-
1
-
-
84905107360
-
Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny
-
Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Donna N, Schraml BU et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 2014; 14:571–8.
-
(2014)
Nat Rev Immunol
, vol.14
, pp. 571-578
-
-
Guilliams, M.1
Ginhoux, F.2
Jakubzick, C.3
Naik, S.H.4
Donna, N.5
Schraml, B.U.6
-
2
-
-
84990961171
-
Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species
-
Guilliams M, Dutertre CA, Scott CL, McGovern N, Sichien D, Chakarov S et al. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 2016; 45:669–84.
-
(2016)
Immunity
, vol.45
, pp. 669-684
-
-
Guilliams, M.1
Dutertre, C.A.2
Scott, C.L.3
McGovern, N.4
Sichien, D.5
Chakarov, S.6
-
3
-
-
85053787162
-
Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment
-
Heidkamp GF, Sander J, Lehmann CHK, Heger L, Eissing N, Baranska A et al. Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment. Sci Immunol 2016; 1:eaai7677.
-
(2016)
Sci Immunol
, vol.1
-
-
Heidkamp, G.F.1
Sander, J.2
Lehmann, C.H.K.3
Heger, L.4
Eissing, N.5
Baranska, A.6
-
4
-
-
85015777170
-
Dendritic cells display subset and tissue-specific maturation dynamics over human life
-
Granot T, Senda T, Carpenter DJ, Matsuoka N, Weiner J, Gordon CL et al. Dendritic cells display subset and tissue-specific maturation dynamics over human life. Immunity 2017; 46:504–15.
-
(2017)
Immunity
, vol.46
, pp. 504-515
-
-
Granot, T.1
Senda, T.2
Carpenter, D.J.3
Matsuoka, N.4
Weiner, J.5
Gordon, C.L.6
-
5
-
-
0034547923
-
BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood
-
Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 2000; 165:6037–46.
-
(2000)
J Immunol
, vol.165
, pp. 6037-6046
-
-
Dzionek, A.1
Fuchs, A.2
Schmidt, P.3
Cremer, S.4
Zysk, M.5
Miltenyi, S.6
-
6
-
-
0037114743
-
Characterization of human blood dendritic cell subsets
-
MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN. Characterization of human blood dendritic cell subsets. Blood 2002; 100:4512–20.
-
(2002)
Blood
, vol.100
, pp. 4512-4520
-
-
MacDonald, K.P.1
Munster, D.J.2
Clark, G.J.3
Dzionek, A.4
Schmitz, J.5
Hart, D.N.6
-
7
-
-
77958185103
-
Nomenclature of monocytes and dendritic cells in blood
-
Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN et al. Nomenclature of monocytes and dendritic cells in blood. Blood 2010; 116:e74–80.
-
(2010)
Blood
, vol.116
, pp. e74-80
-
-
Ziegler-Heitbrock, L.1
Ancuta, P.2
Crowe, S.3
Dalod, M.4
Grau, V.5
Hart, D.N.6
-
8
-
-
85014662427
-
Human blood CD1c+ dendritic cells encompass CD5high and CD5low subsets that differ significantly in phenotype, gene expression, and functions
-
Yin X, Yu H, Jin X, Li J, Guo H, Shi Q et al. Human blood CD1c+ dendritic cells encompass CD5high and CD5low subsets that differ significantly in phenotype, gene expression, and functions. J Immunol 2017; 198:1553–64.
-
(2017)
J Immunol
, vol.198
, pp. 1553-1564
-
-
Yin, X.1
Yu, H.2
Jin, X.3
Li, J.4
Guo, H.5
Shi, Q.6
-
9
-
-
85018582872
-
Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
-
Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 2017; 356:eaah4573.
-
(2017)
Science
, vol.356
-
-
Villani, A.C.1
Satija, R.2
Reynolds, G.3
Sarkizova, S.4
Shekhar, K.5
Fletcher, J.6
-
10
-
-
85027934223
-
Mapping the human DC lineage through the integration of high-dimensional techniques
-
See P, Dutertre CA, Chen J, Günther P, McGovern N, Irac SE et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science 2017; 356:eaag3009.
-
(2017)
Science
, vol.356
-
-
See, P.1
Dutertre, C.A.2
Chen, J.3
Günther, P.4
McGovern, N.5
Irac, S.E.6
-
11
-
-
63049112195
-
Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation
-
Haniffa M, Ginhoux F, Wang XN, Bigley V, Abel M, Dimmick I et al. Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. J Exp Med 2009; 206:371–85.
-
(2009)
J Exp Med
, vol.206
, pp. 371-385
-
-
Haniffa, M.1
Ginhoux, F.2
Wang, X.N.3
Bigley, V.4
Abel, M.5
Dimmick, I.6
-
12
-
-
84864293006
-
Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells
-
Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 2012; 37:60–73.
-
(2012)
Immunity
, vol.37
, pp. 60-73
-
-
Haniffa, M.1
Shin, A.2
Bigley, V.3
McGovern, N.4
Teo, P.5
See, P.6
-
13
-
-
84907966318
-
Human dermal CD14⁺ cells are a transient population of monocyte-derived macrophages
-
McGovern N, Schlitzer A, Gunawan M, Jardine L, Shin A, Poyner E et al. Human dermal CD14⁺ cells are a transient population of monocyte-derived macrophages. Immunity 2014; 41:465–77.
-
(2014)
Immunity
, vol.41
, pp. 465-477
-
-
McGovern, N.1
Schlitzer, A.2
Gunawan, M.3
Jardine, L.4
Shin, A.5
Poyner, E.6
-
14
-
-
84988735756
-
Flow cytometric analysis of mononuclear phagocytes in non-diseased human lung and lung-draining lymph nodes
-
Desch AN, Gibbings SL, Goyal R, Kolde R, Bednarek J, Bruno T et al. Flow cytometric analysis of mononuclear phagocytes in non-diseased human lung and lung-draining lymph nodes. Am J Respir Crit Care Med 2016; 193:614–26.
-
(2016)
Am J Respir Crit Care Med
, vol.193
, pp. 614-626
-
-
Desch, A.N.1
Gibbings, S.L.2
Goyal, R.3
Kolde, R.4
Bednarek, J.5
Bruno, T.6
-
15
-
-
84975105655
-
Dendritic cells and monocytes with distinct inflammatory responses reside in lung mucosa of healthy humans
-
Baharom F, Thomas S, Rankin G, Lepzien R, Pourazar J, Behndig AF et al. Dendritic cells and monocytes with distinct inflammatory responses reside in lung mucosa of healthy humans. J Immunol 2016; 196:4498–509.
-
(2016)
J Immunol
, vol.196
, pp. 4498-4509
-
-
Baharom, F.1
Thomas, S.2
Rankin, G.3
Lepzien, R.4
Pourazar, J.5
Behndig, A.F.6
-
16
-
-
85014709776
-
Transcriptional classification and functional characterization of human airway macrophage and dendritic cell subsets
-
Patel VI, Booth JL, Duggan ES, Cate S, White VL, Hutchings D et al. Transcriptional classification and functional characterization of human airway macrophage and dendritic cell subsets. J Immunol 2017; 198:1183–201.
