메뉴 건너뛰기




Volumn 33, Issue , 2014, Pages 266-274

Robust stochastic principal component analysis

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION ALGORITHMS; ARTIFICIAL INTELLIGENCE; NUMERICAL METHODS; STATISTICS; STOCHASTIC SYSTEMS;

EID: 84955462631     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (43)

References (45)
  • 4
    • 48849085774 scopus 로고    scopus 로고
    • The tradeoffs of large scale learning
    • L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In NIPS'07, pages 161-168, 2007.
    • (2007) NIPS'07 , pp. 161-168
    • Bottou, L.1    Bousquet, O.2
  • 5
    • 84944416149 scopus 로고    scopus 로고
    • Incremental singular value decomposition of uncertain data with missing values
    • M. Brand. Incremental singular value decomposition of uncertain data with missing values. In ECCV, pages 707-720, 2002.
    • (2002) ECCV , pp. 707-720
    • Brand, M.1
  • 10
    • 50949133940 scopus 로고    scopus 로고
    • Exponentiated gradient algorithms for conditional random fields and max-margin Markov networks
    • June
    • M. Collins, A. Globerson, T. Koo, X. Carreras, and P. L. Bartlett. Exponentiated gradient algorithms for conditional random fields and max-margin markov networks. J. Mach. Learn. Res., 9:1775-1822, June 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1775-1822
    • Collins, M.1    Globerson, A.2    Koo, T.3    Carreras, X.4    Bartlett, P.L.5
  • 11
    • 18744376591 scopus 로고    scopus 로고
    • High breakdown estimators for principal components: The projection-pursuit approach revisited
    • C. Croux and A. Ruiz-Gazen. High breakdown estimators for principal components: the projection-pursuit approach revisited. Journal of Multivariate Analysis, 95(1):206-226, 2005.
    • (2005) Journal of Multivariate Analysis , vol.95 , Issue.1 , pp. 206-226
    • Croux, C.1    Ruiz-Gazen, A.2
  • 13
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • Apr.
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Comput. Vis. Image Underst., 106(1):59-70, Apr. 2007.
    • (2007) Comput. Vis. Image Underst. , vol.106 , Issue.1 , pp. 59-70
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 16
    • 24944474870 scopus 로고    scopus 로고
    • The VIMOS VLT deep survey. First epoch VVDS-deep survey: 11564 spectra with 17.5
    • O. L. Fèvre et al. The VIMOS VLT deep survey. first epoch VVDS-Deep survey: 11564 spectra with 17.5
    • (2005) Astronomy and Astrophysics , vol.439 , pp. 845
    • Fèvre, O.L.1
  • 17
    • 0019574599 scopus 로고
    • Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
    • M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381-395, 1981.
    • (1981) Communications of the ACM , vol.24 , Issue.6 , pp. 381-395
    • Fischler, M.A.1    Bolles, R.C.2
  • 18
    • 0002954125 scopus 로고
    • Robust estimates, residuals, and outlier detection with multiresponse data
    • R. Gnanadesikan and J. R. Kettenring. Robust estimates, residuals, and outlier detection with multiresponse data. Biometrics, pages 81-124, 1972.
    • (1972) Biometrics , pp. 81-124
    • Gnanadesikan, R.1    Kettenring, J.R.2
  • 22
    • 84947791529 scopus 로고    scopus 로고
    • Wiley Series in Probability and Statistics. Wiley, Hoboken, NJ, 2nd edition
    • P. J. Huber and E. M. Ronchetti. Robust Statistics. Wiley Series in Probability and Statistics. Wiley, Hoboken, NJ, 2nd edition, 2009.
    • (2009) Robust Statistics
    • Huber, P.J.1    Ronchetti, E.M.2
  • 23
    • 13444287831 scopus 로고    scopus 로고
    • ROBPCA: A new approach to robust principal component analysis
    • M. Hubert, P. J. Rousseeuw, and K. V. Branden. ROBPCA: a new approach to robust principal component analysis. Technometrics, 47(1), 2005.
    • (2005) Technometrics , vol.47 , Issue.1
    • Hubert, M.1    Rousseeuw, P.J.2    Branden, K.V.3
  • 24
    • 0003946510 scopus 로고    scopus 로고
    • Springer Series in Statistics. Springer, 2nd edition
    • I. T. Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer, 2nd edition, 2002.
