-
1
-
-
84891283756
-
-
Chichester, U.K.: Wiley
-
A. Cichocki, R. Zdunek, A. H. Phan, and S.-I. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation. Chichester, U.K.: Wiley, 2009.
-
(2009)
Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation
-
-
Cichocki, A.1
Zdunek, R.2
Phan, A.H.3
Amari, S.-I.4
-
2
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
Oct.
-
D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, no. 6755, pp. 788-791, Oct. 1999.
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
3
-
-
0028561099
-
Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
-
P. Paatero and U. Tapper, "Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values," Environmetrics, vol. 5, no. 2, pp. 111-126, 1994
-
(1994)
Environmetrics
, vol.5
, Issue.2
, pp. 111-126
-
-
Paatero, P.1
Tapper, U.2
-
4
-
-
84865650154
-
Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting
-
G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, "Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting," ACM Trans. Graph. (Proc. SIGGRAPH), vol. 31, no. 4, pp. 1-11, 2012.
-
(2012)
ACM Trans. Graph. (Proc. SIGGRAPH)
, vol.31
, Issue.4
, pp. 1-11
-
-
Wetzstein, G.1
Lanman, D.2
Hirsch, M.3
Raskar, R.4
-
5
-
-
84894650699
-
Fast conical hull algorithms for near-separable non-negative matrix factorization
-
ser. 1, S. Dasgupta and D. McAllester, Eds. Atlanta, GA: Microtome
-
A. Kumar, V. Sindhwani, and P. Kambadur, "Fast conical hull algorithms for near-separable non-negative matrix factorization," in JMLR W&CP, ser. 1, S. Dasgupta and D. McAllester, Eds. Atlanta, GA: Microtome, 2013, vol. 28, pp. 231-239.
-
(2013)
JMLR W&CP
, vol.28
, pp. 231-239
-
-
Kumar, A.1
Sindhwani, V.2
Kambadur, P.3
-
6
-
-
77951195721
-
Convex non-negative matrix factorization in the wild
-
Washington, D.C.: IEEE Comput. Soc.
-
C. Thurau, K. Kersting, and C. Bauckhage, "Convex non-negative matrix factorization in the wild," in Proc. 2009 9th IEEE Int. Conf. Data Mining, ser. ICDM'09. Washington, D.C.: IEEE Comput. Soc., 2009, pp. 523-532.
-
(2009)
Proc. 2009 9th IEEE Int. Conf. Data Mining, Ser. ICDM'09.
, pp. 523-532
-
-
Thurau, C.1
Kersting, K.2
Bauckhage, C.3
-
7
-
-
49149085985
-
When does non-negative matrix factorization give a correct decomposition into parts?
-
Cambridge, MA: MIT Press
-
D. Donoho and V. Stodden, "When does non-negative matrix factorization give a correct decomposition into parts?" in Advances in Neural Information Processing 16 (Proc. NIPS*2003), vol. 16. Cambridge, MA: MIT Press, 2004.
-
(2004)
Advances in Neural Information Processing 16 (Proc. NIPS*2003)
, vol.16
-
-
Donoho, D.1
Stodden, V.2
-
9
-
-
84870868704
-
Sparse and unique nonnegative matrix factorization through data preprocessing
-
Nov.
-
N. Gillis, Sparse and unique nonnegative matrix factorization through data preprocessing. J. Mach. Learn. Res., vol. 13, no. 11, 3349-3386, Nov. 2012.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, Issue.11
, pp. 3349-3386
-
-
Gillis, N.1
-
10
-
-
84890916116
-
Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition
-
K. Huang, N. Sidiropoulos, and A. Swami, "Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition," IEEE Trans. Signal Processing, vol. 62, no. 1, pp. 211-224, 2014.
-
(2014)
IEEE Trans. Signal Processing
, vol.62
, Issue.1
, pp. 211-224
-
-
Huang, K.1
Sidiropoulos, N.2
Swami, A.3
-
11
-
-
80053637334
-
Minimum-volume-constrained nonnegative matrix factorization: Enhanced ability of learning parts
-
Oct.
-
G. Zhou, S. Xie, Z. Yang, J.-M. Yang, and Z. He, "Minimum-volume- constrained nonnegative matrix factorization: Enhanced ability of learning parts," IEEE Trans. Neural Networks, vol. 22, no. 10, pp. 1626-1637, Oct. 2011.
