-
1
-
-
84875700547
-
Stochastic optimization for PCA and PLS
-
R. Arora, A. Cotter, K. Livescu, and N. Srebro. Stochastic optimization for PCA and PLS. In Allerton Conference, pages 861-868, 2012.
-
(2012)
Allerton Conference
, pp. 861-868
-
-
Arora, R.1
Cotter, A.2
Livescu, K.3
Srebro, N.4
-
4
-
-
48849085774
-
The tradeoffs of large scale learning
-
L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In NIPS'07, pages 161-168, 2007.
-
(2007)
NIPS'07
, pp. 161-168
-
-
Bottou, L.1
Bousquet, O.2
-
5
-
-
84944416149
-
Incremental singular value decomposition of uncertain data with missing values
-
M. Brand. Incremental singular value decomposition of uncertain data with missing values. In ECCV, pages 707-720, 2002.
-
(2002)
ECCV
, pp. 707-720
-
-
Brand, M.1
-
6
-
-
63549098106
-
Reliable eigenspectra for new generation surveys
-
T. Budavári, V. Wild, A. S. Szalay, L. Dobos, and C.-W. Yip. Reliable eigenspectra for new generation surveys. Monthly Notices of the Royal Astronomical Society, 394(3):1496-1502, 2009.
-
(2009)
Monthly Notices of the Royal Astronomical Society
, vol.394
, Issue.3
, pp. 1496-1502
-
-
Budavári, T.1
Wild, V.2
Szalay, A.S.3
Dobos, L.4
Yip, C.-W.5
-
7
-
-
79960675858
-
-
E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of the ACM (JACM), 58(3):11, 2011.
-
(2011)
Robust Principal Component Analysis? Journal of the ACM (JACM)
, vol.58
, Issue.3
, pp. 11
-
-
Candès, E.J.1
Li, X.2
Ma, Y.3
Wright, J.4
-
8
-
-
4544304381
-
On the generalization ability of on-line learning algorithms
-
N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning algorithms. Information Theory, IEEE Transactions on, 50(9):2050-2057, 2004.
-
(2004)
Information Theory, IEEE Transactions On
, vol.50
, Issue.9
, pp. 2050-2057
-
-
Cesa-Bianchi, N.1
Conconi, A.2
Gentile, C.3
-
9
-
-
79960591511
-
Rank-sparsity incoherence for matrix decomposition
-
V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky. Rank-sparsity incoherence for matrix decomposition. SIAM J. Optim., 21(2):572-596, 2011.
-
(2011)
SIAM J. Optim.
, vol.21
, Issue.2
, pp. 572-596
-
-
Chandrasekaran, V.1
Sanghavi, S.2
Parrilo, P.A.3
Willsky, A.S.4
-
10
-
-
50949133940
-
Exponentiated gradient algorithms for conditional random fields and max-margin Markov networks
-
June
-
M. Collins, A. Globerson, T. Koo, X. Carreras, and P. L. Bartlett. Exponentiated gradient algorithms for conditional random fields and max-margin markov networks. J. Mach. Learn. Res., 9:1775-1822, June 2008.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 1775-1822
-
-
Collins, M.1
Globerson, A.2
Koo, T.3
Carreras, X.4
Bartlett, P.L.5
-
11
-
-
18744376591
-
High breakdown estimators for principal components: The projection-pursuit approach revisited
-
C. Croux and A. Ruiz-Gazen. High breakdown estimators for principal components: the projection-pursuit approach revisited. Journal of Multivariate Analysis, 95(1):206-226, 2005.
-
(2005)
Journal of Multivariate Analysis
, vol.95
, Issue.1
, pp. 206-226
-
-
Croux, C.1
Ruiz-Gazen, A.2
-
13
-
-
34047174674
-
Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
-
Apr.
-
L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Comput. Vis. Image Underst., 106(1):59-70, Apr. 2007.
-
(2007)
Comput. Vis. Image Underst.
