메뉴 건너뛰기




Volumn 17, Issue 8, 2016, Pages 441-458

Computational genomics tools for dissecting tumour-immune cell interactions

Author keywords

[No Author keywords available]

Indexed keywords

T LYMPHOCYTE RECEPTOR; TUMOR ANTIGEN; CHEMOKINE;

EID: 84976869597     PISSN: 14710056     EISSN: 14710064     Source Type: Journal    
DOI: 10.1038/nrg.2016.67     Document Type: Review
Times cited : (221)

References (166)
  • 1
    • 77951115122 scopus 로고    scopus 로고
    • International network of cancer genome projects
    • International Cancer Genome Consortium
    • International Cancer Genome Consortium. International network of cancer genome projects. Nature 464, 993-998 (2010).
    • (2010) Nature , vol.464 , pp. 993-998
  • 2
    • 54549108740 scopus 로고    scopus 로고
    • Comprehensive genomic characterization defines human glioblastoma genes and core pathways
    • Cancer Genome Atlas Research Network
    • Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061-1068 (2008). The TCGA Research Network provides clinical information, genomic characterization data and high-level sequence analysis of the tumour genomes.
    • (2008) Nature , vol.455 , pp. 1061-1068
  • 3
    • 84919725208 scopus 로고    scopus 로고
    • Unintended consequences of expensive cancer therapeutics -The pursuit of marginal indications and a me-too mentality that stifles innovation and creativity: The John Conley Lecture
    • Fojo, T., Mailankody, S. & Lo, A. Unintended consequences of expensive cancer therapeutics-the pursuit of marginal indications and a me-too mentality that stifles innovation and creativity: the John Conley Lecture. JAMA Otolaryngol. Head Neck Surg. 140, 1225-1236 (2014).
    • (2014) JAMA Otolaryngol. Head Neck Surg , vol.140 , pp. 1225-1236
    • Fojo, T.1    Mailankody, S.2    Lo, A.3
  • 4
    • 84962301577 scopus 로고    scopus 로고
    • Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade
    • McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463-1469 (2016).
    • (2016) Science , vol.351 , pp. 1463-1469
    • McGranahan, N.1
  • 5
    • 84858766182 scopus 로고    scopus 로고
    • The blockade of immune checkpoints in cancer immunotherapy
    • Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252-264 (2012).
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 252-264
    • Pardoll, D.M.1
  • 6
    • 84928917822 scopus 로고    scopus 로고
    • Pooled analysis of long-term survival data from Phase II and Phase III trials of ipilimumab in unresectable or metastatic melanoma
    • Schadendorf, D. et al. Pooled analysis of long-term survival data from Phase II and Phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 33, 1889-1894 (2015).
    • (2015) J. Clin. Oncol , vol.33 , pp. 1889-1894
    • Schadendorf, D.1
  • 7
    • 84940403833 scopus 로고    scopus 로고
    • PD-1 blockers
    • Wolchok, J. D. PD-1 blockers. Cell 162, 937 (2015).
    • (2015) Cell , vol.162 , pp. 937
    • Wolchok, J.D.1
  • 8
    • 84928770388 scopus 로고    scopus 로고
    • Neoantigens in cancer immunotherapy
    • Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69-74 (2015).
    • (2015) Science , vol.348 , pp. 69-74
    • Schumacher, T.N.1    Schreiber, R.D.2
  • 9
    • 84880706152 scopus 로고    scopus 로고
    • Oncology meets immunology: The cancer-immunity cycle
    • Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1-10 (2013).
    • (2013) Immunity , vol.39 , pp. 1-10
    • Chen, D.S.1    Mellman, I.2
  • 10
    • 84931426001 scopus 로고    scopus 로고
    • Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy
    • Angelova, M. et al. Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol. 16, 64 (2015).
    • (2015) Genome Biol , vol.16 , pp. 64
    • Angelova, M.1
  • 11
    • 79953151458 scopus 로고    scopus 로고
    • Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion
    • Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565-1570 (2011).
    • (2011) Science , vol.331 , pp. 1565-1570
    • Schreiber, R.D.1    Old, L.J.2    Smyth, M.J.3
  • 12
    • 84943171338 scopus 로고    scopus 로고
    • A global reference for human genetic variation
    • Auton, A. et al. A global reference for human genetic variation. Nature 526, 68-74 (2015).
    • (2015) Nature , vol.526 , pp. 68-74
    • Auton, A.1
  • 13
    • 52649097448 scopus 로고    scopus 로고
    • The Immunological Genome Project: Networks of gene expression in immune cells
    • Immunological Genome Project Consortium
    • Heng, T. S. P. & Painter, M. W. & Immunological Genome Project Consortium. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091-1094 (2008). The Immunological Genome Project provides a comprehensive compendium of gene expression and regulation networks in immune cells and cell lineages.
    • (2008) Nat. Immunol , vol.9 , pp. 1091-1094
    • Heng, T.S.P.1    Painter, M.W.2
  • 14
    • 84943395444 scopus 로고    scopus 로고
    • Single-cell analysis in cancer genomics
    • Saadatpour, A., Lai, S., Guo, G. & Yuan, G.-C. Single-cell analysis in cancer genomics. Trends Genet. 31, 576-586 (2015).
    • (2015) Trends Genet , vol.31 , pp. 576-586
    • Saadatpour, A.1    Lai, S.2    Guo, G.3    Yuan, G.-C.4
  • 15
    • 84866953427 scopus 로고    scopus 로고
    • CEL-seq: Single-cell RNA-seq by multiplexed linear amplification
    • Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-seq: single-cell RNA-seq by multiplexed linear amplification. Cell Rep. 2, 666-673 (2012).
    • (2012) Cell Rep , vol.2 , pp. 666-673
    • Hashimshony, T.1    Wagner, F.2    Sher, N.3    Yanai, I.4
  • 16
    • 84922311090 scopus 로고    scopus 로고
    • Expression profiling. Combinatorial labeling of single cells for gene expression cytometry
    • Fan, H. C., Fu, G. K. & Fodor, S. P. A. Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science 347, 1258367 (2015).
    • (2015) Science , vol.347 , pp. 1258367
    • Fan, H.C.1    Fu, G.K.2    Fodor, S.P.A.3
  • 17
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201 (2015).
    • (2015) Cell , vol.161 , pp. 1187-1201
    • Klein, A.M.1
  • 18
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214 (2015).
    • (2015) Cell , vol.161 , pp. 1202-1214
    • Macosko, E.Z.1
  • 19
    • 84949252174 scopus 로고    scopus 로고
    • Single-cell genomics unveils critical regulators of Th17 cell pathogenicity
    • Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163, 1400-1412 (2015).
    • (2015) Cell , vol.163 , pp. 1400-1412
    • Gaublomme, J.T.1
  • 20
    • 84960194523 scopus 로고    scopus 로고
    • T cell fate and clonality inference from single-cell transcriptomes
    • Stubbington, M. J. T. et al. T cell fate and clonality inference from single-cell transcriptomes. Nat. Methods 13, 329-332 (2016).
    • (2016) Nat. Methods , vol.13 , pp. 329-332
    • Stubbington, M.J.T.1
  • 21
    • 84958606331 scopus 로고    scopus 로고
    • Single-cell genome sequencing: Current state of the science
    • Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175-188 (2016).
