-
1
-
-
78649976005
-
An integrated approach to uncover drivers of cancer
-
Akavia, U. D., Litvin, O., Kim, J., Sanchez-Garcia, F., Kotliar, D., Causton, H. C., et al. (2010). An integrated approach to uncover drivers of cancer. Cell 143, 1005-1017. doi: 10.1016/j.cell.2010.11.013
-
(2010)
Cell
, vol.143
, pp. 1005-1017
-
-
Akavia, U.D.1
Litvin, O.2
Kim, J.3
Sanchez-Garcia, F.4
Kotliar, D.5
Causton, H.C.6
-
2
-
-
84873859243
-
Identifying in-trans process associated genes in breast cancer by integrated analysis of copy number and expression data
-
Aure, M. R., Steinfeld, I., Baumbusch, L. O., Liestøl, K., Lipson, D., Nyberg, S., et al. (2013). Identifying in-trans process associated genes in breast cancer by integrated analysis of copy number and expression data. PLoS ONE 8:e53014. doi: 10.1371/journal.pone.0053014
-
(2013)
PLoS ONE
, vol.8
-
-
Aure, M.R.1
Steinfeld, I.2
Baumbusch, L.O.3
Liestøl, K.4
Lipson, D.5
Nyberg, S.6
-
3
-
-
84924370895
-
Integrative multi-omics module network inference with Lemon-Tree
-
Bonnet, E., Calzone, L., and Michoel, T. (2015). Integrative multi-omics module network inference with Lemon-Tree. PLoS Comput. Biol. 11:e1003983. doi: 10.1371/journal.pcbi.1003983
-
(2015)
PLoS Comput. Biol
, vol.11
-
-
Bonnet, E.1
Calzone, L.2
Michoel, T.3
-
4
-
-
77953936121
-
An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer
-
Chari, R., Coe, B. P., Vucic, E. A., Lockwood, W. W., and Lam, W. L. (2010). An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer. BMC Syst. Biol. 4:67. doi: 10.1186/1752-0509-4-67
-
(2010)
BMC Syst. Biol
, vol.4
, pp. 67
-
-
Chari, R.1
Coe, B.P.2
Vucic, E.A.3
Lockwood, W.W.4
Lam, W.L.5
-
5
-
-
84973364594
-
Integrative analysis for identifying joint modular patterns of gene-expression and drug-response data
-
Chen, J., and Zhang, S. (2016). Integrative analysis for identifying joint modular patterns of gene-expression and drug-response data. Bioinformatics 32, 1724-1732. doi: 10.1093/bioinformatics/btw059
-
(2016)
Bioinformatics
, vol.32
, pp. 1724-1732
-
-
Chen, J.1
Zhang, S.2
-
6
-
-
84874848060
-
Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis
-
Chen, J., Bushman, F. D., Lewis, J. D., Wu, G. D., and Li, H. (2013). Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis. Biostatistics 14, 244-258. doi: 10.1093/biostatistics/kxs038
-
(2013)
Biostatistics
, vol.14
, pp. 244-258
-
-
Chen, J.1
Bushman, F.D.2
Lewis, J.D.3
Wu, G.D.4
Li, H.5
-
7
-
-
79952395270
-
Cancer genomics: from discovery science to personalized medicine
-
Chin, L., Andersen, J. N., and Futreal, P. A. (2011). Cancer genomics: from discovery science to personalized medicine. Nat. Med. 17, 297-303. doi: 10.1038/nm.2323
-
(2011)
Nat. Med
, vol.17
, pp. 297-303
-
-
Chin, L.1
Andersen, J.N.2
Futreal, P.A.3
-
8
-
-
84884923930
-
Dissecting cancer heterogeneity with a probabilistic genotype-phenotype model
-
Cho, D.-Y., and Przytycka, T. M. (2013). Dissecting cancer heterogeneity with a probabilistic genotype-phenotype model. Nucleic Acids Res. 41, 8011-8020. doi: 10.1093/nar/gkt577
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 8011-8020
-
-
Cho, D.-Y.1
Przytycka, T.M.2
-
9
-
-
38449101120
-
Integration of biological networks and gene expression data using Cytoscape
-