, vol.106
, Issue.1
, pp. 59-70
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
16
-
-
24944474870
-
The VIMOS VLT deep survey. First epoch VVDS-deep survey: 11564 spectra with 17.5
-
O. L. Fèvre et al. The VIMOS VLT deep survey. first epoch VVDS-Deep survey: 11564 spectra with 17.5
-
(2005)
Astronomy and Astrophysics
, vol.439
, pp. 845
-
-
Fèvre, O.L.1
-
17
-
-
0019574599
-
Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
-
M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381-395, 1981.
-
(1981)
Communications of the ACM
, vol.24
, Issue.6
, pp. 381-395
-
-
Fischler, M.A.1
Bolles, R.C.2
-
18
-
-
0002954125
-
Robust estimates, residuals, and outlier detection with multiresponse data
-
R. Gnanadesikan and J. R. Kettenring. Robust estimates, residuals, and outlier detection with multiresponse data. Biometrics, pages 81-124, 1972.
-
(1972)
Biometrics
, pp. 81-124
-
-
Gnanadesikan, R.1
Kettenring, J.R.2
-
19
-
-
0003841907
-
-
Wiley-Interscience, New York, April
-
F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. Robust Statistics: The Approach Based on Influence Functions. Wiley-Interscience, New York, April 2005.
-
(2005)
Robust Statistics: The Approach Based on Influence Functions
-
-
Hampel, F.R.1
Ronchetti, E.M.2
Rousseeuw, P.J.3
Stahel, W.A.4
-
22
-
-
84947791529
-
-
Wiley Series in Probability and Statistics. Wiley, Hoboken, NJ, 2nd edition
-
P. J. Huber and E. M. Ronchetti. Robust Statistics. Wiley Series in Probability and Statistics. Wiley, Hoboken, NJ, 2nd edition, 2009.
-
(2009)
Robust Statistics
-
-
Huber, P.J.1
Ronchetti, E.M.2
-
23
-
-
13444287831
-
ROBPCA: A new approach to robust principal component analysis
-
M. Hubert, P. J. Rousseeuw, and K. V. Branden. ROBPCA: a new approach to robust principal component analysis. Technometrics, 47(1), 2005.
-
(2005)
Technometrics
, vol.47
, Issue.1
-
-
Hubert, M.1
Rousseeuw, P.J.2
Branden, K.V.3
-
24
-
-
0003946510
-
-
Springer Series in Statistics. Springer, 2nd edition
-
I. T. Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer, 2nd edition, 2002.
-
(2002)
Principal Component Analysis
-
-
Jolliffe, I.T.1
-
26
-
-
18144420071
-
Acquiring linear subspaces for face recognition under variable lighting
-
K. C. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intelligence, 27(5):684-698, 2005.
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intelligence
, vol.27
, Issue.5
, pp. 684-698
-
-
Lee, K.C.1
Ho, J.2
Kriegman, D.3
-
27
-
-
84877731812
-
-
ArXiv e-prints, Feb.
-
G. Lerman, M. McCoy, J. A. Tropp, and T. Zhang. Robust computation of linear models, or how to find a needle in a haystack. ArXiv e-prints, Feb. 2012.
-
(2012)
Robust Computation of Linear Models, or How to Find a Needle in a Haystack
-
-
Lerman, G.1
McCoy, M.2
Tropp, J.A.3
Zhang, T.4
-
30
-
-
0001337027
-
Projection-pursuit approach to robust dispersion matrices and principal components: Primary theory and Monte Carlo
-
G. Li and Z. Chen. Projection-Pursuit Approach to Robust Dispersion Matrices and Principal Components: Primary Theory and Monte Carlo. Journal of the American Statistical Association, 80(391):759-766, 1985.