    • (2016) Nat. Rev. Genet , vol.17 , pp. 175-188
    • Gawad, C.1    Koh, W.2    Quake, S.R.3
  • 22
    • 84896448861 scopus 로고    scopus 로고
    • A survey of tools for variant analysis of next-generation genome sequencing data
    • Pabinger, S. et al. A survey of tools for variant analysis of next-generation genome sequencing data. Brief. Bioinform. 15, 256-278 (2014).
    • (2014) Brief. Bioinform , vol.15 , pp. 256-278
    • Pabinger, S.1
  • 23
    • 84907067643 scopus 로고    scopus 로고
    • Expanding the computational toolbox for mining cancer genomes
    • Ding, L., Wendl, M. C., McMichael, J. F. & Raphael, B. J. Expanding the computational toolbox for mining cancer genomes. Nat. Rev. Genet. 15, 556-570 (2014).
    • (2014) Nat. Rev. Genet , vol.15 , pp. 556-570
    • Ding, L.1    Wendl, M.C.2    McMichael, J.F.3    Raphael, B.J.4
  • 24
    • 84860782006 scopus 로고    scopus 로고
    • Absolute quantification of somatic DNA alterations in human cancer
    • Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413-421 (2012).
    • (2012) Nat. Biotechnol , vol.30 , pp. 413-421
    • Carter, S.L.1
  • 25
    • 84897954204 scopus 로고    scopus 로고
    • PyClone: Statistical inference of clonal population structure in cancer
    • Roth, A. et al. PyClone: statistical inference of clonal population structure in cancer. Nat. Methods 11, 396-398 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 396-398
    • Roth, A.1
  • 26
    • 84871688621 scopus 로고    scopus 로고
    • Analysing and interpreting DNA methylation data
    • Bock, C. Analysing and interpreting DNA methylation data. Nat. Rev. Genet. 13, 705-719 (2012).
    • (2012) Nat. Rev. Genet , vol.13 , pp. 705-719
    • Bock, C.1
  • 27
    • 84858800620 scopus 로고    scopus 로고
    • The immune contexture in human tumours: Impact on clinical outcome
    • Fridman, W. H., Pagès, F., Sautès-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298-306 (2012).
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 298-306
    • Fridman, W.H.1    Pagès, F.2    Sautès-Fridman, C.3    Galon, J.4
  • 28
    • 33749319703 scopus 로고    scopus 로고
    • Type, density, and location of immune cells within human colorectal tumors predict clinical outcome
    • Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960-1964 (2006).
    • (2006) Science , vol.313 , pp. 1960-1964
    • Galon, J.1
  • 29
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
    • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545-15550 (2005). GSEA is a widely used tool for determining whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states (for example, phenotypes).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 15545-15550
    • Subramanian, A.1
  • 30
    • 84898018919 scopus 로고    scopus 로고
    • Computational deconvolution: Extracting cell type-specific information from heterogeneous samples
    • Shen-Orr, S. S. & Gaujoux, R. Computational deconvolution: extracting cell type-specific information from heterogeneous samples. Curr. Opin. Immunol. 25, 571-578 (2013).
    • (2013) Curr. Opin. Immunol , vol.25 , pp. 571-578
    • Shen-Orr, S.S.1    Gaujoux, R.2
  • 31
    • 70449091786 scopus 로고    scopus 로고
    • Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1
    • Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108-112 (2009).
    • (2009) Nature , vol.462 , pp. 108-112
    • Barbie, D.A.1
  • 32
    • 84892712729 scopus 로고    scopus 로고
    • Unifying immunology with informatics and multiscale biology
    • Kidd, B. A., Peters, L. A., Schadt, E. E. & Dudley, J. T. Unifying immunology with informatics and multiscale biology. Nat. Immunol. 15, 118-127 (2014).
    • (2014) Nat. Immunol , vol.15 , pp. 118-127
    • Kidd, B.A.1    Peters, L.A.2    Schadt, E.E.3    Dudley, J.T.4
  • 33
    • 84971667844 scopus 로고    scopus 로고
    • Gene set analysis approaches for RNA-seq data: Performance evaluation and application guideline
    • Rahmatallah, Y., Emmert-Streib, F. & Glazko, G. Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline. Brief. Bioinform. 17, 393-407 (2015).
    • (2015) Brief. Bioinform , vol.17 , pp. 393-407
    • Rahmatallah, Y.1    Emmert-Streib, F.2    Glazko, G.3
  • 34
    • 21344446363 scopus 로고    scopus 로고
    • Immune response in silico (IRIS): Immune-specific genes identified from a compendium of microarray expression data
    • Abbas, A. R. et al. Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun. 6, 319-331 (2005).
    • (2005) Genes Immun , vol.6 , pp. 319-331
    • Abbas, A.R.1
  • 35
    • 84958925144 scopus 로고    scopus 로고
    • Compendium of immune signatures identifies conserved and species-specific biology in response to inflammation
    • Godec, J. et al. Compendium of immune signatures identifies conserved and species-specific biology in response to inflammation. Immunity 44, 194-206 (2016).
    • (2016) Immunity , vol.44 , pp. 194-206
    • Godec, J.1
  • 36
    • 79958135926 scopus 로고    scopus 로고
    • Molecular signatures database (MSigDB) 3.0
    • Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739-1740 (2011).
    • (2011) Bioinformatics , vol.27 , pp. 1739-1740
    • Liberzon, A.1
  • 37
    • 84876213240 scopus 로고    scopus 로고
    • DeconRNASeq: A statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-seq data
    • Gong, T. & Szustakowski, J. D. DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-seq data. Bioinformatics 29, 1083-1085 (2013).
    • (2013) Bioinformatics , vol.29 , pp. 1083-1085
    • Gong, T.1    Szustakowski, J.D.2
  • 38
    • 84928927858 scopus 로고    scopus 로고
    • Robust enumeration of cell subsets from tissue expression profiles
    • Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453-457 (2015). CIBERSORT is a computational method for characterizing cell composition of complex tissues from their gene expression profiles.
    • (2015) Nat. Methods , vol.12 , pp. 453-457
    • Newman, A.M.1
  • 40
    • 84860637797 scopus 로고    scopus 로고
    • DNA methylation arrays as surrogate measures of cell mixture distribution
    • Houseman, E. A. et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13, 86 (2012).
    • (2012) BMC Bioinformatics , vol.13 , pp. 86
    • Houseman, E.A.1
  • 41
    • 84880969686 scopus 로고    scopus 로고
    • Blood-based profiles of DNA methylation predict the underlying distribution of cell types: A validation analysis
    • Koestler, D. C. et al. Blood-based profiles of DNA methylation predict the underlying distribution of cell types: a validation analysis. Epigenetics 8, 816-826 (2013).
