메뉴 건너뛰기




Volumn 67, Issue 2, 2011, Pages 344-352

Asymptotic Conditional Singular Value Decomposition for High-Dimensional Genomic Data

Author keywords

False discovery rate; Gene expression; Genomics; High dimensional; Singular value decomposition; Surrogate variables

Indexed keywords

ALKYLATION; CLUSTERING ALGORITHMS; GENE EXPRESSION; SINGULAR VALUE DECOMPOSITION;

EID: 79959362223     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2010.01455.x     Document Type: Article
Times cited : (43)

References (31)
  • 2
    • 0001699986 scopus 로고
    • Asymptotic theory for principal components analysis
    • Anderson, T. W. (1963). Asymptotic theory for principal components analysis. The Annals of Mathematical Statistics 34, 122-148.
    • (1963) The Annals of Mathematical Statistics , vol.34 , pp. 122-148
    • Anderson, T.W.1
  • 3
    • 0000752804 scopus 로고
    • The asymptotic normal distribution of estimators in factor analysis under general conditions
    • Anderson, T. W. and Amemiya, Y. (1988). The asymptotic normal distribution of estimators in factor analysis under general conditions. Annals of Statistics 16, 759-771.
    • (1988) Annals of Statistics , vol.16 , pp. 759-771
    • Anderson, T.W.1    Amemiya, Y.2
  • 4
    • 0036221554 scopus 로고    scopus 로고
    • Determining the number of factors in approximate factor models
    • Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica 70, 191-221.
    • (2002) Econometrica , vol.70 , pp. 191-221
    • Bai, J.1    Ng, S.2
  • 5
    • 0000626398 scopus 로고
    • Remarks on parallel analysis
    • Buja, A. and Eyuboglu, N. (1992). Remarks on parallel analysis. Multivariate Behavior 27, 509-540.
    • (1992) Multivariate Behavior , vol.27 , pp. 509-540
    • Buja, A.1    Eyuboglu, N.2
  • 6
    • 2642583283 scopus 로고    scopus 로고
    • Mapping complex disease loci in whole-genome association studies
    • Carlson, C. S., Eberle, M. A., Kruglyak, L., and Nickerson, D. A. (2004). Mapping complex disease loci in whole-genome association studies. Nature 429, 446-452.
    • (2004) Nature , vol.429 , pp. 446-452
    • Carlson, C.S.1    Eberle, M.A.2    Kruglyak, L.3    Nickerson, D.A.4
  • 7
    • 84993900539 scopus 로고
    • A test for the number of factors in an approximate factor model
    • Connor, G. and Korajczyk, R. A. (1993). A test for the number of factors in an approximate factor model. Journal of Finance 48, 1263-1292.
    • (1993) Journal of Finance , vol.48 , pp. 1263-1292
    • Connor, G.1    Korajczyk, R.A.2
  • 8
    • 3843068589 scopus 로고    scopus 로고
    • Asymptotic distributions of principal components based on robust dispersions
    • Cui, H., He, X., and Ng, K. W. (2003). Asymptotic distributions of principal components based on robust dispersions. Biometrika 90, 953-966.
    • (2003) Biometrika , vol.90 , pp. 953-966
    • Cui, H.1    He, X.2    Ng, K.W.3
  • 10
    • 55349144848 scopus 로고    scopus 로고
    • High dimensional covariance matrix estimation using a factor model
    • Fan, J., Fan, Y., and Lv, J. (2008). High dimensional covariance matrix estimation using a factor model. Journal of Econometrics 147, 186-187.
    • (2008) Journal of Econometrics , vol.147 , pp. 186-187
    • Fan, J.1    Fan, Y.2    Lv, J.3
  • 11
    • 0036334830 scopus 로고    scopus 로고
    • Thresholding of statistical maps in functional neuroimaging using the false discovery rate
    • Geneovese, C. R., Lazar, N. A., and Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15, 870-878.
    • (2002) NeuroImage , vol.15 , pp. 870-878
    • Geneovese, C.R.1    Lazar, N.A.2    Nichols, T.3
  • 12
    • 34250778808 scopus 로고    scopus 로고
    • Determining the number of factors in the general dynamic factor model
    • Hallin, M. and Liska, R. (2007). Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association 102, 603-617.