-
(2011)
IEEE Trans. Neural Networks
, vol.22
, Issue.10
, pp. 1626-1637
-
-
Zhou, G.1
Xie, S.2
Yang, Z.3
Yang, J.-M.4
He, Z.5
-
12
-
-
84895057098
-
Algorithms for nonnegative matrix and tensor factorizations: A unified view based on block coordinate descent framework
-
J. Kim, Y. He, and H. Park, "Algorithms for nonnegative matrix and tensor factorizations: A unified view based on block coordinate descent framework," J. Global Optim., vol. 58, no. 2, pp. 1-35, 2013.
-
(2013)
J. Global Optim.
, vol.58
, Issue.2
, pp. 1-35
-
-
Kim, J.1
He, Y.2
Park, H.3
-
13
-
-
84861153505
-
Fast nonnegative matrix/tensor factorization based on low-rank approximation
-
June
-
G. Zhou, A. Cichocki, and S. Xie, "Fast nonnegative matrix/tensor factorization based on low-rank approximation," IEEE Trans. Signal Processing, vol. 60, no. 6, pp. 2928-2940, June 2012.
-
(2012)
IEEE Trans. Signal Processing
, vol.60
, Issue.6
, pp. 2928-2940
-
-
Zhou, G.1
Cichocki, A.2
Xie, S.3
-
14
-
-
36348966695
-
On the convergence of multiplicative update algorithms for nonnegative matrix factorization
-
DOI 10.1109/TNN.2007.895831
-
C.-J. Lin, "On the convergence of multiplicative update algorithms for nonnegative matrix factorization," IEEE Trans. Neural Networks, vol. 18, no. 6, pp. 1589-1596, Nov. 2007. (Pubitemid 350148414)
-
(2007)
IEEE Transactions on Neural Networks
, vol.18
, Issue.6
, pp. 1589-1596
-
-
Lin, C.-J.1
-
15
-
-
84863012243
-
Fast nonnegative matrix factorization: An active-set-like method and comparisons
-
J. Kim and H. Park, "Fast nonnegative matrix factorization: An active-set-like method and comparisons," SIAM J. Sci. Comput., vol. 33, no. 6, pp. 3261-3281, 2011.
-
(2011)
SIAM J. Sci. Comput.
, vol.33
, Issue.6
, pp. 3261-3281
-
-
Kim, J.1
Park, H.2
-
16
-
-
84861164231
-
NeNMF: An optimal gradient method for nonnegative matrix factorization
-
N. Guan, D. Tao, Z. Luo, and B. Yuan, "NeNMF: An optimal gradient method for nonnegative matrix factorization," IEEE Trans. Signal Processing, vol. 60, no. 6, pp. 2882-2898, 2012.
-
(2012)
IEEE Trans. Signal Processing
, vol.60
, Issue.6
, pp. 2882-2898
-
-
Guan, N.1
Tao, D.2
Luo, Z.3
Yuan, B.4
-
18
-
-
77952580367
-
Regularization parameter selections via generalized information criterion
-
Y. Zhang, R. Li, and C.-L. Tsai, "Regularization parameter selections via generalized information criterion," J. Amer. Stat. Assoc., vol. 105, no. 489, pp. 312-323, 2010.
-
(2010)
J. Amer. Stat. Assoc.
, vol.105
, Issue.489
, pp. 312-323
-
-
Zhang, Y.1
Li, R.2
Tsai, C.-L.3
-
19
-
-
79960675858
-
Robust principal component analysis?
-
June
-
E. J. Candès, X. Li, Y. Ma, and J. Wright, "Robust principal component analysis?," J. ACM (JACM), vol. 58, no. 3, pp. 11:1-11:37, June 2011.
-
(2011)
J. ACM (JACM)
, vol.58
, Issue.3
, pp. 111-1137
-
-
Candès, E.J.1
Li, X.2
Ma, Y.3
Wright, J.4
-
20
-
-
0028427066
-
Minimum-volume transforms for remotely sensed data
-
M. D. Craig, "Minimum-volume transforms for remotely sensed data," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542-552, 1994.
-
(1994)
IEEE Trans. Geosci. Remote Sens.