    • (2013) Epigenetics , vol.8 , pp. 816-826
    • Koestler, D.C.1
  • 42
    • 84895540377 scopus 로고    scopus 로고
    • Epigenome-wide association studies without the need for cell-type composition
    • Zou, J., Lippert, C., Heckerman, D., Aryee, M. & Listgarten, J. Epigenome-wide association studies without the need for cell-type composition. Nat. Methods 11, 309-311 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 309-311
    • Zou, J.1    Lippert, C.2    Heckerman, D.3    Aryee, M.4    Listgarten, J.5
  • 43
    • 84926624843 scopus 로고    scopus 로고
    • Cell-composition effects in the analysis of DNA methylation array data: A mathematical perspective
    • Houseman, E. A., Kelsey, K. T., Wiencke, J. K. & Marsit, C. J. Cell-composition effects in the analysis of DNA methylation array data: a mathematical perspective. BMC Bioinformatics 16, 95 (2015).
    • (2015) BMC Bioinformatics , vol.16 , pp. 95
    • Houseman, E.A.1    Kelsey, K.T.2    Wiencke, J.K.3    Marsit, C.J.4
  • 44
    • 84894559188 scopus 로고    scopus 로고
    • Tumour antigens recognized by T lymphocytes: At the core of cancer immunotherapy
    • Coulie, P. G., Van den Eynde, B. J., van der Bruggen, P. & Boon, T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer 14, 135-146 (2014).
    • (2014) Nat. Rev. Cancer , vol.14 , pp. 135-146
    • Coulie, P.G.1    Van Den Eynde, B.J.2    Van Der Bruggen, P.3    Boon, T.4
  • 45
    • 0026322151 scopus 로고
    • A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma
    • van der Bruggen, P. et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643-1647 (1991).
    • (1991) Science , vol.254 , pp. 1643-1647
    • Van Der Bruggen, P.1
  • 46
    • 58149186474 scopus 로고    scopus 로고
    • CTdatabase: A knowledge-base of high-throughput and curated data on cancer-testis antigens
    • Almeida, L. G. et al. CTdatabase: a knowledge-base of high-throughput and curated data on cancer-testis antigens. Nucleic Acids Res. 37, D816-D819 (2009). This is the most updated and curated resource for cancer germline antigens and contains information about cancer germline genes, their expression in tumour and normal tissues and induced immune response.
    • (2009) Nucleic Acids Res , vol.37 , pp. D816-D819
    • Almeida, L.G.1
  • 47
    • 84870822864 scopus 로고    scopus 로고
    • Tools for mapping high-throughput sequencing data
    • Fonseca, N. A., Rung, J., Brazma, A. & Marioni, J. C. Tools for mapping high-throughput sequencing data. Bioinformatics 28, 3169-3177 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 3169-3177
    • Fonseca, N.A.1    Rung, J.2    Brazma, A.3    Marioni, J.C.4
  • 48
    • 77956295988 scopus 로고    scopus 로고
    • The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data
    • McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303 (2010).
    • (2010) Genome Res , vol.20 , pp. 1297-1303
    • McKenna, A.1
  • 49
    • 84874025843 scopus 로고    scopus 로고
    • Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples
    • Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213-219 (2013).
    • (2013) Nat. Biotechnol , vol.31 , pp. 213-219
    • Cibulskis, K.1
  • 50
    • 84885368416 scopus 로고    scopus 로고
    • Detecting somatic point mutations in cancer genome sequencing data: A comparison of mutation callers
    • Wang, Q. et al. Detecting somatic point mutations in cancer genome sequencing data: a comparison of mutation callers. Genome Med. 5, 91 (2013).
    • (2013) Genome Med , vol.5 , pp. 91
    • Wang, Q.1
  • 51
    • 84876588616 scopus 로고    scopus 로고
    • An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data
    • Shiraishi, Y. et al. An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data. Nucleic Acids Res. 41, e89 (2013).
    • (2013) Nucleic Acids Res , vol.41
    • Shiraishi, Y.1
  • 52
    • 84858221706 scopus 로고    scopus 로고
    • Ensembl 2012
    • Flicek, P. et al. Ensembl 2012. Nucleic Acids Res. 40, D84-D90 (2012).
    • (2012) Nucleic Acids Res , vol.40 , pp. D84-D90
    • Flicek, P.1
  • 53
    • 84859436530 scopus 로고    scopus 로고
    • NCBI Reference Sequences (RefSeq): Current status new features and genome annotation policy
    • Pruitt, K. D., Tatusova, T., Brown, G. R. & Maglott, D. R. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 40, D130-D135 (2012).
    • (2012) Nucleic Acids Res , vol.40 , pp. D130-D135
    • Pruitt, K.D.1    Tatusova, T.2    Brown, G.R.3    Maglott, D.R.4
  • 54
    • 84946069451 scopus 로고    scopus 로고
    • UniProt: A hub for protein information
    • UniProt Consortium
    • UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204-D212 (2015).
    • (2015) Nucleic Acids Res , vol.43 , pp. D204-D212
  • 55
    • 84901410645 scopus 로고    scopus 로고
    • Choice of transcripts and software has a large effect on variant annotation
    • McCarthy, D. J. et al. Choice of transcripts and software has a large effect on variant annotation. Genome Med. 6, 26 (2014).
    • (2014) Genome Med , vol.6 , pp. 26
    • McCarthy, D.J.1
  • 56
    • 84941032298 scopus 로고    scopus 로고
    • IMGT®, the international ImMunoGeneTics information system® 25 years on
    • Lefranc, M. -P. et al. IMGT®, the international ImMunoGeneTics information system® 25 years on. Nucleic Acids Res. 43, D413-D422 (2015).
    • (2015) Nucleic Acids Res , vol.43 , pp. D413-D422
    • Lefranc, M.-P.1
  • 57
    • 84872769379 scopus 로고    scopus 로고
    • Derivation of HLA types from shotgun sequence datasets
    • Warren, R. L. et al. Derivation of HLA types from shotgun sequence datasets. Genome Med. 4, 95 (2012).
    • (2012) Genome Med , vol.4 , pp. 95
    • Warren, R.L.1
  • 58
    • 84871400212 scopus 로고    scopus 로고
    • HLA typing from RNA-seq sequence reads
    • Boegel, S. et al. HLA typing from RNA-seq sequence reads. Genome Med. 4, 102 (2012). Seq2HLA and HLAminer, described in references 57 and 58, were the first tools that used NGS data to derive HLA alleles.
    • (2012) Genome Med , vol.4 , pp. 102
    • Boegel, S.1
  • 59
    • 84879547558 scopus 로고    scopus 로고
    • HLA typing from RNA-seq data using hierarchical read weighting
    • Kim, H. J. & Pourmand, N. HLA typing from RNA-seq data using hierarchical read weighting. PLoS ONE 8, e67885 (2013).
    • (2013) PLoS ONE , vol.8
    • Kim, H.J.1    Pourmand, N.2
  • 60
    • 84925550130 scopus 로고    scopus 로고
    • OptiType: Precision HLA typing from next-generation sequencing data
    • Szolek, A. et al. OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics 30, 3310-3316 (2014).
    • (2014) Bioinformatics , vol.30 , pp. 3310-3316
    • Szolek, A.1
  • 61
    • 84899920375 scopus 로고    scopus 로고
    • Inference of high resolution HLA types using genome-wide RNA or DNA sequencing reads
    • Bai, Y., Ni, M., Cooper, B., Wei, Y. & Fury, W. Inference of high resolution HLA types using genome-wide RNA or DNA sequencing reads. BMC Genomics 15, 325 (2014).
