vol.15 , pp. 367-376
    • Zhang, X.-F.1    Arias, M.A.2    Ke, S.3    Chasin, L.A.4
  • 13
    • 84894318075 scopus 로고    scopus 로고
    • Coupling mRNA processing with transcription in time and space
    • Bentley DL. 2014. Coupling mRNA processing with transcription in time and space. Nat Rev Genet 15: 163-75.
    • (2014) Nat Rev Genet , vol.15 , pp. 163-175
    • Bentley, D.L.1
  • 14
    • 78649289872 scopus 로고    scopus 로고
    • Global analysis of nascent RNA reveals transcriptional pausing in terminal exons
    • Carrillo Oesterreich F, Preibisch S, Neugebauer KM. 2010. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol Cell 40: 571-81.
    • (2010) Mol Cell , vol.40 , pp. 571-581
    • Carrillo Oesterreich, F.1    Preibisch, S.2    Neugebauer, K.M.3
  • 15
    • 84875263259 scopus 로고    scopus 로고
    • Removal of retained introns regulates translation in the rapidly developing gametophyte of Marsilea vestita
    • Boothby TC, Zipper RS, van der Weele CM, Wolniak SM. 2013. Removal of retained introns regulates translation in the rapidly developing gametophyte of Marsilea vestita. Dev Cell 24: 517-29.
    • (2013) Dev Cell , vol.24 , pp. 517-529
    • Boothby, T.C.1    Zipper, R.S.2    van der Weele, C.M.3    Wolniak, S.M.4
  • 16
    • 84864251757 scopus 로고    scopus 로고
    • Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions
    • Bhatt DM, Pandya-Jones A, Tong A-J, Barozzi I, et al. 2012. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150: 279-90.
    • (2012) Cell , vol.150 , pp. 279-290
    • Bhatt, D.M.1    Pandya-Jones, A.2    Tong, A.-J.3    Barozzi, I.4
  • 17
    • 79951535301 scopus 로고    scopus 로고
    • Proofreading and spellchecking: a two-tier strategy for pre-mRNA splicing quality control
    • Egecioglu DE, Chanfreau G. 2011. Proofreading and spellchecking: a two-tier strategy for pre-mRNA splicing quality control. RNA 17: 383-9.
    • (2011) RNA , vol.17 , pp. 383-389
    • Egecioglu, D.E.1    Chanfreau, G.2
  • 18
    • 35548953842 scopus 로고    scopus 로고
    • Splicing- and cleavage-independent requirement of RNA polymerase II CTD for mRNA release from the transcription site
    • Custodio N, Vivo M, Antoniou M, Carmo-Fonseca M. 2007. Splicing- and cleavage-independent requirement of RNA polymerase II CTD for mRNA release from the transcription site. J Cell Biol 179: 199-207.
    • (2007) J Cell Biol , vol.179 , pp. 199-207
    • Custodio, N.1    Vivo, M.2    Antoniou, M.3    Carmo-Fonseca, M.4
  • 19
    • 0035022577 scopus 로고    scopus 로고
    • A block to mRNA nuclear export in S. cerevisiae leads to hyperadenylation of transcripts that accumulate at the site of transcription
    • Jensen TH, Patricio K, McCarthy T, Rosbash M. 2001. A block to mRNA nuclear export in S. cerevisiae leads to hyperadenylation of transcripts that accumulate at the site of transcription. Mol Cell 7: 887-98.
    • (2001) Mol Cell , vol.7 , pp. 887-898
    • Jensen, T.H.1    Patricio, K.2    McCarthy, T.3    Rosbash, M.4
  • 20
    • 0041013167 scopus 로고    scopus 로고
    • Inefficient processing impairs release of RNA from the site of transcription
    • Custodio N, Carmo-Fonseca M, Geraghty F, Pereira HS, et al. 1999. Inefficient processing impairs release of RNA from the site of transcription. EMBO J 18: 2855-66.
    • (1999) EMBO J , vol.18 , pp. 2855-2866
    • Custodio, N.1    Carmo-Fonseca, M.2    Geraghty, F.3    Pereira, H.S.4
  • 22
    • 0036829698 scopus 로고    scopus 로고
    • Promoter proximal splice sites enhance transcription
    • Furger A. 2002. Promoter proximal splice sites enhance transcription. Genes Dev 16: 2792-9.