-
(2017)
J Immunol
, vol.198
, pp. 1183-1201
-
-
Patel, V.I.1
Booth, J.L.2
Duggan, E.S.3
Cate, S.4
White, V.L.5
Hutchings, D.6
-
17
-
-
84890987173
-
Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice
-
Watchmaker PB, Lahl K, Lee M, Baumjohann D, Morton J, Kim SJ et al. Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice. Nat Immunol 2014; 15:98–108.
-
(2014)
Nat Immunol
, vol.15
, pp. 98-108
-
-
Watchmaker, P.B.1
Lahl, K.2
Lee, M.3
Baumjohann, D.4
Morton, J.5
Kim, S.J.6
-
18
-
-
84876700100
-
Human blood dendritic cell antigen 3 (BDCA3)(+) dendritic cells are a potent producer of interferon-λ in response to hepatitis C virus
-
Yoshio S, Kanto T, Kuroda S, Matsubara T, Higashitani K, Kakita N et al. Human blood dendritic cell antigen 3 (BDCA3)(+) dendritic cells are a potent producer of interferon-λ in response to hepatitis C virus. Hepatology 2013; 57:1705–15.
-
(2013)
Hepatology
, vol.57
, pp. 1705-1715
-
-
Yoshio, S.1
Kanto, T.2
Kuroda, S.3
Matsubara, T.4
Higashitani, K.5
Kakita, N.6
-
19
-
-
84890554548
-
CD141⁺ myeloid dendritic cells are enriched in healthy human liver
-
Kelly A, Fahey R, Fletcher JM, Keogh C, Carroll AG, Siddachari R et al. CD141⁺ myeloid dendritic cells are enriched in healthy human liver. J Hepatol 2014; 60:135–42.
-
(2014)
J Hepatol
, vol.60
, pp. 135-142
-
-
Kelly, A.1
Fahey, R.2
Fletcher, J.M.3
Keogh, C.4
Carroll, A.G.5
Siddachari, R.6
-
20
-
-
79958053079
-
Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status
-
Mittag D, Proietto AI, Loudovaris T, Mannering SI, Vremec D, Shortman K et al. Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status. J Immunol 2011; 186:6207–17.
-
(2011)
J Immunol
, vol.186
, pp. 6207-6217
-
-
Mittag, D.1
Proietto, A.I.2
Loudovaris, T.3
Mannering, S.I.4
Vremec, D.5
Shortman, K.6
-
21
-
-
84879591892
-
Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells
-
Segura E, Durand M, Amigorena S. Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells. J Exp Med 2013; 210:1035–47.
-
(2013)
J Exp Med
, vol.210
, pp. 1035-1047
-
-
Segura, E.1
Durand, M.2
Amigorena, S.3
-
22
-
-
84973521563
-
CD1c-related DCs that express CD207/langerin, but are distinguishable from Langerhans cells, are consistently present in human tonsils
-
De Monte A, Olivieri CV, Vitale S, Bailleux S, Castillo L, Giordanengo V et al. CD1c-related DCs that express CD207/langerin, but are distinguishable from Langerhans cells, are consistently present in human tonsils. Front Immunol 2016; 7:197.
-
(2016)
Front Immunol
, vol.7
, pp. 197
-
-
De Monte, A.1
Olivieri, C.V.2
Vitale, S.3
Bailleux, S.4
Castillo, L.5
Giordanengo, V.6
-
23
-
-
85021646264
-
Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2
-
McGovern N, Shin A, Low G, Duan K, Yao LJ et al. Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature 2017; 546:662–6.
-
(2017)
Nature
, vol.546
, pp. 662-666
-
-
McGovern, N.1
Shin, A.2
Low, G.3
Duan, K.4
Yao, L.J.5
-
24
-
-
84874234535
-
Human inflammatory dendritic cells induce Th17 cell differentiation
-
Segura E, Touzot M, Bohineust A, Cappuccio A, Chiocchia G, Hosmalin A et al. Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity 2013; 38:336–48.
-
(2013)
Immunity
, vol.38
, pp. 336-348
-
-
Segura, E.1
Touzot, M.2
Bohineust, A.3
Cappuccio, A.4
Chiocchia, G.5
Hosmalin, A.6
-
25
-
-
85043614228
-
Profiling of primary peripheral blood- and monocyte-derived dendritic cells using monoclonal antibodies from the HLDA10 Workshop in Wollongong, Australia
-
Autenrieth SE, Grimm S, Rittig SM, Grünebach F, Gouttefangeas C, Bühring HJ. Profiling of primary peripheral blood- and monocyte-derived dendritic cells using monoclonal antibodies from the HLDA10 Workshop in Wollongong, Australia. Clin Transl Immunol 2015; 4:e50.
-
(2015)
Clin Transl Immunol
, vol.4
-
-
Autenrieth, S.E.1
Grimm, S.2
Rittig, S.M.3
Grünebach, F.4
Gouttefangeas, C.5
Bühring, H.J.6
-
26
-
-
84983803286
-
A multi-laboratory comparison of blood dendritic cell populations
-
Fromm PD, Kupresanin F, Brooks AE, Dunbar PR, Haniffa M, Hart DN et al. A multi-laboratory comparison of blood dendritic cell populations. Clin Transl Immunol 2016; 5:e68.
-
(2016)
Clin Transl Immunol
, vol.5
-
-
Fromm, P.D.1
Kupresanin, F.2
Brooks, A.E.3
Dunbar, P.R.4
Haniffa, M.5
Hart, D.N.6
-
27
-
-
84975122314
-
Computational flow cytometry: helping to make sense of high-dimensional immunology data
-
Saeys Y, Gassen SV, Lambrecht BN. Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat Rev Immunol 2016; 16:449–62.
-
(2016)
Nat Rev Immunol
, vol.16
, pp. 449-462
-
-
Saeys, Y.1
Gassen, S.V.2
Lambrecht, B.N.3
-
28
-
-
85028316331
-
Simultaneous epitope and transcriptome measurement in single cells
-
Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H et al. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods 2017; 14:865–8.
-
(2017)
Nat Methods
, vol.14
, pp. 865-868
-
-
Stoeckius, M.1
Hafemeister, C.2
Stephenson, W.3
Houck-Loomis, B.4
Chattopadhyay, P.K.5
Swerdlow, H.6
-
29
-
-
77953484184
-
Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells
-
Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med 2010; 207:1261–71.
-
(2010)
J Exp Med
, vol.207
, pp. 1261-1271
-
-
Poulin, L.F.1
Salio, M.2
Griessinger, E.3
Anjos-Afonso, F.4
Craciun, L.5
Chen, J.L.6
-
30
-
-
84905995910
-
+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells
-
+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells. J Immunol 2014; 193:1622–35.
-
(2014)
J Immunol
, vol.193
, pp. 1622-1635
-
-
Balan, S.1
Ollion, V.2
Colletti, N.3
Chelbi, R.4
Montanana-Sanchis, F.5
Liu, H.6
-
31
-
-
85025077684
-
Dendritic cell lineage potential in human early hematopoietic progenitors
-
Helft J, Anjos-Afonso F, van der Veen AG, Chakravarty P, Bonnet D, Reis E et al. Dendritic cell lineage potential in human early hematopoietic progenitors. Cell Rep 2017; 20:529–37.