    • (2014) BMC Genomics , vol.15 , pp. 325
    • Bai, Y.1    Ni, M.2    Cooper, B.3    Wei, Y.4    Fury, W.5
  • 62
    • 84939810495 scopus 로고    scopus 로고
    • HLA-VBSeq: Accurate HLA typing at full resolution from whole-genome sequencing data
    • Nariai, N. et al. HLA-VBSeq: accurate HLA typing at full resolution from whole-genome sequencing data. BMC Genomics 16, S7 (2015).
    • (2015) BMC Genomics , vol.16
    • Nariai, N.1
  • 63
    • 84946565788 scopus 로고    scopus 로고
    • Comprehensive analysis of cancer-associated somatic mutations in class i HLA genes
    • Shukla, S. A. et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat. Biotechnol. 33, 1152-1158 (2015).
    • (2015) Nat. Biotechnol , vol.33 , pp. 1152-1158
    • Shukla, S.A.1
  • 64
    • 84881511328 scopus 로고    scopus 로고
    • ATHLATES: Accurate typing of human leukocyte antigen through exome sequencing
    • Liu, C. et al. ATHLATES: accurate typing of human leukocyte antigen through exome sequencing. Nucleic Acids Res. 41, e142 (2013).
    • (2013) Nucleic Acids Res , vol.41
    • Liu, C.1
  • 65
    • 84928227021 scopus 로고    scopus 로고
    • HLAreporter: A tool for HLA typing from next generation sequencing data
    • Huang, Y. et al. HLAreporter: a tool for HLA typing from next generation sequencing data. Genome Med. 7, 25 (2015).
    • (2015) Genome Med , vol.7 , pp. 25
    • Huang, Y.1
  • 66
    • 84928811341 scopus 로고    scopus 로고
    • Mutant MHC class II epitopes drive therapeutic immune responses to cancer
    • Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692-696 (2015).
    • (2015) Nature , vol.520 , pp. 692-696
    • Kreiter, S.1
  • 68
    • 70449359806 scopus 로고    scopus 로고
    • NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction
    • Nielsen, M. & Lund, O. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinformatics 10, 296 (2009).
    • (2009) BMC Bioinformatics , vol.10 , pp. 296
    • Nielsen, M.1    Lund, O.2
  • 69
    • 84947716406 scopus 로고    scopus 로고
    • Immunoinformatics and epitope prediction in the age of genomic medicine
    • Backert, L. & Kohlbacher, O. Immunoinformatics and epitope prediction in the age of genomic medicine. Genome Med. 7, 119 (2015).
    • (2015) Genome Med , vol.7 , pp. 119
    • Backert, L.1    Kohlbacher, O.2
  • 70
    • 84971634569 scopus 로고    scopus 로고
    • Personalized cancer immunotherapy using systems medicine approaches
    • Gupta, S. K. et al. Personalized cancer immunotherapy using systems medicine approaches. Brief. Bioinform. 17, 453-467 (2016).
    • (2016) Brief. Bioinform , vol.17 , pp. 453-467
    • Gupta, S.K.1
  • 71
    • 0028052724 scopus 로고
    • Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains
    • Parker, K. C., Bednarek, M. A. & Coligan, J. E. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. 152, 163-175 (1994).
    • (1994) J. Immunol , vol.152 , pp. 163-175
    • Parker, K.C.1    Bednarek, M.A.2    Coligan, J.E.3
  • 73
    • 84857362309 scopus 로고    scopus 로고
    • NetMHCcons: A consensus method for the major histocompatibility complex class i predictions
    • Karosiene, E., Lundegaard, C., Lund, O. & Nielsen, M. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics 64, 177-186 (2012).
    • (2012) Immunogenetics , vol.64 , pp. 177-186
    • Karosiene, E.1    Lundegaard, C.2    Lund, O.3    Nielsen, M.4
  • 74
    • 33746132748 scopus 로고    scopus 로고
    • A consensus epitope prediction approach identifies the breadth of murine TCD8+-cell responses to vaccinia virus
    • Moutaftsi, M. et al. A consensus epitope prediction approach identifies the breadth of murine TCD8+-cell responses to vaccinia virus. Nat. Biotechnol. 24,817-819 (2006).
    • (2006) Nat. Biotechnol , vol.24 , pp. 817-819
    • Moutaftsi, M.1
  • 75
    • 84946076702 scopus 로고    scopus 로고
    • The immune epitope database (IEDB) 3.0
    • Vita, R. et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 43, D405-D412 (2015).
    • (2015) Nucleic Acids Res , vol.43 , pp. D405-D412
    • Vita, R.1
  • 77
    • 59449094834 scopus 로고    scopus 로고
    • NetMHCpan, a method for MHC class i binding prediction beyond humans
    • Hoof, I. et al. NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 61, 1-13 (2009). NetMHCpan predicts the binding affinity of peptides to class-I MHC molecules. It provides high-accuracy predictions for both well-annotated and novel alleles.
    • (2009) Immunogenetics , vol.61 , pp. 1-13
    • Hoof, I.1
  • 78
    • 84947042013 scopus 로고    scopus 로고
    • Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification
    • Andreatta, M. et al. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics 67, 641-650 (2015).
    • (2015) Immunogenetics , vol.67 , pp. 641-650
    • Andreatta, M.1
  • 79
    • 84936751041 scopus 로고    scopus 로고
    • Automated benchmarking of peptide-MHC class i binding predictions
    • Trolle, T. et al. Automated benchmarking of peptide-MHC class I binding predictions. Bioinformatics 31, 2174-2181 (2015).
    • (2015) Bioinformatics , vol.31 , pp. 2174-2181
    • Trolle, T.1
  • 80
    • 78149354807 scopus 로고    scopus 로고
    • NetMHCIIpan-2.0 - Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure
    • Nielsen, M., Justesen, S., Lund, O., Lundegaard, C. & Buus, S. NetMHCIIpan-2.0 - improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure. Immunome Res. 6, 9 (2010).
    • (2010) Immunome Res , vol.6 , pp. 9
    • Nielsen, M.1    Justesen, S.2    Lund, O.3    Lundegaard, C.4    Buus, S.5
  • 81
    • 33745584371 scopus 로고    scopus 로고
    • A community resource benchmarking predictions of peptide binding to MHC-I molecules
    • Peters, B. et al. A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput. Biol. 2, e65 (2006).
    • (2006) PLoS Comput. Biol , vol.2 , pp. e65
    • Peters, B.1
  • 82
    • 42949139524 scopus 로고    scopus 로고
    • A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach
    • Wang, P. et al. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput. Biol. 4, e1000048 (2008).
    • (2008) PLoS Comput. Biol , vol.4
    • Wang, P.1
  • 83
    • 84889637320 scopus 로고    scopus 로고
    • NetMHCstab - Predicting stability of peptide-MHC-I complexes; Impacts for cytotoxic T lymphocyte epitope discovery
    • Jørgensen, K. W., Rasmussen, M., Buus, S. & Nielsen, M. NetMHCstab - predicting stability of peptide-MHC-I complexes; impacts for cytotoxic T lymphocyte epitope discovery. Immunology 141, 18-26 (2014).