    • (2007) Journal of the American Statistical Association , vol.102 , pp. 603-617
    • Hallin, M.1    Liska, R.2
  • 15
    • 0004151494 scopus 로고
    • New York Cambridge University Press.
    • Horn, R. and Johnson, C. (1985). Matrix Analysis. New York Cambridge University Press.
    • (1985) Matrix Analysis
    • Horn, R.1    Johnson, C.2
  • 17
    • 33845432928 scopus 로고    scopus 로고
    • Adjusting batch effects in microarray expression data using empirical Bayes methods
    • Johnson, W. E., Rabinovic, A., and Li, C. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118-127.
    • (2007) Biostatistics , vol.8 , pp. 118-127
    • Johnson, W.E.1    Rabinovic, A.2    Li, C.3
  • 19
    • 2942542735 scopus 로고    scopus 로고
    • Three-parameter lognormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment
    • Konishi, T. (2004). Three-parameter lognormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment. BMC Bioinformatics 5, 5.
    • (2004) BMC Bioinformatics , vol.5 , pp. 5
    • Konishi, T.1
  • 20
    • 34848914038 scopus 로고    scopus 로고
    • Capturing heterogeneity in gene expression studies by surrogate variable analysis
    • Leek, J. T. and Storey, J. D. (2007). Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genetics 3, e161.
    • (2007) PLoS Genetics , vol.3
    • Leek, J.T.1    Storey, J.D.2
  • 23
    • 68649118122 scopus 로고    scopus 로고
    • Consistency of restricted maximum likelihood estimators of principal components
    • Paul, D. and Peng, J. (2009). Consistency of restricted maximum likelihood estimators of principal components. The Annals of Statistics 37, 1229-1271.
    • (2009) The Annals of Statistics , vol.37 , pp. 1229-1271
    • Paul, D.1    Peng, J.2
  • 24
    • 33746512512 scopus 로고    scopus 로고
    • Principal components analysis corrects for stratification in genome-wide association studies
    • Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., and Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics 38, 904-909.
    • (2006) Nature Genetics , vol.38 , pp. 904-909
    • Price, A.L.1    Patterson, N.J.2    Plenge, R.M.3    Weinblatt, M.E.4    Shadick, N.A.5    Reich, D.6
  • 27
    • 85153327763 scopus 로고    scopus 로고
    • Asymptotic principal components estimation of large factor models
    • Solo, V. and Heaton, C. (2003). Asymptotic principal components estimation of large factor models. Computing in Economics and Finance, 251.
    • (2003) Computing in Economics and Finance , pp. 251
    • Solo, V.1    Heaton, C.2
  • 29
    • 1142273091 scopus 로고    scopus 로고
    • Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates: A unified approach
    • Storey, J. D., Taylor, J. E., and Siegmund, D. (2004). Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates: A unified approach. Journal of the Royal Statistical Society, Series B 66, 187-205.
    • (2004) Journal of the Royal Statistical Society, Series B , vol.66 , pp. 187-205
    • Storey, J.D.1    Taylor, J.E.2    Siegmund, D.3
  • 30
    • 0029931242 scopus 로고    scopus 로고
    • A unified statistical approach for determining significant signals in images of cerebral activation
    • Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., and Evans, A. C. (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping 4, 58-73.
    • (1996) Human Brain Mapping , vol.4 , pp. 58-73
    • Worsley, K.J.1    Marrett, S.2    Neelin, P.3    Vandal, A.C.4    Friston, K.J.5    Evans, A.C.6
  • 31
    • 0034800371 scopus 로고    scopus 로고
    • Principal component analysis for clustering gene expression data
    • Yeung, K. Y. and Ruzzo, W. L. (2001). Principal component analysis for clustering gene expression data. Bioinformatics 17, 763-774.
    • (2001) Bioinformatics , vol.17 , pp. 763-774
    • Yeung, K.Y.1    Ruzzo, W.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.