Cline, M. S., Smoot, M., Cerami, E., Kuchinsky, A., Landys, N., Workman, C., et al. (2007). Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2, 2366-2382. doi: 10.1038/nprot.2007.324
-
(2007)
Nat. Protoc
, vol.2
, pp. 2366-2382
-
-
Cline, M.S.1
Smoot, M.2
Cerami, E.3
Kuchinsky, A.4
Landys, N.5
Workman, C.6
-
10
-
-
84864043341
-
'Infinite latent feature models and the Indian buffet process,'
-
(NIPS 2005) (Vancouver, BC)
-
Griffiths, T. L., and Ghahramani, Z. (2005). "Infinite latent feature models and the Indian buffet process," in Advances in Neural Information Processing Systems 18 (NIPS 2005) (Vancouver, BC), 475-482
-
(2005)
Advances in Neural Information Processing Systems 18
, pp. 475-482
-
-
Griffiths, T.L.1
Ghahramani, Z.2
-
11
-
-
25444532599
-
Communicating prognosis in cancer care: a systematic review of the literature
-
Hagerty, R. G., Butow, P. N., Ellis, P. M., Dimitry, S., and Tattersall, M. H. N. (2005). Communicating prognosis in cancer care: a systematic review of the literature. Ann. Oncol. 16, 1005-1053. doi: 10.1093/annonc/mdi211
-
(2005)
Ann. Oncol
, vol.16
, pp. 1005-1053
-
-
Hagerty, R.G.1
Butow, P.N.2
Ellis, P.M.3
Dimitry, S.4
Tattersall, M.H.N.5
-
12
-
-
51049096780
-
Kernel methods in machine learning
-
Hofmann, T., Schölkopf, B., and Smola, A. J. (2008). Kernel methods in machine learning. Ann. Stat. 36, 1171-1220. doi: 10.1214/009053607000000677
-
(2008)
Ann. Stat
, vol.36
, pp. 1171-1220
-
-
Hofmann, T.1
Schölkopf, B.2
Smola, A.J.3
-
13
-
-
84977537667
-
Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis
-
Huang, S., Chong, N., Lewis, N. E., Jia, W., Xie, G., and Garmire, L. X. (2016). Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis. Genome Med. 8:34. doi: 10.1186/s13073-016-0289-9
-
(2016)
Genome Med
, vol.8
, pp. 34
-
-
Huang, S.1
Chong, N.2
Lewis, N.E.3
Jia, W.4
Xie, G.5
Garmire, L.X.6
-
14
-
-
84907588668
-
A novel model to combine clinical and pathway-based transcriptomic information for the prognosis prediction of breast cancer
-
Huang, S., Yee, C., Ching, T., Yu, H., and Garmire, L. X. (2014). A novel model to combine clinical and pathway-based transcriptomic information for the prognosis prediction of breast cancer. PLoS Comput. Biol. 10:e1003851. doi: 10.1371/journal.pcbi.1003851
-
(2014)
PLoS Comput. Biol
, vol.10
-
-
Huang, S.1
Yee, C.2
Ching, T.3
Yu, H.4
Garmire, L.X.5
-
15
-
-
77951115122
-
International network of cancer genome projects
-
Hudson, T. J., Anderson, W., Aretz, A., Barker, A. D., Bell, C., Bernabé, R. R., et al. (2010). International network of cancer genome projects. Nature 464, 993-998. doi: 10.1038/nature08987
-
(2010)
Nature
, vol.464
, pp. 993-998
-
-
Hudson, T.J.1
Anderson, W.2
Aretz, A.3
Barker, A.D.4
Bell, C.5
Bernabé, R.R.6
-
16
-
-
0000801240
-
Discovering regulatory and signalling circuits in molecular interaction networks
-
Ideker, T., Ozier, O., Schwikowski, B., and Siegel, A. F. (2002). Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18, S233-S240. doi: 10.1093/bioinformatics/18.suppl_1.S233
-
(2002)
Bioinformatics
, vol.18
, pp. S233-S240
-
-
Ideker, T.1
Ozier, O.2
Schwikowski, B.3
Siegel, A.F.4
-
17
-
-
3242875300
-
Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks
-
Imoto, S., Higuchi, T., Goto, T., Tashiro, K., Kuhara, S., and Miyano, S. (2004). Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks. J. Bioinform. Comput. Biol. 2, 77-98. doi: 10.1142/S021972000400048X