-
(2017)
Cell Rep
, vol.20
, pp. 529-537
-
-
Helft, J.1
Anjos-Afonso, F.2
van der Veen, A.G.3
Chakravarty, P.4
Bonnet, D.5
Reis, E.6
-
32
-
-
85025822732
-
Lineage specification of human dendritic cells is marked by IRF8 expression in hematopoietic stem cells and multipotent progenitors
-
Lee J, Zhou YJ, Ma W, Zhang W, Aljoufi A, Luh T et al. Lineage specification of human dendritic cells is marked by IRF8 expression in hematopoietic stem cells and multipotent progenitors. Nat Immunol 2017; 18:877–88.
-
(2017)
Nat Immunol
, vol.18
, pp. 877-888
-
-
Lee, J.1
Zhou, Y.J.2
Ma, W.3
Zhang, W.4
Aljoufi, A.5
Luh, T.6
-
33
-
-
84950290139
-
Transcriptional heterogeneity and lineage commitment in myeloid progenitors
-
Paul F, Arkin Y, Giladi A, Jaitin DA, Kenigsberg E, Keren-Shaul H et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 2015; 163:1663–77.
-
(2015)
Cell
, vol.163
, pp. 1663-1677
-
-
Paul, F.1
Arkin, Y.2
Giladi, A.3
Jaitin, D.A.4
Kenigsberg, E.5
Keren-Shaul, H.6
-
34
-
-
84955164174
-
Distinct routes of lineage development reshape the human blood hierarchy across ontogeny
-
Notta F, Zandi S, Takayama N, Dobson S, Gan OI, Wilson G et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 2016; 351:aab2116.
-
(2016)
Science
, vol.351
, pp. aab2116
-
-
Notta, F.1
Zandi, S.2
Takayama, N.3
Dobson, S.4
Gan, O.I.5
Wilson, G.6
-
35
-
-
85015695567
-
Human haematopoietic stem cell lineage commitment is a continuous process
-
Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol 2017; 19:271–81.
-
(2017)
Nat Cell Biol
, vol.19
, pp. 271-281
-
-
Velten, L.1
Haas, S.F.2
Raffel, S.3
Blaszkiewicz, S.4
Islam, S.5
Hennig, B.P.6
-
36
-
-
85034657245
-
Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells
-
Karamitros D, Stoilova B, Aboukhalil Z, Hamey F, Reinisch A, Samitsch M et al. Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells. Nat Immunol 2017; 19:85–97.
-
(2017)
Nat Immunol
, vol.19
, pp. 85-97
-
-
Karamitros, D.1
Stoilova, B.2
Aboukhalil, Z.3
Hamey, F.4
Reinisch, A.5
Samitsch, M.6
-
37
-
-
77958532465
-
A map for lineage restriction of progenitors during hematopoiesis: the essence of the myeloid-based model
-
Kawamoto H, Ikawa T, Masuda K, Wada H, Katsura Y. A map for lineage restriction of progenitors during hematopoiesis: the essence of the myeloid-based model. Immunol Rev 2010; 238:23–36.
-
(2010)
Immunol Rev
, vol.238
, pp. 23-36
-
-
Kawamoto, H.1
Ikawa, T.2
Masuda, K.3
Wada, H.4
Katsura, Y.5
-
38
-
-
19344373223
-
Derivation of 2 categories of plasmacytoid dendritic cells in murine bone marrow
-
Pelayo R, Hirose J, Huang J, Garrett KP, Delogu A, Busslinger M et al. Derivation of 2 categories of plasmacytoid dendritic cells in murine bone marrow. Blood 2005; 105:4407–15.
-
(2005)
Blood
, vol.105
, pp. 4407-4415
-
-
Pelayo, R.1
Hirose, J.2
Huang, J.3
Garrett, K.P.4
Delogu, A.5
Busslinger, M.6
-
39
-
-
0037988844
-
The lymphoid past of mouse plasmacytoid cells and thymic dendritic cells
-
Corcoran L, Ferrero I, Vremec D, Lucas K, Waithman J, O'Keeffe M et al. The lymphoid past of mouse plasmacytoid cells and thymic dendritic cells. J Immunol 2003; 170:4926–32.
-
(2003)
J Immunol
, vol.170
, pp. 4926-4932
-
-
Corcoran, L.1
Ferrero, I.2
Vremec, D.3
Lucas, K.4
Waithman, J.5
O'Keeffe, M.6
-
41
-
-
0030949479
-
The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand
-
Grouard G, Rissoan MC, Filgueira L, Durand I, Banchereau J, Liu YJ. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J Exp Med 1997; 185:1101–11.
-
(1997)
J Exp Med
, vol.185
, pp. 1101-1111
-
-
Grouard, G.1
Rissoan, M.C.2
Filgueira, L.3
Durand, I.4
Banchereau, J.5
Liu, Y.J.6
-
42
-
-
67449128181
-
CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions
-
Matsui T, Connolly JE, Michnevitz M, Chaussabel D, Yu CI, Glaser C et al. CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions. J Immunol 2009; 182:6815–23.
-
(2009)
J Immunol
, vol.182
, pp. 6815-6823
-
-
Matsui, T.1
Connolly, J.E.2
Michnevitz, M.3
Chaussabel, D.4
Yu, C.I.5
Glaser, C.6
-
43
-
-
84958824501
-
A CD2 high-expressing stress-resistant human plasmacytoid dendritic-cell subset
-
Bryant C, Fromm PD, Kupresanin F, Clark G, Lee K, Clarke C et al. A CD2 high-expressing stress-resistant human plasmacytoid dendritic-cell subset. Immunol Cell Biol 2016; 94:447–57.
-
(2016)
Immunol Cell Biol
, vol.94
, pp. 447-457
-
-
Bryant, C.1
Fromm, P.D.2
Kupresanin, F.3
Clark, G.4
Lee, K.5
Clarke, C.6
-
45
-
-
84939945936
-
+ dendritic cells (DCs) related to blastic plasmacytoid dendritic cell neoplasm represent a unique myeloid DC subset
-
+ dendritic cells (DCs) related to blastic plasmacytoid dendritic cell neoplasm represent a unique myeloid DC subset. Protein Cell 2015; 6:297–306.
-
(2015)
Protein Cell
, vol.6
, pp. 297-306
-
-
Yu, H.1
Zhang, P.2
Yin, X.3
Yin, Z.4
Shi, Q.5
Cui, Y.6
-
46
-
-
85013293350
-
A distinct subset of plasmacytoid dendritic cells induces activation and differentiation of B and T lymphocytes
-
Zhang H, Gregorio JD, Iwahori T, Zhang X, Choi O, Tolentino LL et al. A distinct subset of plasmacytoid dendritic cells induces activation and differentiation of B and T lymphocytes. Proc Natl Acad Sci U S A 2017; 114:1988–93.
