메뉴 건너뛰기




Volumn 13, Issue 4, 2016, Pages 310-322

Inferring causal molecular networks: Empirical assessment through a community-based effort

(135)  Hill, Steven M a   Heiser, Laura M b,c   Cokelaer, Thomas d,bg   Linger, Michael e   Nesser, Nicole K c   Carlin, Daniel E f   Zhang, Yang g,bh   Sokolov, Artem f   Paull, Evan O f   Wong, Chris K f   Graim, Kiley f   Bivol, Adrian f   Wang, Haizhou g,bi   Zhu, Fan a   Afsari, Bahman i   Danilova, Ludmila V i,j   Favorov, Alexander V c,i,k   Lee, Wai Shing i   Taylor, Dane l,m   Hu, Chenyue W n   more..


Author keywords

[No Author keywords available]

Indexed keywords

PHOSPHOPROTEIN; PROTEIN TYROSINE KINASE;

EID: 84978621488     PISSN: 15487091     EISSN: 15487105     Source Type: Journal    
DOI: 10.1038/nmeth.3773     Document Type: Article
Times cited : (206)

References (48)
  • 2
    • 38449088751 scopus 로고    scopus 로고
    • Inferring cellular networks—a review
    • Markowetz, F. & Spang, R. Inferring cellular networks—a review. BMC Bioinformatics 8, S5 (2007).
    • (2007) BMC Bioinformatics , vol.8 , pp. 5
    • Markowetz, F.1    Spang, R.2
  • 3
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: Data integration in dynamic models—a review
    • Hecker, M., Lambeck, S., Toepfer, S., van Someren, E. & Guthke, R. Gene regulatory network inference: data integration in dynamic models—a review. Biosystems 96, 86-103 (2009).
    • (2009) Biosystems , vol.96 , pp. 86-103
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3    Van Someren, E.4    Guthke, R.5
  • 4
    • 77957110013 scopus 로고    scopus 로고
    • Advantages and limitations of current network inference methods
    • De Smet, R. & Marchal, K. Advantages and limitations of current network inference methods. Nat. Rev. Microbiol. 8, 717-729 (2010).
    • (2010) Nat. Rev. Microbiol , vol.8 , pp. 717-729
    • De Smet, R.1    Marchal, K.2
  • 5
    • 77950910419 scopus 로고    scopus 로고
    • Revealing strengths and weaknesses of methods for gene network inference
    • Marbach, D. et al. Revealing strengths and weaknesses of methods for gene network inference. Proc. Natl. Acad. Sci. USA 107, 6286-6291 (2010).
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 6286-6291
    • Marbach, D.1
  • 6
    • 84892376552 scopus 로고    scopus 로고
    • Supervised, semi-supervised and unsupervised inference of gene regulatory networks
    • Maetschke, S.R., Madhamshettiwar, P.B., Davis, M.J. & Ragan, M.A. Supervised, semi-supervised and unsupervised inference of gene regulatory networks. Brief. Bioinform. 15, 195-211 (2014).
    • (2014) Brief. Bioinform , vol.15 , pp. 195-211
    • Maetschke, S.R.1    Madhamshettiwar, P.B.2    Davis, M.J.3    Ragan, M.A.4
  • 7
    • 84856094560 scopus 로고    scopus 로고
    • Differential network biology
    • Ideker, T. & Krogan, N.J. Differential network biology. Mol. Syst. Biol. 8, 565 (2012).
    • (2012) Mol. Syst. Biol , vol.8 , pp. 565
    • Ideker, T.1    Krogan, N.J.2
  • 8
    • 77953913791 scopus 로고    scopus 로고
    • From ‘differential expression’ to ‘differential networking’—identification of dysfunctional regulatory networks in diseases
    • de la Fuente, A. From ‘differential expression’ to ‘differential networking’—identification of dysfunctional regulatory networks in diseases. Trends Genet. 26, 326-333 (2010).
    • (2010) Trends Genet , vol.26 , pp. 326-333
    • De La Fuente, A.1
  • 9
    • 84868020742 scopus 로고    scopus 로고
    • Bayesian inference of signaling network topology in a cancer cell line
    • Hill, S.M. et al. Bayesian inference of signaling network topology in a cancer cell line. Bioinformatics 28, 2804-2810 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 2804-2810