, vol.32
, Issue.3
, pp. 542-552
-
-
Craig, M.D.1
-
21
-
-
16444373735
-
Vertex component analysis: A fast algorithm to unmix hyperspectral data
-
DOI 10.1109/TGRS.2005.844293
-
J. M. P. Nascimento and J. M. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005. (Pubitemid 40476033)
-
(2005)
IEEE Transactions on Geoscience and Remote Sensing
, vol.43
, Issue.4
, pp. 898-910
-
-
Nascimento, J.M.P.1
Dias, J.M.B.2
-
22
-
-
84887368225
-
Factoring nonnegative matrices with linear programs
-
V. Bittorf, B. Recht, C. Ré, and J. A. Tropp, "Factoring nonnegative matrices with linear programs," in Proc. Advances in Neural Information Processing Systems (NIPS), vol. 25, pp. 1223-1231, 2012.
-
(2012)
Proc. Advances in Neural Information Processing Systems (NIPS)
, vol.25
, pp. 1223-1231
-
-
Bittorf, V.1
Recht, B.2
Ré, C.3
Tropp, J.A.4
-
23
-
-
84901278366
-
Fast and robust recursive algorithms for separable nonnegative matrix factorization
-
to be published
-
N. Gillis and S. A. Vavasis, "Fast and robust recursive algorithms for separable nonnegative matrix factorization," IEEE Trans. Pattern Anal. Mach. Intell., to be published.
-
IEEE Trans. Pattern Anal. Mach. Intell
-
-
Gillis, N.1
Vavasis, S.A.2
-
24
-
-
84871617105
-
Convex and semi-nonnegative matrix factorizations
-
Jan.
-
C. Ding, T. Li, and M. Jordan, "Convex and semi-nonnegative matrix factorizations," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 1, pp. 45-55, Jan. 2010.
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.32
, Issue.1
, pp. 45-55
-
-
Ding, C.1
Li, T.2
Jordan, M.3
-
25
-
-
70349808992
-
Joint blind source separation by multiset canonical correlation analysis
-
Oct.
-
Y.-O. Li, T. Adali, W. Wang, and V. Calhoun, "Joint blind source separation by multiset canonical correlation analysis," IEEE Trans. Signal Processing, vol. 57, no. 10, pp. 3918-3929, Oct. 2009.
-
(2009)
IEEE Trans. Signal Processing
, vol.57
, Issue.10
, pp. 3918-3929
-
-
Li, Y.-O.1
Adali, T.2
Wang, W.3
Calhoun, V.4
-
26
-
-
84876058478
-
Joint and individual variation explained (JIVE) for integrated analysis of multiple data types
-
E. F. Lock, K. A. Hoadley, J. S. Marron, and A. B. Nobel, "Joint and individual variation explained (JIVE) for integrated analysis of multiple data types," Ann. Appl. Stat., vol. 7, no. 1, pp. 523-542, 2013.
-
(2013)
Ann. Appl. Stat.
, vol.7
, Issue.1
, pp. 523-542
-
-
Lock, E.F.1
Hoadley, K.A.2
Marron, J.S.3
Nobel, A.B.4
-
27
-
-
65549097795
-
A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
-
V. Calhoun, J. Liu, and T. Adali, "A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data," NeuroImage, vol. 45, no. 1, pp. 163-172, 2009.
-
(2009)
NeuroImage
, vol.45
, Issue.1
, pp. 163-172
-
-
Calhoun, V.1
Liu, J.2
Adali, T.3
-
28
-
-
84890470961
-
Capturing group variability using IVA: A simulation study and graph-theoretical analysis
-
Vancouver, BC, May
-
S. Ma, R. Phlypo, V. D. Calhoun, and T. Adali, "Capturing group variability using IVA: a simulation study and graph-theoretical analysis," in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, BC, May 2013, pp. 3128-3132.
-
(2013)
Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP)
, pp. 3128-3132
-
-
Ma, S.1
Phlypo, R.2
Calhoun, V.D.3
Adali, T.4
-
30
-
-
33749575326
-
Orthogonal nonnegative matrix tri-factorizations for clustering
-
KDD 2006: Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
C. Ding, T. Li, W. Peng, and H. Park, "Orthogonal nonnegative matrix tri-factorizations for clustering," in Proc. 12th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, ser. KDD'06. New York: ACM, 2006, pp. 126-135. (Pubitemid 44535510)
-
(2006)
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, vol.2006
, pp. 126-135
-
-
Ding, C.1
Li, T.2
Peng, W.3
Park, H.4
-
31
-
-
68649096448
-
Tensor decompositions and applications
-
T. G. Kolda and B. W. Bader, "Tensor decompositions and applications," SIAM Rev., vol. 51, no. 3, pp. 455-500, 2009.
-
(2009)
SIAM Rev.