-
(2017)
Proc Natl Acad Sci U S A
, vol.114
, pp. 1988-1993
-
-
Zhang, H.1
Gregorio, J.D.2
Iwahori, T.3
Zhang, X.4
Choi, O.5
Tolentino, L.L.6
-
47
-
-
0032773794
-
Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon
-
Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 1999; 5:919–23.
-
(1999)
Nat Med
, vol.5
, pp. 919-923
-
-
Cella, M.1
Jarrossay, D.2
Facchetti, F.3
Alebardi, O.4
Nakajima, H.5
Lanzavecchia, A.6
-
48
-
-
0033546053
-
The nature of the principal type 1 interferon-producing cells in human blood
-
Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 1999; 284:1835–7.
-
(1999)
Science
, vol.284
, pp. 1835-1837
-
-
Siegal, F.P.1
Kadowaki, N.2
Shodell, M.3
Fitzgerald-Bocarsly, P.A.4
Shah, K.5
Ho, S.6
-
49
-
-
0035905321
-
BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon α/β induction
-
Dzionek A, Sohma Y, Nagafune J, Cella M, Colonna M, Facchetti F et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon α/β induction. J Exp Med 2001; 194:1823–34.
-
(2001)
J Exp Med
, vol.194
, pp. 1823-1834
-
-
Dzionek, A.1
Sohma, Y.2
Nagafune, J.3
Cella, M.4
Colonna, M.5
Facchetti, F.6
-
50
-
-
84892177710
-
Rapid detection of dendritic cell and monocyte disorders using CD4 as a lineage marker of the human peripheral blood antigen-presenting cell compartment
-
Jardine L, Barge D, Ames-Draycott A, Pagan S, Cookson S, Spickett G et al. Rapid detection of dendritic cell and monocyte disorders using CD4 as a lineage marker of the human peripheral blood antigen-presenting cell compartment. Front Immunol 2013; 4:495.
-
(2013)
Front Immunol
, vol.4
, pp. 495
-
-
Jardine, L.1
Barge, D.2
Ames-Draycott, A.3
Pagan, S.4
Cookson, S.5
Spickett, G.6
-
51
-
-
51649099812
-
CD300a/c regulate type I interferon and TNF-alpha secretion by human plasmacytoid dendritic cells stimulated with TLR7 and TLR9 ligands
-
Ju X, Zenke M, Hart DN, Clark GJ. CD300a/c regulate type I interferon and TNF-alpha secretion by human plasmacytoid dendritic cells stimulated with TLR7 and TLR9 ligands. Blood 2008; 112:1184–94.
-
(2008)
Blood
, vol.112
, pp. 1184-1194
-
-
Ju, X.1
Zenke, M.2
Hart, D.N.3
Clark, G.J.4
-
52
-
-
84872350340
-
Regulation of TLR7/9 signaling in plasmacytoid dendritic cells
-
Bao M, Liu YJ. Regulation of TLR7/9 signaling in plasmacytoid dendritic cells. Protein Cell 2013; 4:40–52.
-
(2013)
Protein Cell
, vol.4
, pp. 40-52
-
-
Bao, M.1
Liu, Y.J.2
-
53
-
-
84926408535
-
Haematopoietic and immune defects associated with GATA2 mutation
-
Collin M, Dickinson R, Bigley V. Haematopoietic and immune defects associated with GATA2 mutation. Br J Haematol 2015; 169:173–87.
-
(2015)
Br J Haematol
, vol.169
, pp. 173-187
-
-
Collin, M.1
Dickinson, R.2
Bigley, V.3
-
54
-
-
84993940055
-
GATA2 regulates dendritic cell differentiation
-
Onodera K, Fujiwara T, Onishi Y, Itoh-Nakadai A, Okitsu Y, Fukuhara N et al. GATA2 regulates dendritic cell differentiation. Blood 2016; 128:508–18.
-
(2016)
Blood
, vol.128
, pp. 508-518
-
-
Onodera, K.1
Fujiwara, T.2
Onishi, Y.3
Itoh-Nakadai, A.4
Okitsu, Y.5
Fukuhara, N.6
-
55
-
-
77953282048
-
The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner
-
Carotta S, Dakic A, D'Amico A, Pang SH, Greig KT, Nutt SL et al. The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity 2010; 32:628–41.
-
(2010)
Immunity
, vol.32
, pp. 628-641
-
-
Carotta, S.1
Dakic, A.2
D'Amico, A.3
Pang, S.H.4
Greig, K.T.5
Nutt, S.L.6
-
56
-
-
20444466497
-
The transcriptional repressor Gfi1 controls STAT3-dependent dendritic cell development and function
-
Rathinam C, Geffers R, Yucel R, Buer J, Welte K, Moroy T et al. The transcriptional repressor Gfi1 controls STAT3-dependent dendritic cell development and function. Immunity 2005; 22:717–28.
-
(2005)
Immunity
, vol.22
, pp. 717-728
-
-
Rathinam, C.1
Geffers, R.2
Yucel, R.3
Buer, J.4
Welte, K.5
Moroy, T.6
-
57
-
-
33845483853
-
Ikaros is required for plasmacytoid dendritic cell differentiation
-
Allman D, Dalod M, Asselin-Paturel C, Delale T, Robbins SH, Trinchieri G et al. Ikaros is required for plasmacytoid dendritic cell differentiation. Blood 2006; 108:4025–34.
-
(2006)
Blood
, vol.108
, pp. 4025-4034
-
-
Allman, D.1
Dalod, M.2
Asselin-Paturel, C.3
Delale, T.4
Robbins, S.H.5
Trinchieri, G.6
-
58
-
-
84946554097
-
Transcriptional regulation of mononuclear phagocyte development
-
Tussiwand R, Gautier EL. Transcriptional regulation of mononuclear phagocyte development. Front Immunol 2015; 6:533.
-
(2015)
Front Immunol
, vol.6
, pp. 533
-
-
Tussiwand, R.1
Gautier, E.L.2
-
59
-
-
84937967684
-
The multifaceted biology of plasmacytoid dendritic cells
-
Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 2015; 15:471–85.
-
(2015)
Nat Rev Immunol
, vol.15
, pp. 471-485
-
-
Swiecki, M.1
Colonna, M.2
-
60
-
-
84969785370
-
Transcriptional control of dendritic cell development
-
Murphy TL, Grajales-Reyes GE, Wu X, Tussiwand R, Briseño CG, Iwata A et al. Transcriptional control of dendritic cell development. Annu Rev Immunol 2016; 34:93–119.
-
(2016)
Annu Rev Immunol
, vol.34
, pp. 93-119
-
-
Murphy, T.L.1
Grajales-Reyes, G.E.2
Wu, X.3
Tussiwand, R.4
Briseño, C.G.5
Iwata, A.6
-
61
-
-
79960219807
-
IRF8 mutations and human dendritic-cell immunodeficiency
-
Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, Azevedo J et al. IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med 2011; 365:127–38.