    • (2002) Genes Dev , vol.16 , pp. 2792-2799
    • Furger, A.1
  • 23
    • 48249115236 scopus 로고    scopus 로고
    • Promoter-proximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression
    • Rose AB, Elfersi T, Parra G, Korf I. 2008. Promoter-proximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression. Plant Cell 20: 543-51.
    • (2008) Plant Cell , vol.20 , pp. 543-551
    • Rose, A.B.1    Elfersi, T.2    Parra, G.3    Korf, I.4
  • 25
    • 80052445151 scopus 로고    scopus 로고
    • Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36
    • de Almeida SF, Grosso AR, Koch F, Fenouil R, et al. 2011. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nat Struct Mol Biol 18: 977-83.
    • (2011) Nat Struct Mol Biol , vol.18 , pp. 977-983
    • de Almeida, S.F.1    Grosso, A.R.2    Koch, F.3    Fenouil, R.4
  • 26
    • 84865777822 scopus 로고    scopus 로고
    • Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs
    • Tilgner H, Knowles DG, Johnson R, Davis CA, et al. 2012. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res 22: 1616-25.
    • (2012) Genome Res , vol.22 , pp. 1616-1625
    • Tilgner, H.1    Knowles, D.G.2    Johnson, R.3    Davis, C.A.4
  • 28
    • 0041677612 scopus 로고    scopus 로고
    • Autoinhibition with transcriptional delay
    • Lewis J. 2003. Autoinhibition with transcriptional delay. Curr Biol 13: 1398-408.
    • (2003) Curr Biol , vol.13 , pp. 1398-1408
    • Lewis, J.1
  • 29
    • 51149102891 scopus 로고    scopus 로고
    • Intron length increases oscillatory periods of gene expression in animal cells
    • Swinburne IA, Miguez DG, Landgraf D, Silver PA. 2008. Intron length increases oscillatory periods of gene expression in animal cells. Genes Dev 22: 2342-6.
    • (2008) Genes Dev , vol.22 , pp. 2342-2346
    • Swinburne, I.A.1    Miguez, D.G.2    Landgraf, D.3    Silver, P.A.4
  • 30
    • 79953077990 scopus 로고    scopus 로고
    • Control of endogenous gene expression timing by introns
    • Oswald A, Oates AC. 2011. Control of endogenous gene expression timing by introns. Genome Biol 12: 107.
    • (2011) Genome Biol , vol.12 , pp. 107
    • Oswald, A.1    Oates, A.C.2
  • 31
    • 0017154513 scopus 로고
    • Ultrastructural patterns of RNA synthesis during early embryogenesis of Drosophila melanogaster
    • McKnight SL, Miller OL. 1976. Ultrastructural patterns of RNA synthesis during early embryogenesis of Drosophila melanogaster. Cell 8: 305-19.
    • (1976) Cell , vol.8 , pp. 305-319
    • McKnight, S.L.1    Miller, O.L.2
  • 32
    • 0022454809 scopus 로고
    • Intron-delay and the precision of expression of homoeotic gene products in Drosophila
    • Gubb D. 1986. Intron-delay and the precision of expression of homoeotic gene products in Drosophila. Dev Genet 7: 119-31.
    • (1986) Dev Genet , vol.7 , pp. 119-131
    • Gubb, D.1
  • 33
    • 0025232290 scopus 로고
    • Spatial and temporal patterns of E74 transcription during Drosophila development
    • Thummel CS, Burtis KC, Hogness DS. 1990. Spatial and temporal patterns of E74 transcription during Drosophila development. Cell 61: 101-11.
    • (1990) Cell , vol.61 , pp. 101-111
    • Thummel, C.S.1    Burtis, K.C.2    Hogness, D.S.3
  • 34
    • 0026640111 scopus 로고
    • Loss of gene function through rapid mitotic cycles in the Drosophila embryo
    • Rothe M, Pehl M, Taubert H, Jäckle H. 1992. Loss of gene function through rapid mitotic cycles in the Drosophila embryo. Nature 359: 156-9.