-
(2004)
J. Bioinform. Comput. Biol
, vol.2
, pp. 77-98
-
-
Imoto, S.1
Higuchi, T.2
Goto, T.3
Tashiro, K.4
Kuhara, S.5
Miyano, S.6
-
18
-
-
84887049272
-
Bayesian methods for expression-based integration of various types of genomics data
-
Jennings, E. M., Morris, J. S., Carroll, R. J., Manyam, G. C., and Baladandayuthapani, V. (2013). Bayesian methods for expression-based integration of various types of genomics data. EURASIP J. Bioinforma. Syst. Biol. 2013:13. doi: 10.1186/1687-4153-2013-13
-
(2013)
EURASIP J. Bioinforma. Syst. Biol
, vol.2013
, pp. 13
-
-
Jennings, E.M.1
Morris, J.S.2
Carroll, R.J.3
Manyam, G.C.4
Baladandayuthapani, V.5
-
19
-
-
85021214487
-
Data integration for cancer clinical outcome prediction
-
Kim, D., and Ritchie, M. D. (2014). Data integration for cancer clinical outcome prediction. J. Heal. Med. Informatics 5:e122. doi: 10.4172/2157-7420.1000e122
-
(2014)
J. Heal. Med. Informatics
, vol.5
-
-
Kim, D.1
Ritchie, M.D.2
-
20
-
-
84890485602
-
ATHENA: Identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network
-
Kim, D., Li, R., Dudek, S. M., and Ritchie, M. D. (2013). ATHENA: Identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network. BioData Min. 6:23. doi: 10.1186/1756-0381-6-23
-
(2013)
BioData Min
, vol.6
, pp. 23
-
-
Kim, D.1
Li, R.2
Dudek, S.M.3
Ritchie, M.D.4
-
21
-
-
84907058092
-
Knowledge-driven genomic interactions: an application in ovarian cancer
-
Kim, D., Li, R., Dudek, S. M., Frase, A. T., Pendergrass, S. A., and Ritchie, M. D. (2014). Knowledge-driven genomic interactions: an application in ovarian cancer. BioData Min. 7:20. doi: 10.1186/1756-0381-7-20
-
(2014)
BioData Min
, vol.7
, pp. 20
-
-
Kim, D.1
Li, R.2
Dudek, S.M.3
Frase, A.T.4
Pendergrass, S.A.5
Ritchie, M.D.6
-
22
-
-
85019734186
-
Using knowledge-driven genomic interactions for multi-omics data analysis: metadimensional models for predicting clinical outcomes in ovarian carcinoma
-
Kim, D., Li, R., Lucas, A., Verma, S. S., Dudek, S. M., and Ritchie, M. D. (2016). Using knowledge-driven genomic interactions for multi-omics data analysis: metadimensional models for predicting clinical outcomes in ovarian carcinoma. J. Am. Med. Inform. Assoc. 24, 577-587. doi: 10.1093/jamia/ocw165
-
(2016)
J. Am. Med. Inform. Assoc
, vol.24
, pp. 577-587
-
-
Kim, D.1
Li, R.2
Lucas, A.3
Verma, S.S.4
Dudek, S.M.5
Ritchie, M.D.6
-
23
-
-
84869875323
-
Synergistic effect of different levels of genomic data for cancer clinical outcome prediction
-
Kim, D., Shin, H., Song, Y. S., and Kim, J. H. (2012). Synergistic effect of different levels of genomic data for cancer clinical outcome prediction. J. Biomed. Inform. 45, 1191-1198. doi: 10.1016/j.jbi.2012.07.008
-
(2012)
J. Biomed. Inform
, vol.45
, pp. 1191-1198
-
-
Kim, D.1
Shin, H.2
Song, Y.S.3
Kim, J.H.4
-
24
-
-
84870796415
-
Bayesian correlated clustering to integrate multiple datasets
-
Kirk, P., Griffin, J. E., Savage, R. S., Ghahramani, Z., and Wild, D. L. (2012). Bayesian correlated clustering to integrate multiple datasets. Bioinformatics 28, 3290-3297. doi: 10.1093/bioinformatics/bts595
-
(2012)
Bioinformatics
, vol.28
, pp. 3290-3297
-
-
Kirk, P.1
Griffin, J.E.2
Savage, R.S.3
Ghahramani, Z.4
Wild, D.L.5
-
25
-
-
60849113429
-
Sparse canonical methods for biological data integration: application to a cross-platform study