-
(2011)
N Engl J Med
, vol.365
, pp. 127-138
-
-
Hambleton, S.1
Salem, S.2
Bustamante, J.3
Bigley, V.4
Boisson-Dupuis, S.5
Azevedo, J.6
-
62
-
-
85039429317
-
Biallelic interferon regulatory factor 8 mutation: a complex immunodeficiency syndrome with dendritic cell deficiency, monocytopenia, and immune dysregulation
-
Bigley V, Maisuria S, Cytlak U, Jardine L, Care MA, Green K et al. Biallelic interferon regulatory factor 8 mutation: a complex immunodeficiency syndrome with dendritic cell deficiency, monocytopenia, and immune dysregulation. J Allergy Clin Immunol 2017; doi: 10.1016/j.jaci.2017.08.044
-
(2017)
J Allergy Clin Immunol
-
-
Bigley, V.1
Maisuria, S.2
Cytlak, U.3
Jardine, L.4
Care, M.A.5
Green, K.6
-
63
-
-
85044601524
-
D, Kuehn HS, Altmann TG, A. Ikaros family zinc finger 1 regulates dendritic cell development and function in humans. Nature
-
In press
-
Cytlak U, Resteu AB. D, Kuehn HS, Altmann TG, A. Ikaros family zinc finger 1 regulates dendritic cell development and function in humans. Nature. Communications 2018; In press.
-
(2018)
Communications
-
-
Cytlak, U.1
Resteu, A.B.2
-
64
-
-
0034684654
-
Id2 and Id3 inhibit development of CD34(+) stem cells into predendritic cell (pre-DC)2 but not into pre-DC1. Evidence for a lymphoid origin of pre-DC2
-
Spits H, Couwenberg F, Bakker AQ, Weijer K, Uittenbogaart CH. Id2 and Id3 inhibit development of CD34(+) stem cells into predendritic cell (pre-DC)2 but not into pre-DC1. Evidence for a lymphoid origin of pre-DC2. J Exp Med 2000; 192:1775–84.
-
(2000)
J Exp Med
, vol.192
, pp. 1775-1784
-
-
Spits, H.1
Couwenberg, F.2
Bakker, A.Q.3
Weijer, K.4
Uittenbogaart, C.H.5
-
65
-
-
84905093427
-
ETO family protein Mtg16 regulates the balance of dendritic cell subsets by repressing Id2
-
Ghosh HS, Ceribelli M, Matos I, Lazarovici A, Bussemaker HJ, Lasorella A et al. ETO family protein Mtg16 regulates the balance of dendritic cell subsets by repressing Id2. J Exp Med 2014; 211:1623–35.
-
(2014)
J Exp Med
, vol.211
, pp. 1623-1635
-
-
Ghosh, H.S.1
Ceribelli, M.2
Matos, I.3
Lazarovici, A.4
Bussemaker, H.J.5
Lasorella, A.6
-
66
-
-
84971567648
-
The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2
-
Scott CL, Soen B, Martens L, Skrypek N, Saelens W, Taminau J et al. The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2. J Exp Med 2016; 213:897–911.
-
(2016)
J Exp Med
, vol.213
, pp. 897-911
-
-
Scott, C.L.1
Soen, B.2
Martens, L.3
Skrypek, N.4
Saelens, W.5
Taminau, J.6
-
67
-
-
85006371231
-
Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate
-
Wu X, Briseño CG, Grajales-Reyes GE, Haldar M, Iwata A, Kretzer NM et al. Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate. Proc Natl Acad Sci U S A 2016; 113:14775–80.
-
(2016)
Proc Natl Acad Sci U S A
, vol.113
, pp. 14775-14780
-
-
Wu, X.1
Briseño, C.G.2
Grajales-Reyes, G.E.3
Haldar, M.4
Iwata, A.5
Kretzer, N.M.6
-
68
-
-
79959413238
-
NFIL3/E4BP4 is a key transcription factor for CD8alpha dendritic cell development
-
Kashiwada M, Pham NL, Pewe LL, Harty JT, Rothman PB. NFIL3/E4BP4 is a key transcription factor for CD8alpha dendritic cell development. Blood 2011; 117:6193–7.
-
(2011)
Blood
, vol.117
, pp. 6193-6197
-
-
Kashiwada, M.1
Pham, N.L.2
Pewe, L.L.3
Harty, J.T.4
Rothman, P.B.5
-
69
-
-
84978300165
-
Human plasmacytoid dentritic cells elicit a Type I Interferon response by sensing DNA via the cGAS-STING signaling pathway
-
Bode C, Fox M, Tewary P, Steinhagen A, Ellerkmann RK, Klinman D et al. Human plasmacytoid dentritic cells elicit a Type I Interferon response by sensing DNA via the cGAS-STING signaling pathway. Eur J Immunol 2016; 46:1615–21.
-
(2016)
Eur J Immunol
, vol.46
, pp. 1615-1621
-
-
Bode, C.1
Fox, M.2
Tewary, P.3
Steinhagen, A.4
Ellerkmann, R.K.5
Klinman, D.6
-
70
-
-
84924105256
-
Viral entry route determines how human plasmacytoid dendritic cells produce type I interferons
-
Bruni D, Chazal M, Sinigaglia L, Chauveau L, Schwartz O, Després P et al. Viral entry route determines how human plasmacytoid dendritic cells produce type I interferons. Sci Signal 2015; 8:ra25.
-
(2015)
Sci Signal
, vol.8
, pp. ra25
-
-
Bruni, D.1
Chazal, M.2
Sinigaglia, L.3
Chauveau, L.4
Schwartz, O.5
Després, P.6
-
71
-
-
17144404177
-
IRF-7 is the master regulator of type-I interferon-dependent immune responses
-
Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005; 434:772–7.
-
(2005)
Nature
, vol.434
, pp. 772-777
-
-
Honda, K.1
Yanai, H.2
Negishi, H.3
Asagiri, M.4
Sato, M.5
Mizutani, T.6
-
72
-
-
84959166943
-
Death receptor 6 is a novel plasmacytoid dendritic cell-specific receptor and modulates type I interferon production
-
Li J, Du Q, Hu R, Wang Y, Yin X, Yu H et al. Death receptor 6 is a novel plasmacytoid dendritic cell-specific receptor and modulates type I interferon production. Protein Cell 2016; 7:291–4.
-
(2016)
Protein Cell
, vol.7
, pp. 291-294
-
-
Li, J.1
Du, Q.2
Hu, R.3
Wang, Y.4
Yin, X.5
Yu, H.6
-
73
-
-
84958554674
-
S1PR4 signaling attenuates ILT 7 internalization to limit IFN-α production by human plasmacytoid dendritic cells
-
Dillmann C, Ringel C, Ringleb J, Mora J, Olesch C, Fink AF et al. S1PR4 signaling attenuates ILT 7 internalization to limit IFN-α production by human plasmacytoid dendritic cells. J Immunol 2016; 196:1579–90.