    • (1992) Nature , vol.359 , pp. 156-159
    • Rothe, M.1    Pehl, M.2    Taubert, H.3    Jäckle, H.4
  • 35
    • 42049118334 scopus 로고    scopus 로고
    • Intron delays and transcriptional timing during development
    • Swinburne IA, Silver PA. 2008. Intron delays and transcriptional timing during development. Dev Cell 14: 324-30.
    • (2008) Dev Cell , vol.14 , pp. 324-330
    • Swinburne, I.A.1    Silver, P.A.2
  • 36
    • 47549105524 scopus 로고    scopus 로고
    • Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production
    • Pawlicki JM, Steitz JA. 2008. Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production. J Cell Biol 182: 61-76.
    • (2008) J Cell Biol , vol.182 , pp. 61-76
    • Pawlicki, J.M.1    Steitz, J.A.2
  • 37
    • 51349103700 scopus 로고    scopus 로고
    • Primary microRNA transcripts are processed co-transcriptionally
    • Morlando M, Ballarino M, Gromak N, Pagano F, et al. 2008. Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol 15: 902-9.
    • (2008) Nat Struct Mol Biol , vol.15 , pp. 902-909
    • Morlando, M.1    Ballarino, M.2    Gromak, N.3    Pagano, F.4
  • 38
    • 33645296102 scopus 로고    scopus 로고
    • Cotranscriptional recognition of human intronic box H/ACA snoRNAs occurs in a splicing-independent manner
    • Richard P, Kiss AM, Darzacq X, Kiss T. 2006. Cotranscriptional recognition of human intronic box H/ACA snoRNAs occurs in a splicing-independent manner. Mol Cell Biol 26: 2540-9.
    • (2006) Mol Cell Biol , vol.26 , pp. 2540-2549
    • Richard, P.1    Kiss, A.M.2    Darzacq, X.3    Kiss, T.4
  • 39
    • 0036848091 scopus 로고    scopus 로고
    • The SR protein SRp38 represses splicing in M phase cells
    • Shin C, Manley JL. 2002. The SR protein SRp38 represses splicing in M phase cells. Cell 111: 407-17.
    • (2002) Cell , vol.111 , pp. 407-417
    • Shin, C.1    Manley, J.L.2
  • 40
    • 0030980312 scopus 로고    scopus 로고
    • Mitotic repression of the transcriptional machinery
    • Gottesfeld JM, Forbes DJ. 2003. Mitotic repression of the transcriptional machinery. Trends Biochem Sci 22: 197-202.
    • (2003) Trends Biochem Sci , vol.22 , pp. 197-202
    • Gottesfeld, J.M.1    Forbes, D.J.2
  • 41
    • 72149122408 scopus 로고    scopus 로고
    • A reconfigured pattern of MLL occupancy within mitotic chromatin promotes rapid transcriptional reactivation following mitotic exit
    • Blobel GA, Kadauke S, Wang E, Lau AW, et al. 2009. A reconfigured pattern of MLL occupancy within mitotic chromatin promotes rapid transcriptional reactivation following mitotic exit. Mol Cell 36: 970-83.
    • (2009) Mol Cell , vol.36 , pp. 970-983
    • Blobel, G.A.1    Kadauke, S.2    Wang, E.3    Lau, A.W.4
  • 42
    • 70350023619 scopus 로고    scopus 로고
    • The maternal-to-zygotic transition: a play in two acts
    • Tadros W, Lipshitz HD. 2009. The maternal-to-zygotic transition: a play in two acts. Development 136: 3033-42.
    • (2009) Development , vol.136 , pp. 3033-3042
    • Tadros, W.1    Lipshitz, H.D.2
  • 43
    • 84858771305 scopus 로고    scopus 로고
    • Identification of early zygotic genes in the yellow fever mosquito Aedes aegypti and discovery of a motif involved in early zygotic genome activation
    • Biedler JK, Hu W, Tae H, Tu Z. 2012. Identification of early zygotic genes in the yellow fever mosquito Aedes aegypti and discovery of a motif involved in early zygotic genome activation. PLoS One 7: e33933.
