-
7
-
-
84875700547
-
Stochastic optimization for PCA and PLS
-
R. Arora, A. Cotter, K. Livescu, and N. Srebro. Stochastic optimization for PCA and PLS. In 50th Annual Allerton Conference on Communication, Control, and Computing, 2012.
-
(2012)
50th Annual Allerton Conference on Communication, Control, and Computing
-
-
Arora, R.1
Cotter, A.2
Livescu, K.3
Srebro, N.4
-
9
-
-
34547198396
-
Algorithms and applications for approximate nonnegative matrix factorization
-
M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons. Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics and Data Analysis, 52(1):155-173, 2007.
-
(2007)
Computational Statistics and Data Analysis
, vol.52
, Issue.1
, pp. 155-173
-
-
Berry, M.W.1
Browne, M.2
Langville, A.N.3
Pauca, V.P.4
Plemmons, R.J.5
-
14
-
-
64149100367
-
Similarity-based classification: Concepts and algorithms
-
Y. Chen, E. K. Garcia, M. R. Gupta, L. Cazzanti, and A. Rahimi. Similarity-based classification: Concepts and algorithms. JMLR, 2009a.
-
(2009)
JMLR
-
-
Chen, Y.1
Garcia, E.K.2
Gupta, M.R.3
Cazzanti, L.4
Rahimi, A.5
-
17
-
-
13544256263
-
Robust Perron cluster analysis in conformation dynamics
-
P. Deuflhard and M. Weber. Robust Perron cluster analysis in conformation dynamics. Linear Algebra and Its Applications, 398:161-184, 2005.
-
(2005)
Linear Algebra and its Applications
, vol.398
, pp. 161-184
-
-
Deuflhard, P.1
Weber, M.2
-
18
-
-
33749255098
-
On the equivalence of nonnegative matrix factorization and spectral clustering
-
C. Ding, X. He, and H. D. Simon. On the equivalence of nonnegative matrix factorization and spectral clustering. SIAM Conf. Data Mining, 2005.
-
(2005)
SIAM Conf. Data Mining
-
-
Ding, C.1
He, X.2
Simon, H.D.3
-
19
-
-
84871617105
-
Convex and semi-nonnegative matrix factorizations
-
C. Ding, T. Li, and M. I. Jordan. Convex and semi-nonnegative matrix factorizations. IEEE Trans. PAMI, 32, 2010.
-
(2010)
IEEE Trans. PAMI
, pp. 32
-
-
Ding, C.1
Li, T.2
Jordan, M.I.3
-
21
-
-
0000802374
-
The approximation of one matrix by another of lower rank
-
C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1(3):211-218, 1936.
-
(1936)
Psychometrika
, vol.1
, Issue.3
, pp. 211-218
-
-
Eckart, C.1
Young, G.2
-
22
-
-
84891109991
-
On using class-labels in evaluation of clusterings
-
I. Färber, S. Günnemann, H.-P. Kriegel, P. Kröger, E. Müller, E. Schubert, T. Seidl, and A. Zimek. On using class-labels in evaluation of clusterings. Proc. ACM SIGKDD, 2010.
-
(2010)
Proc. ACM SIGKDD
-
-
Färber, I.1
Günnemann, S.2
Kriegel, H.-P.3
Kröger, P.4
Müller, E.5
Schubert, E.6
Seidl, T.7
Zimek, A.8
-
25
-
-
0003684449
-
-
Springer-Verlag, New York, 2nd edition
-
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer-Verlag, New York, 2nd edition, 2009.
-
(2009)
The Elements of Statistical Learning
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
27
-
-
84900510076
-
Non-negative matrix factorization with sparseness constraints
-
P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. JMLR, 5:1457-1469, 2004.
-
(2004)
JMLR
, vol.5
, pp. 1457-1469
-
-
Hoyer, P.O.1
-
29
-
-
0002719797
-
The Hungarian method for the assignment problem
-
H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistic Quarterly, 2:83-97, 1955.