    • Hill, S.M.1
  • 10
    • 80051692878 scopus 로고    scopus 로고
    • Comparing signaling networks between normal and transformed hepatocytes using discrete logical models
    • Saez-Rodriguez, J. et al. Comparing signaling networks between normal and transformed hepatocytes using discrete logical models. Cancer Res. 71, 5400-5411 (2011).
    • (2011) Cancer Res , vol.71 , pp. 5400-5411
    • Saez-Rodriguez, J.1
  • 11
    • 84892763562 scopus 로고    scopus 로고
    • Perturbation biology: Inferring signaling networks in cellular systems
    • Molinelli, E.J. et al. Perturbation biology: inferring signaling networks in cellular systems. PLoS Comput. Biol. 9, e1003290 (2013).
    • (2013) Plos Comput. Biol , vol.9
    • Molinelli, E.J.1
  • 12
    • 58549083142 scopus 로고    scopus 로고
    • Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data
    • Chen, W.W. et al. Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol. Syst. Biol. 5, 239 (2009).
    • (2009) Mol. Syst. Biol , vol.5 , pp. 239
    • Chen, W.W.1
  • 13
    • 84901814887 scopus 로고    scopus 로고
    • A pan-cancer proteomic perspective on The Cancer Genome Atlas
    • Akbani, R. et al. A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nat. Commun. 5, 3887 (2014).
    • (2014) Nat. Commun , vol.5 , pp. 3887
    • Akbani, R.1
  • 14
    • 84866467177 scopus 로고    scopus 로고
    • Integrating literature-constrained and data-driven inference of signalling networks
    • Eduati, F., De Las Rivas, J., Di Camillo, B., Toffolo, G. & Saez-Rodriguez, J. Integrating literature-constrained and data-driven inference of signalling networks. Bioinformatics 28, 2311-2317 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 2311-2317
    • Eduati, F.1    De Las Rivas, J.2    Di Camillo, B.3    Toffolo, G.4    Saez-Rodriguez, J.5
  • 15
    • 85044640312 scopus 로고    scopus 로고
    • Pearl, J. Causality: Models, Reasoning, and Inference 2nd edn. (Cambridge Univ. Press, 2009).
    • Pearl, J. Causality: Models, Reasoning, and Inference 2nd edn. (Cambridge Univ. Press, 2009).
  • 16
    • 17044423540 scopus 로고    scopus 로고
    • Are there algorithms that discover causal structure?
    • Freedman, D. & Humphreys, P. Are there algorithms that discover causal structure? Synthese 121, 29-54 (1999).
    • (1999) Synthese , vol.121 , pp. 29-54
    • Freedman, D.1    Humphreys, P.2
  • 17
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier, D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19, 2271-2282 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1
  • 19
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • Sachs, K., Perez, O. & Pe’er, D. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523-529 (2005).
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe’Er, D.3
  • 20
    • 85044641972 scopus 로고    scopus 로고
    • Spirtes, P., Glymour, C.N. & Scheines, R. Causation, Prediction, and Search 2nd edn. (MIT Press, 2000).
    • Spirtes, P., Glymour, C.N. & Scheines, R. Causation, Prediction, and Search 2nd edn. (MIT Press, 2000).
  • 21
    • 63049128934 scopus 로고    scopus 로고
    • A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches
    • Cantone, I. et al. A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137, 172-181 (2009).
    • (2009) Cell , vol.137 , pp. 172-181
    • Cantone, I.1
  • 22
    • 84870305264 scopus 로고    scopus 로고
    • Wisdom of crowds for robust gene network inference
    • Marbach, D. et al. Wisdom of crowds for robust gene network inference. Nat. Methods 9, 796-804 (2012).