    • (2012) PLoS One , vol.7 , pp. e33933
    • Biedler, J.K.1    Hu, W.2    Tae, H.3    Tu, Z.4
  • 44
    • 84895904232 scopus 로고    scopus 로고
    • The earliest transcribed zygotic genes are short, newly evolved, and different across species
    • Heyn P, Kircher M, Dahl A, Kelso J, et al. 2014. The earliest transcribed zygotic genes are short, newly evolved, and different across species. Cell Rep 6: 285-92.
    • (2014) Cell Rep , vol.6 , pp. 285-292
    • Heyn, P.1    Kircher, M.2    Dahl, A.3    Kelso, J.4
  • 45
    • 84910660691 scopus 로고    scopus 로고
    • Transcript length mediates developmental timing of gene expression across Drosophila
    • Artieri CG, Fraser HB. 2014. Transcript length mediates developmental timing of gene expression across Drosophila. Mol Biol Evol 31: 2879-89.
    • (2014) Mol Biol Evol , vol.31 , pp. 2879-2889
    • Artieri, C.G.1    Fraser, H.B.2
  • 46
    • 85006411606 scopus 로고    scopus 로고
    • Requirement for highly efficient pre-mRNA splicing during Drosophila early embryonic development
    • Guilgur LG, Prudêncio P, Sobral D, Liszekova D, et al. 2014. Requirement for highly efficient pre-mRNA splicing during Drosophila early embryonic development. eLife 3: e02181.
    • (2014) eLife , vol.3 , pp. e02181
    • Guilgur, L.G.1    Prudêncio, P.2    Sobral, D.3    Liszekova, D.4
  • 47
    • 77950477577 scopus 로고    scopus 로고
    • Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis
    • Strzelecka M, Trowitzsch S, Weber G, Lührmann R, et al. 2010. Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis. Nat Struct Mol Biol 17: 403-9.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 403-409
    • Strzelecka, M.1    Trowitzsch, S.2    Weber, G.3    Lührmann, R.4
  • 48
    • 18344381110 scopus 로고    scopus 로고
    • Cell cycle in mouse development
    • Ciemerych MA, Sicinski P. 2005. Cell cycle in mouse development. Oncogene 24: 2877-98.
    • (2005) Oncogene , vol.24 , pp. 2877-2898
    • Ciemerych, M.A.1    Sicinski, P.2
  • 49
    • 80053330640 scopus 로고    scopus 로고
    • The snail repressor inhibits release, not elongation, of paused Pol II in the Drosophila embryo
    • Bothma JP, Magliocco J, Levine M. 2011. The snail repressor inhibits release, not elongation, of paused Pol II in the Drosophila embryo. Curr Biol 21: 1571-7.
    • (2011) Curr Biol , vol.21 , pp. 1571-1577
    • Bothma, J.P.1    Magliocco, J.2    Levine, M.3
  • 50
    • 0031039086 scopus 로고    scopus 로고
    • Transcription-dependent induction of G1 phase during the zebra fish midblastula transition
    • Zamir E, Kam Z, Yarden A. 1997. Transcription-dependent induction of G1 phase during the zebra fish midblastula transition. Mol Cell Biol 17: 529-36.
    • (1997) Mol Cell Biol , vol.17 , pp. 529-536
    • Zamir, E.1    Kam, Z.2    Yarden, A.3
  • 51
    • 58849098557 scopus 로고    scopus 로고
    • G2 acquisition by transcription-independent mechanism at the zebrafish midblastula transition
    • Dalle Nogare DE, Pauerstein PT, Lane ME. 2009. G2 acquisition by transcription-independent mechanism at the zebrafish midblastula transition. Dev Biol 326: 131-42.
    • (2009) Dev Biol , vol.326 , pp. 131-142
    • Dalle Nogare, D.E.1    Pauerstein, P.T.2    Lane, M.E.3
  • 52
    • 84864086201 scopus 로고    scopus 로고
    • Human intronless genes: functional groups, associated diseases, evolution, and mRNA processing in absence of splicing
    • Grzybowska EA. 2012. Human intronless genes: functional groups, associated diseases, evolution, and mRNA processing in absence of splicing. Biochem Biophys Res Commun 424: 1-6.