-
(1955)
Naval Research Logistic Quarterly
, vol.2
, pp. 83-97
-
-
Kuhn, H.W.1
-
30
-
-
2442674422
-
Kernel-based data fusion and its application to protein function prediction in yeast
-
G. R. G. Lanckriet, M. Deng, N. Cristianini, M. I. Jordan, and W. S. Noble. Kernel-based data fusion and its application to protein function prediction in yeast. In Proc. of the Pacific Symposium on Biocomputing, 2004.
-
(2004)
Proc. of the Pacific Symposium on Biocomputing
-
-
Lanckriet, G.R.G.1
Deng, M.2
Cristianini, N.3
Jordan, M.I.4
Noble, W.S.5
-
31
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788-791, 1999.
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
34
-
-
0000415463
-
Dissimilarity analysis: A new technique of hierarchical sub-division
-
P. MacNaughton-Smith, W. T. Williams, M. B. Dale, and L. G. Mockett. Dissimilarity analysis: A new technique of hierarchical sub-division. Nature, 202:1034-5, 1964.
-
(1964)
Nature
, vol.202
, pp. 1034-1035
-
-
MacNaughton-Smith, P.1
Williams, W.T.2
Dale, M.B.3
Mockett, L.G.4
-
39
-
-
0030954231
-
Least-squares formulation of robust non-negative factor analysis
-
P. Paatero. Least-squares formulation of robust non-negative factor analysis. Chemometrics and Intell. Lab. Sys., 37:23-35, 1997.
-
(1997)
Chemometrics and Intell. Lab. Sys.
, vol.37
, pp. 23-35
-
-
Paatero, P.1
-
40
-
-
0033275630
-
The multilinear engine: A table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model
-
P. Paatero. The multilinear engine: A table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. J. Comp. Graph. Stat., 8(4):854-888, 1999.
-
(1999)
J. Comp. Graph. Stat.
, vol.8
, Issue.4
, pp. 854-888
-
-
Paatero, P.1
-
41
-
-
0028561099
-
Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
-
P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5:111-126, 1994.
-
(1994)
Environmetrics
, vol.5
, pp. 111-126
-
-
Paatero, P.1
Tapper, U.2
-
42
-
-
50949102209
-
Perceptual feature identification for active sonar echoes
-
S. Philips, J. Pitton, and L. Atlas. Perceptual feature identification for active sonar echoes. Proc. IEEE OCEANS, 2006.
-
(2006)
Proc. IEEE OCEANS
-
-
Philips, S.1
Pitton, J.2
Atlas, L.3
-
43
-
-
0021202650
-
K-means type algorithms: A generalized convergence theorem and characterization of local optimality
-
S. Selim and M. A. Ismail. K-means type algorithms: a generalized convergence theorem and characterization of local optimality. IEEE Trans. PAMI, 6(1):81-87, 1984.
-
(1984)
IEEE Trans. PAMI
, vol.6
, Issue.1
, pp. 81-87
-
-
Selim, S.1
Ismail, M.A.2
-
45
-
-
34547300830
-
-
Technical Report TR-149, Max Planck Institute for Biological Cybernetics, August
-
U. von Luxburg. A tutorial on spectral clustering. Technical Report TR-149, Max Planck Institute for Biological Cybernetics, August 2006.
-
(2006)
A Tutorial on Spectral Clustering
-
-
Von Luxburg, U.1
-
46
-
-
33646174866
-
Robust Perron cluster analysis for various applications in computational life science
-
M. Weber and S. Kube. Robust Perron cluster analysis for various applications in computational life science. Lecture Notes in Computer Science, 3695:55-66, 2005.
-
(2005)
Lecture Notes in Computer Science
, vol.3695
, pp. 55-66
-
-
Weber, M.1
Kube, S.2
-
48
-
-
0013246766
-
Spectral relaxation for k-means clustering
-
H. Zha, C. Ding, M. Gu, X. He, and H. Simon. Spectral relaxation for k-means clustering. Advances in Neural Information Processing Systems (NIPS), 2001.
-
(2001)
Advances in Neural Information Processing Systems (NIPS)
-
-
Zha, H.1
Ding, C.2
Gu, M.3
He, X.4
Simon, H.5
|