    • (2014) Immunology , vol.141 , pp. 18-26
    • Jørgensen, K.W.1    Rasmussen, M.2    Buus, S.3    Nielsen, M.4
  • 84
    • 17844385106 scopus 로고    scopus 로고
    • The role of the proteasome in generating cytotoxic T-cell epitopes: Insights obtained from improved predictions of proteasomal cleavage
    • Nielsen, M., Lundegaard, C., Lund, O. & Keşmir, C. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 57, 33-41 (2005).
    • (2005) Immunogenetics , vol.57 , pp. 33-41
    • Nielsen, M.1    Lundegaard, C.2    Lund, O.3    Keşmir, C.4
  • 85
    • 23144433033 scopus 로고    scopus 로고
    • Pcleavage: An SVM based method for prediction of constitutive proteasome and immunoproteasome cleavage sites in antigenic sequences
    • Bhasin, M. & Raghava, G. P. S. Pcleavage: an SVM based method for prediction of constitutive proteasome and immunoproteasome cleavage sites in antigenic sequences. Nucleic Acids Res. 33, W202-W207 (2005).
    • (2005) Nucleic Acids Res , vol.33 , pp. W202-W207
    • Bhasin, M.1    Raghava, G.P.S.2
  • 86
    • 33845798193 scopus 로고    scopus 로고
    • PREDTAP: A system for prediction of peptide binding to the human transporter associated with antigen processing
    • Zhang, G. L., Petrovsky, N., Kwoh, C. K., August, J. T. & Brusic, V. PREDTAP: a system for prediction of peptide binding to the human transporter associated with antigen processing. Immunome Res. 2, 3 (2006).
    • (2006) Immunome Res , vol.2 , pp. 3
    • Zhang, G.L.1    Petrovsky, N.2    Kwoh, C.K.3    August, J.T.4    Brusic, V.5
  • 87
    • 23644443226 scopus 로고    scopus 로고
    • Integrated modeling of the major events in the MHC class i antigen processing pathway
    • Dönnes, P. & Kohlbacher, O. Integrated modeling of the major events in the MHC class I antigen processing pathway. Protein Sci. 14, 2132-2140 (2005).
    • (2005) Protein Sci , vol.14 , pp. 2132-2140
    • Dönnes, P.1    Kohlbacher, O.2
  • 88
    • 34249687092 scopus 로고    scopus 로고
    • POPI: Predicting immunogenicity of MHC class i binding peptides by mining informative physicochemical properties
    • Tung, C.-W. & Ho, S. -Y. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties. Bioinformatics 23, 942-949 (2007).
    • (2007) Bioinformatics , vol.23 , pp. 942-949
    • Tung, C.-W.1    Ho, S.-Y.2
  • 89
    • 81055124275 scopus 로고    scopus 로고
    • POPISK: T-cell reactivity prediction using support vector machines and string kernels
    • Tung, C. -W., Ziehm, M., Kämper, A., Kohlbacher, O. & Ho, S. -Y. POPISK: T-cell reactivity prediction using support vector machines and string kernels. BMC Bioinformatics 12, 446 (2011).
    • (2011) BMC Bioinformatics , vol.12 , pp. 446
    • Tung, C.-W.1    Ziehm, M.2    Kämper, A.3    Kohlbacher, O.4    Ho, S.-Y.5
  • 90
    • 84904250653 scopus 로고    scopus 로고
    • NetTepi: An integrated method for the prediction of T cell epitopes
    • Trolle, T. & Nielsen, M. NetTepi: an integrated method for the prediction of T cell epitopes. Immunogenetics 66, 449-456 (2014).
    • (2014) Immunogenetics , vol.66 , pp. 449-456
    • Trolle, T.1    Nielsen, M.2
  • 91
    • 84887277467 scopus 로고    scopus 로고
    • Properties of MHC class i presented peptides that enhance immunogenicity
    • Calis, J. J. A. et al. Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Comput. Biol. 9, e1003266 (2013).
    • (2013) PLoS Comput. Biol , vol.9
    • Calis, J.J.A.1
  • 92
    • 84916207039 scopus 로고    scopus 로고
    • Characterizing immune repertoires by high throughput sequencing: Strategies and applications
    • Calis, J. J. A. & Rosenberg, B. R. Characterizing immune repertoires by high throughput sequencing: strategies and applications. Trends Immunol. 35, 581-590 (2014).
    • (2014) Trends Immunol , vol.35 , pp. 581-590
    • Calis, J.J.A.1    Rosenberg, B.R.2
  • 93
    • 84868154295 scopus 로고    scopus 로고
    • Next generation sequencing for TCR repertoire profiling: Platform-specific features and correction algorithms
    • Bolotin, D. A. et al. Next generation sequencing for TCR repertoire profiling: platform-specific features and correction algorithms. Eur. J. Immunol. 42, 3073-3083 (2012).
    • (2012) Eur. J. Immunol , vol.42 , pp. 3073-3083
    • Bolotin, D.A.1
  • 94
    • 84946749298 scopus 로고    scopus 로고
    • Bioinformatic and statistical analysis of adaptive immune repertoires
    • Greiff, V., Miho, E., Menzel, U. & Reddy, S. T. Bioinformatic and statistical analysis of adaptive immune repertoires. Trends Immunol. 36, 738-749 (2015).
    • (2015) Trends Immunol , vol.36 , pp. 738-749
    • Greiff, V.1    Miho, E.2    Menzel, U.3    Reddy, S.T.4
  • 95
    • 84947792008 scopus 로고    scopus 로고
    • Practical guidelines for B-cell receptor repertoire sequencing analysis
    • Yaari, G. & Kleinstein, S. H. Practical guidelines for B-cell receptor repertoire sequencing analysis. Genome Med. 7, 121 (2015).
    • (2015) Genome Med , vol.7 , pp. 121
    • Yaari, G.1    Kleinstein, S.H.2
  • 96
    • 84883462993 scopus 로고    scopus 로고
    • MiTCR: Software for T-cell receptor sequencing data analysis
    • Bolotin, D. A. et al. MiTCR: software for T-cell receptor sequencing data analysis. Nat. Methods 10, 813-814 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 813-814
    • Bolotin, D.A.1
  • 97
    • 84960475790 scopus 로고    scopus 로고
    • LymAnalyzer: A tool for comprehensive analysis of next generation sequencing data of T cell receptors and immunoglobulins
    • Yu, Y., Ceredig, R. & Seoighe, C. LymAnalyzer: a tool for comprehensive analysis of next generation sequencing data of T cell receptors and immunoglobulins. Nucleic Acids Res. 44, e31 (2015).
    • (2015) Nucleic Acids Res , vol.44
    • Yu, Y.1    Ceredig, R.2    Seoighe, C.3
  • 98
    • 84928898852 scopus 로고    scopus 로고
    • MiXCR: Software for comprehensive adaptive immunity profiling
    • Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380-381 (2015). MiXCR is a tool for B cell receptor and TCR profiling, which is applicable to data from targeted receptor sequencing and non-targeted RNA-seq.