    • (2012) Nat. Methods , vol.9 , pp. 796-804
    • Marbach, D.1
  • 23
    • 36249019789 scopus 로고    scopus 로고
    • Dialogue on reverse-engineering assessment and methods: The DREAM of high-throughput pathway inference
    • Stolovitzky, G., Monroe, D. & Califano, A. Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Ann. NY Acad. Sci. 1115, 1-22 (2007).
    • (2007) Ann. NY Acad. Sci , vol.1115 , pp. 1-22
    • Stolovitzky, G.1    Monroe, D.2    Califano, A.3
  • 25
    • 77949644952 scopus 로고    scopus 로고
    • Towards a rigorous assessment of systems biology models: The DREAM3 challenges
    • Prill, R.J. et al. Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PLoS ONE 5, e9202 (2010).
    • (2010) Plos ONE , vol.5
    • Prill, R.J.1
  • 27
    • 84893710009 scopus 로고    scopus 로고
    • Network topology and parameter estimation: From experimental design methods to gene regulatory network kinetics using a community based approach
    • Meyer, P. et al. Network topology and parameter estimation: from experimental design methods to gene regulatory network kinetics using a community based approach. BMC Syst. Biol. 8, 13 (2014).
    • (2014) BMC Syst. Biol , vol.8 , pp. 13
    • Meyer, P.1
  • 28
    • 33750456480 scopus 로고    scopus 로고
    • Reverse phase protein array: Validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells
    • Tibes, R. et al. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol. Cancer Ther. 5, 2512-2521 (2006).
    • (2006) Mol. Cancer Ther , vol.5 , pp. 2512-2521
    • Tibes, R.1
  • 29
    • 84904111890 scopus 로고    scopus 로고
    • Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels
    • Mertins, P. et al. Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol. Cell. Proteomics 13, 1690-1704 (2014).
    • (2014) Mol. Cell. Proteomics , vol.13 , pp. 1690-1704
    • Mertins, P.1
  • 30
    • 84856277549 scopus 로고    scopus 로고
    • Developing predictive molecular maps of human disease through community-based modeling
    • Derry, J.M.J. et al. Developing predictive molecular maps of human disease through community-based modeling. Nat. Genet. 44, 127-130 (2012).
    • (2012) Nat. Genet , vol.44 , pp. 127-130
    • Derry, J.M.J.1
  • 33
    • 84906549588 scopus 로고    scopus 로고
    • A community effort to assess and improve drug sensitivity prediction algorithms
    • Costello, J.C. et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat. Biotechnol. 32, 1202-1212 (2014).
    • (2014) Nat. Biotechnol , vol.32 , pp. 1202-1212
    • Costello, J.C.1
  • 34
    • 84877765675 scopus 로고    scopus 로고
    • Systematic analysis of challenge-driven improvements in molecular prognostic models for breast cancer
    • Margolin, A.A. et al. Systematic analysis of challenge-driven improvements in molecular prognostic models for breast cancer. Sci. Transl. Med. 5, 181re1 (2013).
    • (2013) Sci. Transl. Med , vol.5
    • Margolin, A.A.1
  • 35
    • 78651332286 scopus 로고    scopus 로고
    • Pathway Commons, a web resource for biological pathway data
    • Cerami, E.G. et al. Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res. 39, D685-D690 (2011).
    • (2011) Nucleic Acids Res , vol.39 , pp. D685-D690
    • Cerami, E.G.1
  • 36
    • 84873638356 scopus 로고    scopus 로고
    • Ckmeans.1d.dp: Optimal k-means clustering in one dimension by dynamic programming
    • Wang, H. & Song, M. Ckmeans.1d.dp: optimal k-means clustering in one dimension by dynamic programming. R J. 3, 29-33 (2011).
    • (2011) R J , vol.3 , pp. 29-33
    • Wang, H.1    Song, M.2
  • 37
    • 75149112670 scopus 로고    scopus 로고
    • AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity
    • Chresta, C.M. et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 70, 288-298 (2010).
    • (2010) Cancer Res , vol.70 , pp. 288-298
    • Chresta, C.M.1
  • 38
    • 77951641247 scopus 로고    scopus 로고
    • Predicting causal effects in large-scale systems from observational data
    • Maathuis, M.H., Colombo, D., Kalisch, M. & Bühlmann, P. Predicting causal effects in large-scale systems from observational data. Nat. Methods 7, 247-248 (2010).
    • (2010) Nat. Methods , vol.7 , pp. 247-248
    • Maathuis, M.H.1    Colombo, D.2    Kalisch, M.3    Bühlmann, P.4
  • 39
    • 84902160817 scopus 로고    scopus 로고
    • Inference and validation of predictive gene networks from biomedical literature and gene expression data
    • Olsen, C. et al. Inference and validation of predictive gene networks from biomedical literature and gene expression data. Genomics 103, 329-336 (2014).
    • (2014) Genomics , vol.103 , pp. 329-336
    • Olsen, C.1
  • 40
    • 0242490780 scopus 로고    scopus 로고
    • Cytoscape: A software environment for integrated models of biomolecular interaction networks
    • Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504 (2003).
    • (2003) Genome Res , vol.13 , pp. 2498-2504
    • Shannon, P.1
  • 41
    • 33845209913 scopus 로고    scopus 로고
    • A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes
    • Neve, R.M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515-527 (2006).
    • (2006) Cancer Cell , vol.10 , pp. 515-527
    • Neve, R.M.1
  • 42
    • 84859187259 scopus 로고    scopus 로고
    • Systematic identification of genomic markers of drug sensitivity in cancer cells
    • Garnett, M.J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570-575 (2012).
    • (2012) Nature , vol.483 , pp. 570-575
    • Garnett, M.J.1
  • 43
    • 84859169877 scopus 로고    scopus 로고
    • The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
    • Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603-607 (2012).
    • (2012) Nature , vol.483 , pp. 603-607
    • Barretina, J.1
  • 44
    • 78649694411 scopus 로고    scopus 로고
    • A technical assessment of the utility of reverse phase protein arrays for the study of the functional proteome in non-microdissected human breast cancers
    • Hennessy, B.T. et al. A technical assessment of the utility of reverse phase protein arrays for the study of the functional proteome in non-microdissected human breast cancers. Clin. Proteomics 6, 129-151 (2010).
    • (2010) Clin. Proteomics , vol.6 , pp. 129-151
    • Hennessy, B.T.1
  • 45
    • 84941076570 scopus 로고    scopus 로고
    • Prediction of human population responses to toxic compounds by a collaborative competition
    • Eduati, F. et al. Prediction of human population responses to toxic compounds by a collaborative competition. Nat. Biotechnol. 33, 933-940 (2015).
    • (2015) Nat. Biotechnol , vol.33 , pp. 933-940
    • Eduati, F.1
  • 47
    • 33746197428 scopus 로고    scopus 로고
    • Adaptive linear step-up procedures that control the false discovery rate
    • Benjamini, Y., Krieger, A.M. & Yekutieli, D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93, 491-507 (2006).
    • (2006) Biometrika , vol.93 , pp. 491-507
    • Benjamini, Y.1    Krieger, A.M.2    Yekutieli, D.3
  • 48
    • 84969591048 scopus 로고    scopus 로고
    • DREAMTools: A Python package for scoring collaborative challenges
    • Cokelaer, T. et al. DREAMTools: a Python package for scoring collaborative challenges. F1000Research 4, 1030 (2015).
    • (2015) F1000research , vol.4 , pp. 1030
    • Cokelaer, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.