    • (2012) Biochem Biophys Res Commun , vol.424 , pp. 1-6
    • Grzybowska, E.A.1
  • 53
    • 54149091257 scopus 로고    scopus 로고
    • Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail
    • Marzluff WF, Wagner EJ, Duronio RJ. 2008. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 9: 843-54.
    • (2008) Nat Rev Genet , vol.9 , pp. 843-854
    • Marzluff, W.F.1    Wagner, E.J.2    Duronio, R.J.3
  • 54
    • 0022539155 scopus 로고
    • Parameters controlling transcriptional activation during early Drosophila development
    • Edgar BA, Schubiger G. 1986. Parameters controlling transcriptional activation during early Drosophila development. Cell 44: 871-7.
    • (1986) Cell , vol.44 , pp. 871-877
    • Edgar, B.A.1    Schubiger, G.2
  • 55
    • 84255198334 scopus 로고    scopus 로고
    • Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes
    • Helmrich A, Ballarino M, Tora L. 2011. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol Cell 44: 966-77.
    • (2011) Mol Cell , vol.44 , pp. 966-977
    • Helmrich, A.1    Ballarino, M.2    Tora, L.3
  • 56
    • 0027409056 scopus 로고
    • Characterization of the unusually rapid cell cycles during rat gastrulation
    • Mac Auley A, Werb Z, Mirkes PE. 1993. Characterization of the unusually rapid cell cycles during rat gastrulation. Development 117: 873-83.
    • (1993) Development , vol.117 , pp. 873-883
    • Mac Auley, A.1    Werb, Z.2    Mirkes, P.E.3
  • 57
    • 0029026103 scopus 로고
    • The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall
    • Takahashi T, Nowakowski RS, Caviness VS. 1995. The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J Neurosci 15: 6046-57.
    • (1995) J Neurosci , vol.15 , pp. 6046-6057
    • Takahashi, T.1    Nowakowski, R.S.2    Caviness, V.S.3
  • 58
    • 0021213870 scopus 로고
    • Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene
    • Greenberg ME, Ziff EB. 1984. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311: 433-8.
    • (1984) Nature , vol.311 , pp. 433-438
    • Greenberg, M.E.1    Ziff, E.B.2
  • 59
    • 80053137344 scopus 로고    scopus 로고
    • Neural-specific elongation of 3' UTRs during Drosophila development
    • Hilgers V, Perry MW, Hendrix D, Stark A, et al. 2011. Neural-specific elongation of 3' UTRs during Drosophila development. Proc Natl Acad Sci USA 108: 15864-9.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 15864-15869
    • Hilgers, V.1    Perry, M.W.2    Hendrix, D.3    Stark, A.4
  • 60
    • 84861179159 scopus 로고    scopus 로고
    • Global patterns of tissue-specific alternative polyadenylation in Drosophila
    • Smibert P, Miura P, Westholm JO, Shenker S, et al. 2012. Global patterns of tissue-specific alternative polyadenylation in Drosophila. Cell Rep 1: 277-89.
    • (2012) Cell Rep , vol.1 , pp. 277-289
    • Smibert, P.1    Miura, P.2    Westholm, J.O.3    Shenker, S.4
  • 61
    • 84878151459 scopus 로고    scopus 로고
    • Alternative cleavage and polyadenylation: the long and short of it
    • Tian B, Manley JL. 2013. Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem Sci 38: 312-20.
    • (2013) Trends Biochem Sci , vol.38 , pp. 312-320
    • Tian, B.1    Manley, J.L.2
  • 62
    • 84856165921 scopus 로고    scopus 로고
    • Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock
    • Oates AC, Morelli LG, Ares S. 2012. Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 139: 625-39.