-
(1985)
Journal of the American Statistical Association
, vol.80
, Issue.391
, pp. 759-766
-
-
Li, G.1
Chen, Z.2
-
31
-
-
2442471723
-
On incremental and robust subspace learning
-
Y. Li. On incremental and robust subspace learning. Pattern recognition, 37(7):1509-1518, 2004.
-
(2004)
Pattern Recognition
, vol.37
, Issue.7
, pp. 1509-1518
-
-
Li, Y.1
-
33
-
-
84859831899
-
Two proposals for robust PCA using semidefinite programming
-
M. McCoy and J. Tropp. Two proposals for robust PCA using semidefinite programming. Elec. J. Stat., 5:1123-1160, 2011.
-
(2011)
Elec. J. Stat.
, vol.5
, pp. 1123-1160
-
-
McCoy, M.1
Tropp, J.2
-
34
-
-
70450197241
-
Robust stochastic approximation approach to stochastic programming
-
January
-
A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574-1609, January 2009.
-
(2009)
SIAM Journal on Optimization
, vol.19
, Issue.4
, pp. 1574-1609
-
-
Nemirovski, A.1
Juditsky, A.2
Lan, G.3
Shapiro, A.4
-
35
-
-
78549288866
-
Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
-
B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM review, 52(3):471-501, 2010.
-
(2010)
SIAM Review
, vol.52
, Issue.3
, pp. 471-501
-
-
Recht, B.1
Fazel, M.2
Parrilo, P.A.3
-
36
-
-
34547964973
-
Pegasos: Primal estimated sub-gradient SOlver for SVM
-
S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal Estimated sub-GrAdient SOlver for SVM. In ICML'07, pages 807-814, 2007.
-
(2007)
ICML'07
, pp. 807-814
-
-
Shalev-Shwartz, S.1
Singer, Y.2
Srebro, N.3
-
37
-
-
56449110590
-
SVM optimization: Inverse dependence on training set size
-
S. Shalev-Shwartz and N. Srebro. SVM optimization: Inverse dependence on training set size. In ICML'08, pages 928-935, 2008.
-
(2008)
ICML'08
, pp. 928-935
-
-
Shalev-Shwartz, S.1
Srebro, N.2
-
40
-
-
56349165656
-
Randomized online PCA algorithms with regret bounds that are logarithmic in the dimension
-
Oct.
-
M. K. Warmuth and D. Kuzmin. Randomized Online PCA Algorithms with Regret Bounds that are Logarithmic in the Dimension. Journal of Machine Learning Research, 9:2287-2320, Oct. 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2287-2320
-
-
Warmuth, M.K.1
Kuzmin, D.2
-
41
-
-
84860606154
-
Principal component analysis with contaminated data: The high dimensional case
-
H. Xu, C. Caramanis, and S. Mannor. Principal component analysis with contaminated data: The high dimensional case. In COLT, 2010.
-
(2010)
COLT
-
-
Xu, H.1
Caramanis, C.2
Mannor, S.3
-
42
-
-
84877776015
-
Robust PCA via outlier pursuit
-
H. Xu, C. Caramanis, and S. Sanghavi. Robust PCA via outlier pursuit. Information Theory, IEEE Transactions on, PP(99):1, 2012.
-
(2012)
Information Theory, IEEE Transactions On
, vol.PP
, Issue.99
, pp. 1
-
-
Xu, H.1
Caramanis, C.2
Sanghavi, S.3
-
43
-
-
0029184173
-
Robust principal component analysis by self-organizing rules based on statistical physics approach
-
L. Xu and A. Yuille. Robust principal component analysis by self-organizing rules based on statistical physics approach. Neural Networks, IEEE Transactions on, 6(1):131-143, 1995.
-
(1995)
Neural Networks, IEEE Transactions On
, vol.6
, Issue.1
, pp. 131-143
-
-
Xu, L.1
Yuille, A.2
-
45
-
-
77953223144
-
Median K-flats for hybrid linear modeling with many outliers
-
Kyoto, Japan
-
T. Zhang, A. Szlam, and G. Lerman. Median K-flats for hybrid linear modeling with many outliers. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on Computer Vision, pages 234-241, Kyoto, Japan, 2009.
-
(2009)
Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on Computer Vision
, pp. 234-241
-
-
Zhang, T.1
Szlam, A.2
Lerman, G.3
|