    • (2015) Nat. Methods , vol.12 , pp. 380-381
    • Bolotin, D.A.1
  • 99
    • 84901857468 scopus 로고    scopus 로고
    • Towards error-free profiling of immune repertoires
    • Shugay, M. et al. Towards error-free profiling of immune repertoires. Nat. Methods 11, 653-655 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 653-655
    • Shugay, M.1
  • 100
    • 84919628793 scopus 로고    scopus 로고
    • TCRklass: A new K-string-based algorithm for human and mouse TCR repertoire characterization
    • Yang, X. et al. TCRklass: a new K-string-based algorithm for human and mouse TCR repertoire characterization. J. Immunol. 194, 446-454 (2015).
    • (2015) J. Immunol , vol.194 , pp. 446-454
    • Yang, X.1
  • 101
    • 84941759089 scopus 로고    scopus 로고
    • IMSEQ - A fast and error aware approach to immunogenetic sequence analysis
    • Kuchenbecker, L. et al. IMSEQ - a fast and error aware approach to immunogenetic sequence analysis. Bioinformatics 31, 2963-2971 (2015).
    • (2015) Bioinformatics , vol.31 , pp. 2963-2971
    • Kuchenbecker, L.1
  • 102
    • 84874671063 scopus 로고    scopus 로고
    • Decombinator: A tool for fast, efficient gene assignment in T-cell receptor sequences using a finite state machine
    • Thomas, N., Heather, J., Ndifon, W., Shawe-Taylor, J. & Chain, B. Decombinator: a tool for fast, efficient gene assignment in T-cell receptor sequences using a finite state machine. Bioinformatics 29, 542-550 (2013).
    • (2013) Bioinformatics , vol.29 , pp. 542-550
    • Thomas, N.1    Heather, J.2    Ndifon, W.3    Shawe-Taylor, J.4    Chain, B.5
  • 103
    • 84883563447 scopus 로고    scopus 로고
    • IgBLAST: An immunoglobulin variable domain sequence analysis tool
    • Ye, J., Ma, N., Madden, T. L. & Ostell, J. M. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 41, W34-W40 (2013).
    • (2013) Nucleic Acids Res , vol.41 , pp. W34-W40
    • Ye, J.1    Ma, N.2    Madden, T.L.3    Ostell, J.M.4
  • 104
    • 34547840205 scopus 로고    scopus 로고
    • IHMMune-align: Hidden Markov model-based alignment and identification of germline genes in rearranged immunoglobulin gene sequences
    • Gaëta, B. A. et al. iHMMune-align: hidden Markov model-based alignment and identification of germline genes in rearranged immunoglobulin gene sequences. Bioinformatics 23, 1580-1587 (2007).
    • (2007) Bioinformatics , vol.23 , pp. 1580-1587
    • Gaëta, B.A.1
  • 105
    • 84884165599 scopus 로고    scopus 로고
    • IMGT/HighV QUEST paradigm for T cell receptor IMGT clonotype diversity and next generation repertoire immunoprofiling
    • Li, S. et al. IMGT/HighV QUEST paradigm for T cell receptor IMGT clonotype diversity and next generation repertoire immunoprofiling. Nat. Commun. 4, 2333 (2013).
    • (2013) Nat. Commun , vol.4 , pp. 2333
    • Li, S.1
  • 106
    • 84948737706 scopus 로고    scopus 로고
    • Profiling tissue-resident T cell repertoires by RNA sequencing
    • Brown, S. D., Raeburn, L. A. & Holt, R. A. Profiling tissue-resident T cell repertoires by RNA sequencing. Genome Med. 7, 125 (2015).
    • (2015) Genome Med , vol.7 , pp. 125
    • Brown, S.D.1    Raeburn, L.A.2    Holt, R.A.3
  • 107
    • 84903993800 scopus 로고    scopus 로고
    • Linking T-cell receptor sequence to functional phenotype at the single-cell level
    • Han, A., Glanville, J., Hansmann, L. & Davis, M. M. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat. Biotechnol. 32, 684-692 (2014).
    • (2014) Nat. Biotechnol , vol.32 , pp. 684-692
    • Han, A.1    Glanville, J.2    Hansmann, L.3    Davis, M.M.4
  • 108
    • 25844449770 scopus 로고    scopus 로고
    • Galaxy: A platform for interactive large-scale genome analysis
    • Giardine, B. et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 15, 1451-1455 (2005).
    • (2005) Genome Res , vol.15 , pp. 1451-1455
    • Giardine, B.1
  • 109
    • 84925226706 scopus 로고    scopus 로고
    • Svaseq: Removing batch effects and other unwanted noise from sequencing data
    • Leek, J. T. svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 42, e161 (2014).
    • (2014) Nucleic Acids Res , vol.42
    • Leek, J.T.1
  • 110
    • 38049169092 scopus 로고    scopus 로고
    • Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction
    • Larsen, M. V. et al. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8, 424 (2007).
    • (2007) BMC Bioinformatics , vol.8 , pp. 424
    • Larsen, M.V.1
  • 112
    • 84978463568 scopus 로고    scopus 로고
    • FRED 2: An immunoinformatics framework for python
    • Schubert, B. et al. FRED 2: an immunoinformatics framework for python. Bioinformatics http://dx.doi.org/10.1093/bioinformatics/btw113 (2016).
    • (2016) Bioinformatics
    • Schubert, B.1
  • 113
    • 84957108846 scopus 로고    scopus 로고
    • PVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens
    • Hundal, J. et al. pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome Med. 8, 11 (2016).
    • (2016) Genome Med , vol.8 , pp. 11
    • Hundal, J.1
  • 114
    • 84877072174 scopus 로고    scopus 로고
    • Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment
    • Gajewski, T. F. et al. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr. Opin. Immunol. 25, 268-276 (2013).
    • (2013) Curr. Opin. Immunol , vol.25 , pp. 268-276
    • Gajewski, T.F.1
  • 115
    • 84920956732 scopus 로고    scopus 로고
    • PD-1 blockade induces responses by inhibiting adaptive immune resistance
    • Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568-571 (2014).
    • (2014) Nature , vol.515 , pp. 568-571
    • Tumeh, P.C.1
  • 116
    • 84943516465 scopus 로고    scopus 로고
    • Genomic correlates of response to CTLA-4 blockade in metastatic melanoma
    • Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207-211 (2015);
    • (2015) Science , vol.350 , pp. 207-211
    • Van Allen, E.M.1
  • 117
    • 84978459183 scopus 로고    scopus 로고
    • erratum 352, http://dx.doi.org/10.1126/science.aaf8264 (2016).
    • (2016) Erratum , vol.352
  • 118
    • 84949730499 scopus 로고    scopus 로고
    • Immunogenicity of somatic mutations in human gastrointestinal cancers
    • Tran, E. et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350, 1387-1390 (2015).
    • (2015) Science , vol.350 , pp. 1387-1390
    • Tran, E.1
  • 119
    • 84864662070 scopus 로고    scopus 로고
    • Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival
    • Walter, S. et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat. Med. 18, 1254-1261 (2012).
    • (2012) Nat. Med , vol.18 , pp. 1254-1261
    • Walter, S.1
  • 120
    • 84900301377 scopus 로고    scopus 로고
    • Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer
    • Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641-645 (2014).
    • (2014) Science , vol.344 , pp. 641-645
    • Tran, E.1
  • 121
    • 84927130807 scopus 로고    scopus 로고
    • Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential
    • Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205-214 (2015).