-
(2016)
J Immunol
, vol.196
, pp. 1579-1590
-
-
Dillmann, C.1
Ringel, C.2
Ringleb, J.3
Mora, J.4
Olesch, C.5
Fink, A.F.6
-
74
-
-
84956658839
-
S1PR1-mediated IFNAR1 degradation modulates plasmacytoid dendritic cell interferon-α autoamplification
-
Teijaro JR, Studer S, Leaf N, Kiosses WB, Nguyen N, Matsuki K et al. S1PR1-mediated IFNAR1 degradation modulates plasmacytoid dendritic cell interferon-α autoamplification. Proc Natl Acad Sci USA 2016; 113:1351–6.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. 1351-1356
-
-
Teijaro, J.R.1
Studer, S.2
Leaf, N.3
Kiosses, W.B.4
Nguyen, N.5
Matsuki, K.6
-
75
-
-
84928377935
-
Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency
-
Ciancanelli MJ, Huang SX, Luthra P, Garner H, Itan Y, Volpi S et al. Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 2015; 348:448–53.
-
(2015)
Science
, vol.348
, pp. 448-453
-
-
Ciancanelli, M.J.1
Huang, S.X.2
Luthra, P.3
Garner, H.4
Itan, Y.5
Volpi, S.6
-
76
-
-
84901807538
-
Plasmacytoid dendritic cell depletion in DOCK8 deficiency: rescue of severe herpetic infections with IFN-α 2b therapy
-
e3
-
Keles S, Jabara HH, Reisli I, McDonald DR, Barlan I, Hanna-Wakim R et al. Plasmacytoid dendritic cell depletion in DOCK8 deficiency: rescue of severe herpetic infections with IFN-α 2b therapy. J Allergy Clin Immunol 2014; 133:1753–5.e3.
-
(2014)
J Allergy Clin Immunol
, vol.133
, pp. 1753-1755
-
-
Keles, S.1
Jabara, H.H.2
Reisli, I.3
McDonald, D.R.4
Barlan, I.5
Hanna-Wakim, R.6
-
77
-
-
84915786458
-
Short communication: plasmacytoid dendritic cells from HIV-1 elite controllers maintain a gut-homing phenotype associated with immune activation
-
Li H, Goepfert P, Reeves RK. Short communication: plasmacytoid dendritic cells from HIV-1 elite controllers maintain a gut-homing phenotype associated with immune activation. AIDS Res Hum Retroviruses 2014; 30:1213–5.
-
(2014)
AIDS Res Hum Retroviruses
, vol.30
, pp. 1213-1215
-
-
Li, H.1
Goepfert, P.2
Reeves, R.K.3
-
78
-
-
33947661034
-
TLR ligand-dependent activation of naive CD4 T cells by plasmacytoid dendritic cells is impaired in hepatitis C virus infection
-
Yonkers NL, Rodriguez B, Milkovich KA, Asaad R, Lederman MM, Heeger PS et al. TLR ligand-dependent activation of naive CD4 T cells by plasmacytoid dendritic cells is impaired in hepatitis C virus infection. J Immunol 2007; 178:4436–44.
-
(2007)
J Immunol
, vol.178
, pp. 4436-4444
-
-
Yonkers, N.L.1
Rodriguez, B.2
Milkovich, K.A.3
Asaad, R.4
Lederman, M.M.5
Heeger, P.S.6
-
79
-
-
79251543296
-
Hepatitis B virus lacks immune activating capacity, but actively inhibits plasmacytoid dendritic cell function
-
Woltman AM, Op den Brouw ML, Biesta PJ, Shi CC, Janssen HL. Hepatitis B virus lacks immune activating capacity, but actively inhibits plasmacytoid dendritic cell function. PLoS ONE 2011; 6:e15324.
-
(2011)
PLoS ONE
, vol.6
-
-
Woltman, A.M.1
Op den Brouw, M.L.2
Biesta, P.J.3
Shi, C.C.4
Janssen, H.L.5
-
80
-
-
79952468782
-
Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus
-
Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 2011; 3:73ra19.
-
(2011)
Sci Transl Med
, vol.3
, pp. 73ra19
-
-
Lande, R.1
Ganguly, D.2
Facchinetti, V.3
Frasca, L.4
Conrad, C.5
Gregorio, J.6
-
81
-
-
69549135324
-
Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8
-
Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S, Facchinetti V et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med 2009; 206:1983–94.
-
(2009)
J Exp Med
, vol.206
, pp. 1983-1994
-
-
Ganguly, D.1
Chamilos, G.2
Lande, R.3
Gregorio, J.4
Meller, S.5
Facchinetti, V.6
-
82
-
-
84930440712
-
IFN-α production by plasmacytoid dendritic cell associations with polymorphisms in gene loci related to autoimmune and inflammatory diseases
-
Berggren O, Alexsson A, Morris DL, Tandre K, Weber G, Vyse TJ et al. IFN-α production by plasmacytoid dendritic cell associations with polymorphisms in gene loci related to autoimmune and inflammatory diseases. Hum Mol Genet 2015; 24:3571–81.
-
(2015)
Hum Mol Genet
, vol.24
, pp. 3571-3581
-
-
Berggren, O.1
Alexsson, A.2
Morris, D.L.3
Tandre, K.4
Weber, G.5
Vyse, T.J.6
-
83
-
-
43249130188
-
Targeting DCIR on human plasmacytoid dendritic cells results in antigen presentation and inhibits IFN-α production
-
Meyer-Wentrup F, Benitez-Ribas D, Tacken PJ, Punt CJ, Figdor CG, de Vries IJ et al. Targeting DCIR on human plasmacytoid dendritic cells results in antigen presentation and inhibits IFN-α production. Blood 2008; 111:4245–53.
-
(2008)
Blood
, vol.111
, pp. 4245-4253
-
-
Meyer-Wentrup, F.1
Benitez-Ribas, D.2
Tacken, P.J.3
Punt, C.J.4
Figdor, C.G.5
de Vries, I.J.6
-
85
-
-
84887494213
-
Targeting uptake receptors on human plasmacytoid dendritic cells triggers antigen cross-presentation and robust type I IFN secretion
-
Tel J, Sittig SP, Blom RA, Cruz LJ, Schreibelt G, Figdor CG et al. Targeting uptake receptors on human plasmacytoid dendritic cells triggers antigen cross-presentation and robust type I IFN secretion. J Immunol 2013; 191:5005–12.
-
(2013)
J Immunol
, vol.191
, pp. 5005-5012
-
-
Tel, J.1
Sittig, S.P.2
Blom, R.A.3
Cruz, L.J.4
Schreibelt, G.5
Figdor, C.G.6
-
87
-
-
84938861731
-
Defects in plasmacytoid dendritic cell expression of inducible costimulator ligand and IFN-α are associated in asthma with disease persistence
-
Froidure A, Vandenplas O, D'Alpaos V, Evrard G, Pilette C. Defects in plasmacytoid dendritic cell expression of inducible costimulator ligand and IFN-α are associated in asthma with disease persistence. Am J Respir Crit Care Med 2015; 192:392–5.
-
(2015)
Am J Respir Crit Care Med
, vol.192
, pp. 392-395
-
-
Froidure, A.1
Vandenplas, O.2
D'Alpaos, V.3
Evrard, G.4
Pilette, C.5
-
88
-
-
84862617592
-
Innate IFNs and plasmacytoid dendritic cells constrain Th2 cytokine responses to rhinovirus: a regulatory mechanism with relevance to asthma
-
Pritchard AL, Carroll ML, Burel JG, White OJ, Phipps S, Upham JW. Innate IFNs and plasmacytoid dendritic cells constrain Th2 cytokine responses to rhinovirus: a regulatory mechanism with relevance to asthma. J Immunol 2012; 188:5898–905.