-
Lê Cao, K.-A., Martin, P. G., Robert-Granié, C., and Besse, P. (2009). Sparse canonical methods for biological data integration: application to a cross-platform study. BMC Bioinform. 10:34. doi: 10.1186/1471-2105-10-34
-
(2009)
BMC Bioinform
, vol.10
, pp. 34
-
-
Lê Cao, K.-A.1
Martin, P.G.2
Robert-Granié, C.3
Besse, P.4
-
26
-
-
8844263749
-
A statistical framework for genomic data fusion
-
Lanckriet, G. R. G., De Bie, T., Cristianini, N., Jordan, M. I., and Noble, W. S. (2004). A statistical framework for genomic data fusion. Bioinformatics 20, 2626-2635. doi: 10.1093/bioinformatics/bth,294
-
(2004)
Bioinformatics
, vol.20
, pp. 2626-2635
-
-
Lanckriet, G.R.G.1
De Bie, T.2
Cristianini, N.3
Jordan, M.I.4
Noble, W.S.5
-
28
-
-
84867283138
-
Identifying multi-layer gene regulatory modules from multi-dimensional genomic data
-
Li, W., Zhang, S., Liu, C.-C., and Zhou, X. J. (2012). Identifying multi-layer gene regulatory modules from multi-dimensional genomic data. Bioinformatics 28, 2458-2466. doi: 10.1093/bioinformatics/bts476
-
(2012)
Bioinformatics
, vol.28
, pp. 2458-2466
-
-
Li, W.1
Zhang, S.2
Liu, C.-C.3
Zhou, X.J.4
-
29
-
-
84881181566
-
Group sparse canonical correlation analysis for genomic data integration
-
Lin, D., Zhang, J., Li, J., Calhoun, V. D., Deng, H.-W., and Wang, Y.-P. (2013). Group sparse canonical correlation analysis for genomic data integration. BMC Bioinform. 14:245. doi: 10.1186/1471-2105-14-245
-
(2013)
BMC Bioinform
, vol.14
, pp. 245
-
-
Lin, D.1
Zhang, J.2
Li, J.3
Calhoun, V.D.4
Deng, H.-W.5
Wang, Y.-P.6
-
30
-
-
84885617335
-
Bayesian consensus clustering
-
Lock, E. F., and Dunson, D. B. (2013). Bayesian consensus clustering. Bioinformatics 29, 2610-2616. doi: 10.1093/bioinformatics/btt425
-
(2013)
Bioinformatics
, vol.29
, pp. 2610-2616
-
-
Lock, E.F.1
Dunson, D.B.2
-
31
-
-
84876058478
-
Joint and individual variation explained (JIVE) for integrated analysis of multiple data types
-
Lock, E. F., Hoadley, K. A., Marron, J. S., and Nobel, A. B. (2013). Joint and individual variation explained (JIVE) for integrated analysis of multiple data types. Ann. Appl. Stat. 7, 523-542. doi: 10.1214/12-AOAS597
-
(2013)
Ann. Appl. Stat
, vol.7
, pp. 523-542
-
-
Lock, E.F.1
Hoadley, K.A.2
Marron, J.S.3
Nobel, A.B.4
-
32
-
-
79952606011
-
CNAmet: an R package for integrating copy number, methylation and expression data
-
Louhimo, R., and Hautaniemi, S. (2011). CNAmet: an R package for integrating copy number, methylation and expression data. Bioinformatics 27, 887-888. doi: 10.1093/bioinformatics/btr019
-
(2011)
Bioinformatics
, vol.27
, pp. 887-888
-
-
Louhimo, R.1
Hautaniemi, S.2
-
33
-
-
80455125871
-
Time to recurrence and survival in serous ovarian tumors predicted from integrated genomic profiles
-
Mankoo, P. K., Shen, R., Schultz, N., Levine, D. A., and Sander, C. (2011). Time to recurrence and survival in serous ovarian tumors predicted from integrated genomic profiles. PLoS ONE 6:e24709. doi: 10.1371/journal.pone.0024709
-
(2011)
PLoS ONE
, vol.6
-
-
Mankoo, P.K.1
Shen, R.2
Schultz, N.3
Levine, D.A.4
Sander, C.5
-
34
-
-
84875016233
-
Pattern discovery and cancer gene identification in integrated cancer genomic data
-
Mo, Q., Wang, S., Seshan, V. E., Olshen, A. B., Schultz, N., Sander, C., et al. (2013). Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc. Natl. Acad. Sci. U.S.A. 110, 4245-4250. doi: 10.1073/pnas.1208949110