    • (2015) Cell , vol.161 , pp. 205-214
    • Sharma, P.1    Allison, J.P.2
  • 122
    • 84923106217 scopus 로고    scopus 로고
    • Therapeutic genome editing: Prospects and challenges
    • Cox, D. B. T., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121-131 (2015).
    • (2015) Nat. Med , vol.21 , pp. 121-131
    • Cox, D.B.T.1    Platt, R.J.2    Zhang, F.3
  • 124
    • 0031822837 scopus 로고    scopus 로고
    • Tissue microarrays for high-throughput molecular profiling of tumor specimens
    • Kononen, J. et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 4, 844-847 (1998).
    • (1998) Nat. Med , vol.4 , pp. 844-847
    • Kononen, J.1
  • 125
    • 84897954497 scopus 로고    scopus 로고
    • Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry
    • Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417-422 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 417-422
    • Giesen, C.1
  • 126
    • 84863697677 scopus 로고    scopus 로고
    • From single cells to deep phenotypes in cancer
    • Bendall, S. C. & Nolan, G. P. From single cells to deep phenotypes in cancer. Nat. Biotechnol. 30, 639-647 (2012).
    • (2012) Nat. Biotechnol , vol.30 , pp. 639-647
    • Bendall, S.C.1    Nolan, G.P.2
  • 127
    • 80054768631 scopus 로고    scopus 로고
    • Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE
    • Qiu, P. et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 29, 886-891 (2011).
    • (2011) Nat. Biotechnol , vol.29 , pp. 886-891
    • Qiu, P.1
  • 128
    • 84880280631 scopus 로고    scopus 로고
    • ViSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
    • Amir, E. D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545-552 (2013).
    • (2013) Nat. Biotechnol , vol.31 , pp. 545-552
    • Amir, E.D.1
  • 129
    • 84983121572 scopus 로고    scopus 로고
    • Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data
    • Diggins, K. E., Ferrell, P. B. & Irish, J. M. Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data. Methods 82, 55-63 (2015).
    • (2015) Methods , vol.82 , pp. 55-63
    • Diggins, K.E.1    Ferrell, P.B.2    Irish, J.M.3
  • 130
    • 84934442835 scopus 로고    scopus 로고
    • Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis
    • Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184-197 (2015).
    • (2015) Cell , vol.162 , pp. 184-197
    • Levine, J.H.1
  • 131
    • 84882727548 scopus 로고    scopus 로고
    • CellMix: A comprehensive toolbox for gene expression deconvolution
    • Gaujoux, R. & Seoighe, C. CellMix: a comprehensive toolbox for gene expression deconvolution. Bioinformatics 29, 2211-2212 (2013).
    • (2013) Bioinformatics , vol.29 , pp. 2211-2212
    • Gaujoux, R.1    Seoighe, C.2
  • 132
    • 84868034841 scopus 로고    scopus 로고
    • Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling
    • Yuan, Y. et al. Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci. Transl. Med. 4, 157ra143 (2012).
    • (2012) Sci. Transl. Med , vol.4
    • Yuan, Y.1
  • 133
    • 77249157887 scopus 로고    scopus 로고
    • Biomarker discovery in heterogeneous tissue samples -taking the in-silico deconfounding approach
    • Repsilber, D. et al. Biomarker discovery in heterogeneous tissue samples -taking the in-silico deconfounding approach. BMC Bioinformatics 11, 27 (2010).
    • (2010) BMC Bioinformatics , vol.11 , pp. 27
    • Repsilber, D.1
  • 134
    • 78650900647 scopus 로고    scopus 로고
    • ImmunoRatio: A publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67
    • Tuominen, V. J., Ruotoistenmäki, S., Viitanen, A., Jumppanen, M. & Isola, J. ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res. 12, R56 (2010).
    • (2010) Breast Cancer Res , vol.12
    • Tuominen, V.J.1    Ruotoistenmäki, S.2    Viitanen, A.3    Jumppanen, M.4    Isola, J.5
  • 135
    • 84897706458 scopus 로고    scopus 로고
    • MMAD: Microarray microdissection with analysis of differences is a computational tool for deconvoluting cell type-specific contributions from tissue samples
    • Liebner, D. A., Huang, K. & Parvin, J. D. MMAD: microarray microdissection with analysis of differences is a computational tool for deconvoluting cell type-specific contributions from tissue samples. Bioinformatics 30, 682-689 (2014).
    • (2014) Bioinformatics , vol.30 , pp. 682-689
    • Liebner, D.A.1    Huang, K.2    Parvin, J.D.3
  • 136
    • 84872023313 scopus 로고    scopus 로고
    • PERT: A method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions
    • Qiao, W. et al. PERT: a method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions. PLoS Comput. Biol. 8, e1002838 (2012).
    • (2012) PLoS Comput. Biol , vol.8
    • Qiao, W.1
  • 137
  • 138
    • 77956534324 scopus 로고    scopus 로고
    • ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data
    • Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).
    • (2010) Nucleic Acids Res , vol.38
    • Wang, K.1    Li, M.2    Hakonarson, H.3
  • 139
    • 84925965197 scopus 로고    scopus 로고
    • Oncotator: Cancer variant annotation tool
    • Ramos, A. H. et al. Oncotator: cancer variant annotation tool. Hum. Mutat. 36, E2423-E2429 (2015).
    • (2015) Hum. Mutat , vol.36 , pp. E2423-E2429
    • Ramos, A.H.1
  • 140
    • 84862506964 scopus 로고    scopus 로고
    • A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; Iso-2; iso-3
    • Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80-92 (2012).
    • (2012) Fly , vol.6 , pp. 80-92
    • Cingolani, P.1
  • 141
    • 84856565531 scopus 로고    scopus 로고
    • SomaticSniper: Identification of somatic point mutations in whole genome sequencing data
    • Larson, D. E. et al. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics 28, 311-317 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 311-317
    • Larson, D.E.1
  • 142
    • 84864153492 scopus 로고    scopus 로고
    • Strelka: Accurate somatic small-variant calling from sequenced tumor-normal sample pairs
    • Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 28, 1811-1817 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 1811-1817
    • Saunders, C.T.1
  • 143
    • 84945951221 scopus 로고    scopus 로고
    • TransVar: A multilevel variant annotator for precision genomics
    • Zhou, W. et al. TransVar: a multilevel variant annotator for precision genomics. Nat. Methods 12, 1002-1003 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 1002-1003
    • Zhou, W.1
  • 144
    • 84863229597 scopus 로고    scopus 로고
    • VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing
    • Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568-576 (2012).
    • (2012) Genome Res , vol.22 , pp. 568-576
    • Koboldt, D.C.1
  • 145
    • 77955405475 scopus 로고    scopus 로고
    • Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor
    • McLaren, W. et al. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 26, 2069-2070 (2010).
    • (2010) Bioinformatics , vol.26 , pp. 2069-2070
    • McLaren, W.1
  • 146
    • 84921693763 scopus 로고    scopus 로고
    • A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines
    • Boegel, S., Löwer, M., Bukur, T., Sahin, U. & Castle, J. C. A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines. Oncoimmunology 3, e954893 (2014).