-
(2012)
J Immunol
, vol.188
, pp. 5898-5905
-
-
Pritchard, A.L.1
Carroll, M.L.2
Burel, J.G.3
White, O.J.4
Phipps, S.5
Upham, J.W.6
-
89
-
-
84942376836
-
Breast cancer cell-derived GM-CSF licenses regulatory Th2 induction by plasmacytoid predendritic cells in aggressive disease subtypes
-
Ghirelli C, Reyal F, Jeanmougin M, Zollinger R, Sirven P, Michea P et al. Breast cancer cell-derived GM-CSF licenses regulatory Th2 induction by plasmacytoid predendritic cells in aggressive disease subtypes. Cancer Res 2015; 75:2775–87.
-
(2015)
Cancer Res
, vol.75
, pp. 2775-2787
-
-
Ghirelli, C.1
Reyal, F.2
Jeanmougin, M.3
Zollinger, R.4
Sirven, P.5
Michea, P.6
-
91
-
-
84859957011
-
F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells
-
Ahrens S, Zelenay S, Sancho D, Hanc P, Kjaer S, Feest C et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 2012; 36:635–45.
-
(2012)
Immunity
, vol.36
, pp. 635-645
-
-
Ahrens, S.1
Zelenay, S.2
Sancho, D.3
Hanc, P.4
Kjaer, S.5
Feest, C.6
-
92
-
-
84859993076
-
The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments
-
Zhang JG, Czabotar PE, Policheni AN, Caminschi I, Wan SS, Kitsoulis S et al. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 2012; 36:646–57.
-
(2012)
Immunity
, vol.36
, pp. 646-657
-
-
Zhang, J.G.1
Czabotar, P.E.2
Policheni, A.N.3
Caminschi, I.4
Wan, S.S.5
Kitsoulis, S.6
-
93
-
-
77953506509
-
The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells
-
Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J Exp Med 2010; 207:1283–92.
-
(2010)
J Exp Med
, vol.207
, pp. 1283-1292
-
-
Crozat, K.1
Guiton, R.2
Contreras, V.3
Feuillet, V.4
Dutertre, C.A.5
Ventre, E.6
-
95
-
-
84861750928
-
Characterization of resident and migratory dendritic cells in human lymph nodes
-
Segura E, Valladeau-Guilemond J, Donnadieu MH, Sastre-Garau X, Soumelis V, Amigorena S. Characterization of resident and migratory dendritic cells in human lymph nodes. J Exp Med 2012; 209:653–60.
-
(2012)
J Exp Med
, vol.209
, pp. 653-660
-
-
Segura, E.1
Valladeau-Guilemond, J.2
Donnadieu, M.H.3
Sastre-Garau, X.4
Soumelis, V.5
Amigorena, S.6
-
96
-
-
0037386339
-
Transcriptional profiling identifies Id2 function in dendritic cell development
-
Hacker C, Kirsch RD, Ju XS, Hieronymus T, Gust TC, Kuhl C et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol 2003; 4:380–6.
-
(2003)
Nat Immunol
, vol.4
, pp. 380-386
-
-
Hacker, C.1
Kirsch, R.D.2
Ju, X.S.3
Hieronymus, T.4
Gust, T.C.5
Kuhl, C.6
-
97
-
-
0037310617
-
Cutting edge: IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells
-
Tsujimura H, Tamura T, Ozato K. Cutting edge: IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells. J Immunol 2003; 170:1131–5.
-
(2003)
J Immunol
, vol.170
, pp. 1131-1135
-
-
Tsujimura, H.1
Tamura, T.2
Ozato, K.3
-
99
-
-
84939976213
-
Regulation of myelopoiesis by the transcription factor IRF8
-
Tamura T, Kurotaki D, Koizumi SI. Regulation of myelopoiesis by the transcription factor IRF8. Int J Hematol 2015; 101:342–51.
-
(2015)
Int J Hematol
, vol.101
, pp. 342-351
-
-
Tamura, T.1
Kurotaki, D.2
Koizumi, S.I.3
-
100
-
-
84990966822
-
IRF8 transcription factor controls survival and function of terminally differentiated conventional and plasmacytoid dendritic cells, respectively
-
Sichien D, Scott CL, Martens L, Vanderkerken M, Van Gassen S, Plantinga M et al. IRF8 transcription factor controls survival and function of terminally differentiated conventional and plasmacytoid dendritic cells, respectively. Immunity 2016; 45:626–40.
-
(2016)
Immunity
, vol.45
, pp. 626-640
-
-
Sichien, D.1
Scott, C.L.2
Martens, L.3
Vanderkerken, M.4
Van Gassen, S.5
Plantinga, M.6
-
101
-
-
41349119601
-
The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse
-
Tailor P, Tamura T, Morse HC, Ozato K. The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse. Blood 2008; 111:1942–5.
-
(2008)
Blood
, vol.111
, pp. 1942-1945
-
-
Tailor, P.1
Tamura, T.2
Morse, H.C.3
Ozato, K.4
-
102
-
-
85008313635
-
Biallelic mutations in IRF8 impair human NK cell maturation and function
-
Mace EM, Bigley V, Gunesch JT, Chinn IK, Angelo LS, Care MA et al. Biallelic mutations in IRF8 impair human NK cell maturation and function. J Clin Invest 2017; 127:306–20.
-
(2017)
J Clin Invest
, vol.127
, pp. 306-320
-
-
Mace, E.M.1
Bigley, V.2
Gunesch, J.T.3
Chinn, I.K.4
Angelo, L.S.5
Care, M.A.6
-
103
-
-
84919683350
-
β-catenin signaling drives differentiation and proinflammatory function of IRF8-dependent dendritic cells
-
Cohen SB, Smith NL, McDougal C, Pepper M, Shah S, Yap GS et al. β-catenin signaling drives differentiation and proinflammatory function of IRF8-dependent dendritic cells. J Immunol 2015; 194:210–22.
-
(2015)
J Immunol
, vol.194
, pp. 210-222
-
-
Cohen, S.B.1
Smith, N.L.2
McDougal, C.3
Pepper, M.4
Shah, S.5
Yap, G.S.6
-
104
-
-
84860240081
-
DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues
-
Poulin LF, Reyal Y, Uronen-Hansson H, Schraml BU, Sancho D, Murphy KM et al. DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues. Blood 2012; 119:6052–62.
-
(2012)
Blood
, vol.119
, pp. 6052-6062
-
-
Poulin, L.F.1
Reyal, Y.2
Uronen-Hansson, H.3
Schraml, B.U.4
Sancho, D.5
Murphy, K.M.6
-
105
-
-
84867884822
-
Compensatory dendritic cell development mediated by BATF-IRF interactions
-
Tussiwand R, Lee WL, Murphy TL, Mashayekhi M, Wumesh KC, Albring JC et al. Compensatory dendritic cell development mediated by BATF-IRF interactions. Nature 2012; 490:502–7.