-
(2013)
Proc. Natl. Acad. Sci. U.S.A
, vol.110
, pp. 4245-4250
-
-
Mo, Q.1
Wang, S.2
Seshan, V.E.3
Olshen, A.B.4
Schultz, N.5
Sander, C.6
-
35
-
-
78751681684
-
Large-scale data integration framework provides a comprehensive view on glioblastoma multiforme
-
Ovaska, K., Laakso, M., Haapa-Paananen, S., Louhimo, R., Chen, P., Aittomäki, V., et al. (2010). Large-scale data integration framework provides a comprehensive view on glioblastoma multiforme. Genome Med. 2:65. doi: 10.1186/gm186
-
(2010)
Genome Med
, vol.2
, pp. 65
-
-
Ovaska, K.1
Laakso, M.2
Haapa-Paananen, S.3
Louhimo, R.4
Chen, P.5
Aittomäki, V.6
-
36
-
-
62449336277
-
Sparse canonical correlation analysis with application to genomic data integration
-
Parkhomenko, E., Tritchler, D., and Beyene, J. (2009). Sparse canonical correlation analysis with application to genomic data integration. Stat. Appl. Genet. Mol. Biol. 8, 1-34. doi: 10.2202/1544-6115.1406
-
(2009)
Stat. Appl. Genet. Mol. Biol
, vol.8
, pp. 1-34
-
-
Parkhomenko, E.1
Tritchler, D.2
Beyene, J.3
-
37
-
-
84886425852
-
Predicting cancer prognosis using interactive online tools: a systematic review and implications for cancer care providers
-
Rabin, B. A., Gaglio, B., Sanders, T., Nekhlyudov, L., Dearing, J. W., Bull, S., et al. (2013). Predicting cancer prognosis using interactive online tools: a systematic review and implications for cancer care providers. Cancer Epidemiol. Biomarkers Prev. 22, 1645-1656. doi: 10.1158/1055-9965.EPI-13-0513
-
(2013)
Cancer Epidemiol. Biomarkers Prev
, vol.22
, pp. 1645-1656
-
-
Rabin, B.A.1
Gaglio, B.2
Sanders, T.3
Nekhlyudov, L.4
Dearing, J.W.5
Bull, S.6
-
38
-
-
84900827183
-
Bayesian joint analysis of heterogeneous genomics data
-
Ray, P., Zheng, L., Lucas, J., and Carin, L. (2014). Bayesian joint analysis of heterogeneous genomics data. Bioinformatics 30, 1370-1376. doi: 10.1093/bioinformatics/btu064
-
(2014)
Bioinformatics
, vol.30
, pp. 1370-1376
-
-
Ray, P.1
Zheng, L.2
Lucas, J.3
Carin, L.4
-
39
-
-
84925031191
-
Methods of integrating data to uncover genotype-phenotype interactions
-
Ritchie, M. D., Holzinger, E. R., Li, R., Pendergrass, S. A., and Kim, D. (2015). Methods of integrating data to uncover genotype-phenotype interactions. Nat. Rev. Genet. 16, 85-97. doi: 10.1038/nrg3868
-
(2015)
Nat. Rev. Genet
, vol.16
, pp. 85-97
-
-
Ritchie, M.D.1
Holzinger, E.R.2
Li, R.3
Pendergrass, S.A.4
Kim, D.5
-
40
-
-
84953283238
-
Network-based integration of disparate omic data to identify "Silent Players" in cancer
-
Ruffalo, M., Koyutürk, M., and Sharan, R. (2015). Network-based integration of disparate omic data to identify "Silent Players" in cancer. PLOS Comput. Biol. 11:e1004595. doi: 10.1371/journal.pcbi.1004595
-
(2015)
PLOS Comput. Biol
, vol.11
-
-
Ruffalo, M.1
Koyutürk, M.2
Sharan, R.3
-
41
-
-
84856918212
-
HIPPIE: integrating protein interaction networks with experiment based quality scores
-
Schaefer, M. H., Fontaine, J.-F., Vinayagam, A., Porras, P., Wanker, E. E., and Andrade-Navarro, M. A. (2012). HIPPIE: integrating protein interaction networks with experiment based quality scores. PLoS ONE 7:e31826. doi: 10.1371/journal.pone.0031826
-
(2012)
PLoS ONE
, vol.7
-
-
Schaefer, M.H.1
Fontaine, J.-F.2
Vinayagam, A.3