, vol.51
, Issue.3
, pp. 455-500
-
-
Kolda, T.G.1
Bader, B.W.2
-
32
-
-
84900987921
-
Tensor decompositions for signal processing application
-
to be published
-
A. Cichocki, D. Mandic, A.-H. Phan, C. Caiafa, G. Zhou, Q. Zhao, and L. De Lathauwer, "Tensor decompositions for signal processing application," IEEE Signal Processing Mag., to be published.
-
IEEE Signal Processing Mag.
-
-
Cichocki, A.1
Mandic, D.2
Phan, A.-H.3
Caiafa, C.4
Zhou, G.5
Zhao, Q.6
De Lathauwer, L.7
-
33
-
-
85032752481
-
Kernelization of tensor- based models for multiway data analysis
-
Q. Zhao, G. Zhou, T. Adali, L. Zhang, and A. Cichocki, "Kernelization of tensor- based models for multiway data analysis," IEEE Signal Processing Mag., vol. 30, no. 4, pp. 137-148, 2013.
-
(2013)
IEEE Signal Processing Mag.
, vol.30
, Issue.4
, pp. 137-148
-
-
Zhao, Q.1
Zhou, G.2
Adali, T.3
Zhang, L.4
Cichocki, A.5
-
34
-
-
0032563557
-
Improving the speed of multiway algorithms part II: Compression
-
DOI 10.1016/S0169-7439(98)00011-2, PII S0169743998000112
-
R. Bro and C. A. Andersson, "Improving the speed of multiway algorithms: Part II: Compression," Chemomet. Intell. Lab. Syst., vol. 42, no. 1-2, pp. 105-113, 1998. (Pubitemid 28440365)
-
(1998)
Chemometrics and Intelligent Laboratory Systems
, vol.42
, Issue.1-2
, pp. 105-113
-
-
Bro, R.1
Andersson, C.A.2
-
35
-
-
0033653594
-
On the uniqueness of multilinear decomposition of n-way arrays
-
N. D. Sidiropoulos and R. Bro, "On the uniqueness of multilinear decomposition of n-way arrays," J. Chemomet., vol. 14, no. 3, pp. 229-239, 2000.
-
(2000)
J. Chemomet.
, vol.14
, Issue.3
, pp. 229-239
-
-
Sidiropoulos, N.D.1
Bro, R.2
-
36
-
-
48249100881
-
Algorithms for sparse nonnegative Tucker decompositions
-
Aug.
-
M. Mørup, L. K. Hansen, and S. M. Arnfred, "Algorithms for sparse nonnegative Tucker decompositions," Neural Computat., vol. 20, no. 8, pp. 2112-2131, Aug. 2008.
-
(2008)
Neural Computat.
, vol.20
, Issue.8
, pp. 2112-2131
-
-
Mørup, M.1
Hansen, L.K.2
Arnfred, S.M.3
-
37
-
-
0034144758
-
A multilinear singular value decomposition
-
DOI 10.1137/S0895479896305696
-
L. De Lathauwer, B. De Moor, and J. Vandewalle, "A multilinear singular value decomposition," SIAM J. Matrix Anal. Applicat., vol. 21, no. 4, pp. 1253-1278, Mar.-May 2000. (Pubitemid 33217068)
-
(2000)
SIAM Journal on Matrix Analysis and Applications
, vol.21
, Issue.4
, pp. 1253-1278
-
-
De Lathauwer, L.1
De Moor, B.2
Vandewalle, J.3
-
38
-
-
70349696077
-
Nonnegative approximations of nonnegative tensors
-
L.-H. Lim and P. Comon, "Nonnegative approximations of nonnegative tensors," J. Chemomet., vol. 23, no. 7-8, pp. 432-441, 2009.
-
(2009)
J. Chemomet.
, vol.23
, Issue.7-8
, pp. 432-441
-
-
Lim, L.-H.1
Comon, P.2
-
39
-
-
79956129907
-
Computing the polyadic decomposition of nonnegative third order tensors
-
J.-P. Royer, N. Thirion-Moreau, and P. Comon, "Computing the polyadic decomposition of nonnegative third order tensors," Signal Process., vol. 91, no. 9, pp. 2159-2171, 2011.