    • (2014) Oncoimmunology , vol.3
    • Boegel, S.1    Löwer, M.2    Bukur, T.3    Sahin, U.4    Castle, J.C.5
  • 147
    • 48449106045 scopus 로고    scopus 로고
    • NetMHC-3.0: Accurate web accessible predictions of human, mouse and monkey MHC class i affinities for peptides of length 8-11
    • Lundegaard, C. et al. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res. 36, W509-W512 (2008).
    • (2008) Nucleic Acids Res , vol.36 , pp. W509-W512
    • Lundegaard, C.1
  • 148
    • 84962905590 scopus 로고    scopus 로고
    • NetMHCpan-3.0; Improved prediction of binding to MHC class i molecules integrating information from multiple receptor and peptide length datasets
    • Nielsen, M. & Andreatta, M. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med. 8, 33 (2016).
    • (2016) Genome Med , vol.8 , pp. 33
    • Nielsen, M.1    Andreatta, M.2
  • 149
    • 65549131038 scopus 로고    scopus 로고
    • The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: Application to MHC-peptide binding
    • Zhang, H., Lund, O. & Nielsen, M. The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding. Bioinformatics 25, 1293-1299 (2009).
    • (2009) Bioinformatics , vol.25 , pp. 1293-1299
    • Zhang, H.1    Lund, O.2    Nielsen, M.3
  • 150
    • 77953149616 scopus 로고    scopus 로고
    • Pan-specific MHC class i pathway epitope predictions
    • Stranzl, T., Larsen, M. V., Lundegaard, C. & Nielsen, M. NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics 62, 357-368 (2010).
    • (2010) Immunogenetics , vol.62 , pp. 357-368
    • Stranzl, T.1    Larsen, M.V.2    Lundegaard, C.3    Nielsen, M.4
  • 151
    • 84859169877 scopus 로고    scopus 로고
    • The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
    • Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603-607 (2012).
    • (2012) Nature , vol.483 , pp. 603-607
    • Barretina, J.1
  • 152
    • 0038416977 scopus 로고    scopus 로고
    • The Cancer Genome Anatomy Project: Power tools for cancer biologists
    • Hess, J. L. The Cancer Genome Anatomy Project: power tools for cancer biologists. Cancer Invest. 21, 325-326 (2003).
    • (2003) Cancer Invest , vol.21 , pp. 325-326
    • Hess, J.L.1
  • 153
    • 84876552099 scopus 로고    scopus 로고
    • The UCSC Cancer Genomics Browser: Update 2013
    • Goldman, M. et al. The UCSC Cancer Genomics Browser: update 2013. Nucleic Acids Res. 41, D949-D954 (2013).
    • (2013) Nucleic Acids Res , vol.41 , pp. D949-D954
    • Goldman, M.1
  • 154
    • 84946040120 scopus 로고    scopus 로고
    • COSMIC: Exploring the world's knowledge of somatic mutations in human cancer
    • Forbes, S. A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805-D811 (2015).
    • (2015) Nucleic Acids Res , vol.43 , pp. D805-D811
    • Forbes, S.A.1
  • 155
    • 84866002291 scopus 로고    scopus 로고
    • The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data
    • Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401-404 (2012).
    • (2012) Cancer Discov , vol.2 , pp. 401-404
    • Cerami, E.1
  • 156
    • 84885647278 scopus 로고    scopus 로고
    • Connecting genomic alterations to cancer biology with proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium
    • Ellis, M. J. et al. Connecting genomic alterations to cancer biology with proteomics: the NCI Clinical Proteomic Tumor Analysis Consortium. Cancer Discov. 3, 1108-1112 (2013).
    • (2013) Cancer Discov , vol.3 , pp. 1108-1112
    • Ellis, M.J.1
  • 157
    • 84887032986 scopus 로고    scopus 로고
    • IntOGen-mutations identifies cancer drivers across tumor types
    • Gonzalez-Perez, A. et al. IntOGen-mutations identifies cancer drivers across tumor types. Nat. Methods 10, 1081-1082 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 1081-1082
    • Gonzalez-Perez, A.1
  • 158
    • 84920269464 scopus 로고    scopus 로고
    • Proteomics. Tissue-based map of the human proteome
    • Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
    • (2015) Science , vol.347
    • Uhlén, M.1
  • 159
    • 28544438391 scopus 로고    scopus 로고
    • AntiJen: A quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data
    • Toseland, C. P. et al. AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res. 1, 4 (2005).
    • (2005) Immunome Res , vol.1 , pp. 4
    • Toseland, C.P.1
  • 160
    • 29244485462 scopus 로고    scopus 로고
    • GPX-Macrophage Expression Atlas: A database for expression profiles of macrophages challenged with a variety of pro-inflammatory, anti-inflammatory, benign and pathogen insults
    • Grimes, G. R. et al. GPX-Macrophage Expression Atlas: a database for expression profiles of macrophages challenged with a variety of pro-inflammatory, anti-inflammatory, benign and pathogen insults. BMC Genomics 6, 178 (2005).
    • (2005) BMC Genomics , vol.6 , pp. 178
    • Grimes, G.R.1
  • 161
    • 66549084876 scopus 로고    scopus 로고
    • A HaemAtlas: Characterizing gene expression in differentiated human blood cells
    • Watkins, N. A. et al. A HaemAtlas: characterizing gene expression in differentiated human blood cells. Blood 113, e1-9 (2009).
    • (2009) Blood , vol.113 , pp. e1-9
    • Watkins, N.A.1
  • 162
    • 18744368784 scopus 로고    scopus 로고
    • EPIMHC: A curated database of MHC-binding peptides for customized computational vaccinology
    • Reche, P. A., Zhang, H., Glutting, J.-P. & Reinherz, E. L. EPIMHC: a curated database of MHC-binding peptides for customized computational vaccinology. Bioinformatics 21, 2140-2141 (2005).
    • (2005) Bioinformatics , vol.21 , pp. 2140-2141
    • Reche, P.A.1    Zhang, H.2    Glutting, J.-P.3    Reinherz, E.L.4
  • 163
    • 84873593975 scopus 로고    scopus 로고
    • The IMGT/HLA database
    • Robinson, J. et al. The IMGT/HLA database. Nucleic Acids Res. 41, D1222-D1227 (2013).
    • (2013) Nucleic Acids Res , vol.41 , pp. D1222-D1227
    • Robinson, J.1
  • 164
    • 84901459546 scopus 로고    scopus 로고
    • ImmPort: Disseminating data to the public for the future of immunology
    • Bhattacharya, S. et al. ImmPort: disseminating data to the public for the future of immunology. Immunol. Res. 58, 234-239 (2014).
    • (2014) Immunol. Res , vol.58 , pp. 234-239
    • Bhattacharya, S.1
  • 165
    • 84876581893 scopus 로고    scopus 로고
    • InnateDB: Systems biology of innate immunity and beyond-recent updates and continuing curation
    • Breuer, K. et al. InnateDB: systems biology of innate immunity and beyond-recent updates and continuing curation. Nucleic Acids Res. 41, D1228-D1233 (2013).
    • (2013) Nucleic Acids Res , vol.41 , pp. D1228-D1233
    • Breuer, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.