Porras, P.4
Wanker, E.E.5
Andrade-Navarro, M.A.6
-
42
-
-
84897864232
-
A pathway-based data integration framework for prediction of disease progression
-
Seoane, J. A., Day, I. N. M., Gaunt, T. R., and Campbell, C. (2014). A pathway-based data integration framework for prediction of disease progression. Bioinformatics 30, 838-845. doi: 10.1093/bioinformatics/btt610
-
(2014)
Bioinformatics
, vol.30
, pp. 838-845
-
-
Seoane, J.A.1
Day, I.N.M.2
Gaunt, T.R.3
Campbell, C.4
-
43
-
-
84859992638
-
Integrative subtype discovery in glioblastoma using iCluster
-
Shen, R., Mo, Q., Schultz, N., Seshan, V. E., Olshen, A. B., Huse, J., et al. (2012). Integrative subtype discovery in glioblastoma using iCluster. PLoS ONE 7:e35236. doi: 10.1371/journal.pone.0035236
-
(2012)
PLoS ONE
, vol.7
-
-
Shen, R.1
Mo, Q.2
Schultz, N.3
Seshan, V.E.4
Olshen, A.B.5
Huse, J.6
-
44
-
-
70449331456
-
Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis
-
Shen, R., Olshen, A. B., and Ladanyi, M. (2009). Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25, 2906-2912. doi: 10.1093/bioinformatics/btp543
-
(2009)
Bioinformatics
, vol.25
, pp. 2906-2912
-
-
Shen, R.1
Olshen, A.B.2
Ladanyi, M.3
-
45
-
-
84931091190
-
Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery
-
Speicher, N. K., and Pfeifer, N. (2015). Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery. Bioinformatics 31, i268-i275. doi: 10.1093/bioinformatics/btv244
-
(2015)
Bioinformatics
, vol.31
-
-
Speicher, N.K.1
Pfeifer, N.2
-
46
-
-
84862302350
-
'Hierarchical beta processes and the indian buffet process,'
-
(AISTATS) (San Juan)
-
Thibaux, R., and Jordan, M. I. (2007). "Hierarchical beta processes and the indian buffet process," in Artificial Intelligence and Statistics (AISTATS) (San Juan), 564-571
-
(2007)
Artificial Intelligence and Statistics
, pp. 564-571
-
-
Thibaux, R.1
Jordan, M.I.2
-
47
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani, R. (1994). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58, 267-288
-
(1994)
J. R. Stat. Soc. Ser. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
48
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211-244. doi: 10.1162/15324430152748236
-
(2001)
J. Mach. Learn. Res
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
49
-
-
18244409687
-
Gene expression profiling predicts clinical outcome of breast cancer
-
Van 't Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A. M., Mao, M., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530-536. doi: 10.1038/415530a
-
(2002)
Nature
, vol.415
, pp. 530-536
-
-
Van 't Veer, L.J.1
Dai, H.2
van de Vijver, M.J.3
He, Y.D.4
Hart, A.A.M.5
Mao, M.6
-
50
-
-
77954195272
-
Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM
-
Vaske, C. J., Benz, S. C., Sanborn, J. Z., Earl, D., Szeto, C., Zhu, J., et al. (2010). Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26, i237-i245. doi: 10.1093/bioinformatics/btq182
-
(2010)
Bioinformatics
, vol.26
-
-
Vaske, C.J.1
Benz, S.C.2
Sanborn, J.Z.3
Earl, D.4
Szeto, C.5
Zhu, J.6
-
51
-
-
84895516704
-
Similarity network fusion for aggregating data types on a genomic scale
-
Wang, B., Mezlini, A. M., Demir, F., Fiume, M., Tu, Z., Brudno, M., et al. (2014). Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11, 333-337. doi: 10.1038/nmeth.2810
-
(2014)
Nat. Methods
, vol.11
, pp. 333-337