-
(2011)
Signal Process.
, vol.91
, Issue.9
, pp. 2159-2171
-
-
Royer, J.-P.1
Thirion-Moreau, N.2
Comon, P.3
-
40
-
-
84949178333
-
Fast nonnegative tensor factorization with an active-set- like method
-
M. W. Berry, K. A. Gallivan, E. Gallopoulos, A. Grama, B. Philippe, Y. Saad, and F. Saied, Eds. London: Springer
-
J. Kim and H. Park, "Fast nonnegative tensor factorization with an active-set- like method," in High-Performance Scientific Computing, M. W. Berry, K. A. Gallivan, E. Gallopoulos, A. Grama, B. Philippe, Y. Saad, and F. Saied, Eds. London: Springer, 2012, pp. 311-326.
-
(2012)
High-Performance Scientific Computing
, pp. 311-326
-
-
Kim, J.1
Park, H.2
-
41
-
-
84883782927
-
Fast alternating LS algorithms for high order CANDECOMP/PARAFAC tensor factorizations
-
H. Phan, P. Tichavsky, and A. Cichocki, "Fast alternating LS algorithms for high order CANDECOMP/PARAFAC tensor factorizations," IEEE Trans. Signal Processing, vol. 61, no. 19, pp. 4834-4846, 2013.
-
(2013)
IEEE Trans. Signal Processing
, vol.61
, Issue.19
, pp. 4834-4846
-
-
Phan, H.1
Tichavsky, P.2
Cichocki, A.3
-
42
-
-
84887988913
-
Accelerated canonical polyadic decomposition by using mode reduction
-
Dec.
-
G. Zhou, A. Cichocki, and S. Xie, "Accelerated canonical polyadic decomposition by using mode reduction," IEEE Trans. Neural Networks Learn. Syst., vol. 24, no. 12, pp. 2051-2062, Dec. 2013.
-
(2013)
IEEE Trans. Neural Networks Learn. Syst.
, vol.24
, Issue.12
, pp. 2051-2062
-
-
Zhou, G.1
Cichocki, A.2
Xie, S.3
-
43
-
-
85008574320
-
Canonical polyadic decomposition based on a single mode blind source separation
-
Aug.
-
G. Zhou and A. Cichocki, "Canonical polyadic decomposition based on a single mode blind source separation," IEEE Signal Processing Lett., vol. 19, no. 8, pp. 523-526, Aug. 2012.
-
(2012)
IEEE Signal Processing Lett.
, vol.19
, Issue.8
, pp. 523-526
-
-
Zhou, G.1
Cichocki, A.2
-
45
-
-
79959532395
-
Graph regularized nonnegative matrix factorization for data representation
-
Aug.
-
D. Cai, X. He, J. Han, and T. Huang, "Graph regularized nonnegative matrix factorization for data representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1548-1560, Aug. 2011.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.8
, pp. 1548-1560
-
-
Cai, D.1
He, X.2
Han, J.3
Huang, T.4
-
47
-
-
78049372129
-
Improved minmax cut graph clustering with nonnegative relaxation
-
Berlin/Heidelberg: Springer
-
F. Nie, C. Ding, D. Luo, and H. Huang, "Improved minmax cut graph clustering with nonnegative relaxation," in Machine Learning and Knowledge Discovery in Databases (Series Lecture Notes in Computer Science). Berlin/Heidelberg: Springer, 2010, vol. 6322, pp. 451-466.
-
(2010)
Machine Learning and Knowledge Discovery in Databases (Series Lecture Notes in Computer Science).
, vol.6322
, pp. 451-466
-
-
Nie, F.1
Ding, C.2
Luo, D.3
Huang, H.4
-
48
-
-
77954604765
-
Distributed nonnegative matrix factorization for web-scale dyadic data analysis on MapReduce
-
New York: ACM
-
C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang, "Distributed nonnegative matrix factorization for web-scale dyadic data analysis on MapReduce," in Proc. 19th Int. Conf. World Wide Web, New York: ACM, 2010, pp. 681-690.
-
(2010)
Proc. 19th Int. Conf. World Wide Web
, pp. 681-690
-
-
Liu, C.1
Yang, H.-C.2
Fan, J.3
He, L.-W.4
Wang, Y.-M.5
|