    • (2012) Development , vol.139 , pp. 625-639
    • Oates, A.C.1    Morelli, L.G.2    Ares, S.3
  • 63
    • 84887466041 scopus 로고    scopus 로고
    • Transcript processing and export kinetics are rate-limiting steps in expressing vertebrate segmentation clock genes
    • Hoyle NP, Ish-Horowicz D. 2013. Transcript processing and export kinetics are rate-limiting steps in expressing vertebrate segmentation clock genes. Proc Natl Acad Sci USA 110: E4316-24.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. E4316-E4324
    • Hoyle, N.P.1    Ish-Horowicz, D.2
  • 64
    • 79952766407 scopus 로고    scopus 로고
    • Intronic delay is essential for oscillatory expression in the segmentation clock
    • Takashima Y, Ohtsuka T, González A, Miyachi H, et al. 2011. Intronic delay is essential for oscillatory expression in the segmentation clock. Proc Natl Acad Sci USA 108: 3300-5.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 3300-3305
    • Takashima, Y.1    Ohtsuka, T.2    González, A.3    Miyachi, H.4
  • 65
    • 84873152971 scopus 로고    scopus 로고
    • Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene
    • Harima Y, Takashima Y, Ueda Y, Ohtsuka T, et al. 2013. Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene. Cell Rep 3: 1-7.
    • (2013) Cell Rep , vol.3 , pp. 1-7
    • Harima, Y.1    Takashima, Y.2    Ueda, Y.3    Ohtsuka, T.4
  • 66
    • 84860521651 scopus 로고    scopus 로고
    • Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.
    • Scherer S. 2010. Guide to the Human Genome. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.
    • (2010) Guide to the Human Genome
    • Scherer, S.1
  • 67
    • 23744515307 scopus 로고    scopus 로고
    • Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets
    • Denis MM, Tolley ND, Bunting M, Schwertz H, et al. 2005. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 122: 379-91.
    • (2005) Cell , vol.122 , pp. 379-391
    • Denis, M.M.1    Tolley, N.D.2    Bunting, M.3    Schwertz, H.4
  • 68
    • 0002485292 scopus 로고
    • The origin and early evolution of the eukaryotic cell
    • Cavalier-Smith T. 1981. The origin and early evolution of the eukaryotic cell. Mol Cell Asp Microb Evol 32: 33-84.
    • (1981) Mol Cell Asp Microb Evol , vol.32 , pp. 33-84
    • Cavalier-Smith, T.1
  • 69
    • 0003019233 scopus 로고
    • Evolution of the eukaryotic genome
    • Broda P, Oliver SG, Sims PFG, ed;. UK: Cambridge University Press.
    • Cavalier-Smith T. 1993. Evolution of the eukaryotic genome. In Broda P, Oliver SG, Sims PFG, ed; The Eukaryotic Genome: Organisation and Regulation. UK: Cambridge University Press.
    • (1993) The Eukaryotic Genome: Organisation and Regulation
    • Cavalier-Smith, T.1
  • 70
    • 0016792854 scopus 로고
    • The effect of gene concentration and relative gene dosage on gene output in Escherichia coli
    • Chandler MG, Pritchard RH. 1975. The effect of gene concentration and relative gene dosage on gene output in Escherichia coli. Mol Gen Genet 138: 127-41.
    • (1975) Mol Gen Genet , vol.138 , pp. 127-141
    • Chandler, M.G.1    Pritchard, R.H.2
  • 71
    • 84874013460 scopus 로고    scopus 로고
    • Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution
    • Neme R, Tautz D. 2013. Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics 14: 117.
    • (2013) BMC Genomics , vol.14 , pp. 117
    • Neme, R.1    Tautz, D.2
  • 72
    • 0028605603 scopus 로고
    • Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony
    • Duboule D. 1994. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Dev Suppl 135-42.
    • (1994) Dev Suppl , pp. 135-142
    • Duboule, D.1
  • 74
    • 85027931386 scopus 로고    scopus 로고
    • Quantitative imaging of transcription in living Drosophila embryos links polymerase activity to patterning
    • Garcia HG, Tikhonov M, Lin A, Gregor T. 2013. Quantitative imaging of transcription in living Drosophila embryos links polymerase activity to patterning. Curr Biol 23: 2140-5.
    • (2013) Curr Biol , vol.23 , pp. 2140-2145
    • Garcia, H.G.1    Tikhonov, M.2    Lin, A.3    Gregor, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.