-
-
Wang, B.1
Mezlini, A.M.2
Demir, F.3
Fiume, M.4
Tu, Z.5
Brudno, M.6
-
52
-
-
84983543817
-
Meta-dimensional data integration identifies critical pathways for susceptibility, tumorigenesis and progression of endometrial cancer
-
Wei, R., De Vivo, I., Huang, S., Zhu, X., Risch, H., Moore, J. H., et al. (2016). Meta-dimensional data integration identifies critical pathways for susceptibility, tumorigenesis and progression of endometrial cancer. Oncotarget 7, 55249-55263. doi: 10.18632/oncotarget.10509
-
(2016)
Oncotarget
, vol.7
, pp. 55249-55263
-
-
Wei, R.1
De Vivo, I.2
Huang, S.3
Zhu, X.4
Risch, H.5
Moore, J.H.6
-
53
-
-
84884994218
-
The cancer genome atlas pan-cancer analysis project
-
Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R. M., Ozenberger, B. A., Ellrott, K., et al. (2013). The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45, 1113-1120. doi: 10.1038/ng.2764
-
(2013)
Nat. Genet
, vol.45
, pp. 1113-1120
-
-
Weinstein, J.N.1
Collisson, E.A.2
Mills, G.B.3
Shaw, K.R.M.4
Ozenberger, B.A.5
Ellrott, K.6
-
54
-
-
68249115586
-
Extensions of sparse canonical correlation analysis with applications to genomic data
-
Witten, D. M., and Tibshirani, R. J. (2009). Extensions of sparse canonical correlation analysis with applications to genomic data. Stat. Appl. Genet. Mol. Biol. 8, 1-27. doi: 10.2202/1544-6115.1470
-
(2009)
Stat. Appl. Genet. Mol. Biol
, vol.8
, pp. 1-27
-
-
Witten, D.M.1
Tibshirani, R.J.2
-
55
-
-
77955106017
-
A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network
-
You, Z.-H., Yin, Z., Han, K., Huang, D.-S., and Zhou, X. (2010). A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network. BMC Bioinform. 11:343. doi: 10.1186/1471-2105-11-343
-
(2010)
BMC Bioinform
, vol.11
, pp. 343
-
-
You, Z.-H.1
Yin, Z.2
Han, K.3
Huang, D.-S.4
Zhou, X.5
-
56
-
-
80055083654
-
Patient-specific data fusion defines prognostic cancer subtypes
-
Yuan, Y., Savage, R. S., and Markowetz, F. (2011). Patient-specific data fusion defines prognostic cancer subtypes. PLoS Comput. Biol. 7:e1002227. doi: 10.1371/journal.pcbi.1002227
-
(2011)
PLoS Comput. Biol
, vol.7
-
-
Yuan, Y.1
Savage, R.S.2
Markowetz, F.3
-
57
-
-
79959448071
-
A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules
-
Zhang, S., Li, Q., Liu, J., and Zhou, X. J. (2011). A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics 27, i401-i409. doi: 10.1093/bioinformatics/btr206
-
(2011)
Bioinformatics
, vol.27
-
-
Zhang, S.1
Li, Q.2
Liu, J.3
Zhou, X.J.4
-
58
-
-
84868152524
-
Discovery of multi-dimensional modules by integrative analysis of cancer genomic data
-
Zhang, S., Liu, C.-C., Li, W., Shen, H., Laird, P. W., and Zhou, X. J. (2012). Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res. 40, 9379-9391. doi: 10.1093/nar/gks725
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 9379-9391
-
-
Zhang, S.1
Liu, C.-C.2
Li, W.3
Shen, H.4
Laird, P.W.5
Zhou, X.J.6
-
59
-
-
84863769781
-
A Bayesian approach to discovering truth from conflicting sources for data integration
-
Zhao, B., Rubinstein, B. I. P., Gemmell, J., and Han, J. (2012). A Bayesian approach to discovering truth from conflicting sources for data integration. Proc. VLDB Endow. 5, 550-561. doi: 10.14778/2168651.2168656
-
(2012)
Proc. VLDB Endow
, vol.5
, pp. 550-561
-
-
Zhao, B.1
Rubinstein, B.I.P.2
Gemmell, J.3
Han, J.4
|