    • (2002) Principal Component Analysis
    • Jolliffe, I.T.1
  • 26
    • 18144420071 scopus 로고    scopus 로고
    • Acquiring linear subspaces for face recognition under variable lighting
    • K. C. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intelligence, 27(5):684-698, 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intelligence , vol.27 , Issue.5 , pp. 684-698
    • Lee, K.C.1    Ho, J.2    Kriegman, D.3
  • 30
    • 0001337027 scopus 로고
    • Projection-pursuit approach to robust dispersion matrices and principal components: Primary theory and Monte Carlo
    • G. Li and Z. Chen. Projection-Pursuit Approach to Robust Dispersion Matrices and Principal Components: Primary Theory and Monte Carlo. Journal of the American Statistical Association, 80(391):759-766, 1985.
    • (1985) Journal of the American Statistical Association , vol.80 , Issue.391 , pp. 759-766
    • Li, G.1    Chen, Z.2
  • 31
    • 2442471723 scopus 로고    scopus 로고
    • On incremental and robust subspace learning
    • Y. Li. On incremental and robust subspace learning. Pattern recognition, 37(7):1509-1518, 2004.
    • (2004) Pattern Recognition , vol.37 , Issue.7 , pp. 1509-1518
    • Li, Y.1
  • 33
    • 84859831899 scopus 로고    scopus 로고
    • Two proposals for robust PCA using semidefinite programming
    • M. McCoy and J. Tropp. Two proposals for robust PCA using semidefinite programming. Elec. J. Stat., 5:1123-1160, 2011.
    • (2011) Elec. J. Stat. , vol.5 , pp. 1123-1160
    • McCoy, M.1    Tropp, J.2
  • 34
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • January
    • A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574-1609, January 2009.
    • (2009) SIAM Journal on Optimization , vol.19 , Issue.4 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 35
    • 78549288866 scopus 로고    scopus 로고
    • Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
    • B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM review, 52(3):471-501, 2010.
    • (2010) SIAM Review , vol.52 , Issue.3 , pp. 471-501
    • Recht, B.1    Fazel, M.2    Parrilo, P.A.3
  • 36
    • 34547964973 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient SOlver for SVM
    • S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal Estimated sub-GrAdient SOlver for SVM. In ICML'07, pages 807-814, 2007.
    • (2007) ICML'07 , pp. 807-814
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3
  • 37
    • 56449110590 scopus 로고    scopus 로고
    • SVM optimization: Inverse dependence on training set size
    • S. Shalev-Shwartz and N. Srebro. SVM optimization: Inverse dependence on training set size. In ICML'08, pages 928-935, 2008.
    • (2008) ICML'08 , pp. 928-935
    • Shalev-Shwartz, S.1    Srebro, N.2
  • 40
    • 56349165656 scopus 로고    scopus 로고
    • Randomized online PCA algorithms with regret bounds that are logarithmic in the dimension
    • Oct.
    • M. K. Warmuth and D. Kuzmin. Randomized Online PCA Algorithms with Regret Bounds that are Logarithmic in the Dimension. Journal of Machine Learning Research, 9:2287-2320, Oct. 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2287-2320
    • Warmuth, M.K.1    Kuzmin, D.2
  • 41
    • 84860606154 scopus 로고    scopus 로고
    • Principal component analysis with contaminated data: The high dimensional case
    • H. Xu, C. Caramanis, and S. Mannor. Principal component analysis with contaminated data: The high dimensional case. In COLT, 2010.
    • (2010) COLT
    • Xu, H.1    Caramanis, C.2    Mannor, S.3
  • 43
    • 0029184173 scopus 로고
    • Robust principal component analysis by self-organizing rules based on statistical physics approach
    • L. Xu and A. Yuille. Robust principal component analysis by self-organizing rules based on statistical physics approach. Neural Networks, IEEE Transactions on, 6(1):131-143, 1995.
    • (1995) Neural Networks, IEEE Transactions On , vol.6 , Issue.1 , pp. 131-143
    • Xu, L.1    Yuille, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.