-
(2012)
Nature
, vol.490
, pp. 502-507
-
-
Tussiwand, R.1
Lee, W.L.2
Murphy, T.L.3
Mashayekhi, M.4
Wumesh, K.C.5
Albring, J.C.6
-
109
-
-
84958999354
-
A comparative study of the T cell stimulatory and polarizing capacity of human primary blood dendritic cell subsets
-
Sittig SP, Bakdash G, Weiden J, Sköld AE, Tel J, Figdor CG et al. A comparative study of the T cell stimulatory and polarizing capacity of human primary blood dendritic cell subsets. Mediators Inflamm 2016; 2016:3605643.
-
(2016)
Mediators Inflamm
, vol.2016
, pp. 3605643
-
-
Sittig, S.P.1
Bakdash, G.2
Weiden, J.3
Sköld, A.E.4
Tel, J.5
Figdor, C.G.6
-
110
-
-
84900842537
-
Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming
-
Dalod M, Chelbi R, Malissen B, Lawrence T. Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming. EMBO J 2014; 33:1104–16.
-
(2014)
EMBO J
, vol.33
, pp. 1104-1116
-
-
Dalod, M.1
Chelbi, R.2
Malissen, B.3
Lawrence, T.4
-
112
-
-
84946558737
-
Immunity to pathogens taught by specialized human dendritic cell subsets
-
Geginat J, Nizzoli G, Paroni M, Maglie S, Larghi P, Pascolo S et al. Immunity to pathogens taught by specialized human dendritic cell subsets. Front Immunol 2015; 6:527.
-
(2015)
Front Immunol
, vol.6
, pp. 527
-
-
Geginat, J.1
Nizzoli, G.2
Paroni, M.3
Maglie, S.4
Larghi, P.5
Pascolo, S.6
-
115
-
-
84924535047
-
Antibodies targeting Clec9A promote strong humoral immunity without adjuvant in mice and non-human primates
-
Li J, Ahmet F, Sullivan LC, Brooks AG, Kent SJ, De Rose R et al. Antibodies targeting Clec9A promote strong humoral immunity without adjuvant in mice and non-human primates. Eur J Immunol 2015; 45:854–64.
-
(2015)
Eur J Immunol
, vol.45
, pp. 854-864
-
-
Li, J.1
Ahmet, F.2
Sullivan, L.C.3
Brooks, A.G.4
Kent, S.J.5
De Rose, R.6
-
116
-
-
84875642301
-
Human blood mDC subsets exhibit distinct TLR repertoire and responsiveness
-
Hemont C, Neel A, Heslan M, Braudeau C, Josien R. Human blood mDC subsets exhibit distinct TLR repertoire and responsiveness. J Leukoc Biol 2013; 93:599–609.
-
(2013)
J Leukoc Biol
, vol.93
, pp. 599-609
-
-
Hemont, C.1
Neel, A.2
Heslan, M.3
Braudeau, C.4
Josien, R.5
-
117
-
-
84964681224
-
TLR3 signaling promotes the induction of unique human BDCA-3 dendritic cell populations
-
Colletti NJ, Liu H, Gower AC, Alekseyev YO, Arendt CW, Shaw MH. TLR3 signaling promotes the induction of unique human BDCA-3 dendritic cell populations. Front Immunol 2016; 7:88.
-
(2016)
Front Immunol
, vol.7
, pp. 88
-
-
Colletti, N.J.1
Liu, H.2
Gower, A.C.3
Alekseyev, Y.O.4
Arendt, C.W.5
Shaw, M.H.6
-
118
-
-
84924778328
-
Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation
-
Liu S, Cai X, Wu J, Cong Q, Chen X, Li T et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 2015; 347:aaa2630.
-
(2015)
Science
, vol.347
, pp. aaa2630
-
-
Liu, S.1
Cai, X.2
Wu, J.3
Cong, Q.4
Chen, X.5
Li, T.6
-
119
-
-
84870292016
-
Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells
-
Lafaille FG, Pessach IM, Zhang SY, Ciancanelli MJ, Herman M, Abhyankar A et al. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 2012; 491:769–73.
-
(2012)
Nature
, vol.491
, pp. 769-773
-
-
Lafaille, F.G.1
Pessach, I.M.2
Zhang, S.Y.3
Ciancanelli, M.J.4
Herman, M.5
Abhyankar, A.6
-
122
-
-
84961726923
-
Crucial roles of XCR1-expressing dendritic cells and the XCR1-XCL1 chemokine axis in intestinal immune homeostasis
-
Ohta T, Sugiyama M, Hemmi H, Yamazaki C, Okura S, Sasaki I et al. Crucial roles of XCR1-expressing dendritic cells and the XCR1-XCL1 chemokine axis in intestinal immune homeostasis. Sci Rep 2016; 6:23505.
-
(2016)
Sci Rep
, vol.6
, pp. 23505
-
-
Ohta, T.1
Sugiyama, M.2
Hemmi, H.3
Yamazaki, C.4
Okura, S.5
Sasaki, I.6
-
125
-
-
84873331871
-
Specialized role of migratory dendritic cells in peripheral tolerance induction
-
Idoyaga J, Fiorese C, Zbytnuik L, Lubkin A, Miller J, Malissen B et al. Specialized role of migratory dendritic cells in peripheral tolerance induction. J Clin Invest 2013; 123:844–54.
-
(2013)
J Clin Invest
, vol.123
, pp. 844-854
-
-
Idoyaga, J.1
Fiorese, C.2
Zbytnuik, L.3
Lubkin, A.4
Miller, J.5
Malissen, B.6
-
126
-
-
84974809024
-
TLR10 is a negative regulator of both MyD88-dependent and -independent TLR signaling
-
Jiang S, Li X, Hess NJ, Guan Y, Tapping RI. TLR10 is a negative regulator of both MyD88-dependent and -independent TLR signaling. J Immunol 2016; 196:3834–41.
-
(2016)
J Immunol
, vol.196
, pp. 3834-3841
-
-
Jiang, S.1
Li, X.2
Hess, N.J.3
Guan, Y.4
Tapping, R.I.5
-
127
-
-
84862791853
-
The role of thrombomodulin lectin-like domain in inflammation
-
Li YH, Kuo CH, Shi GY, Wu HL. The role of thrombomodulin lectin-like domain in inflammation. J Biomed Sci 2012; 19:34.
-
(2012)
J Biomed Sci
, vol.19
, pp. 34
-
-
Li, Y.H.1
Kuo, C.H.2
Shi, G.Y.3
Wu, H.L.4
-
128
-
-
0027137486
-
Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization
-
Lenz A, Heine M, Schuler G, Romani N. Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization. J Clin Invest 1993; 92:2587–96.
-
(1993)
J Clin Invest
, vol.92
, pp. 2587-2596
-
-
Lenz, A.1
Heine, M.2
Schuler, G.3
Romani, N.4
-
129
-
-
0027432320
-
Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets
-
Nestle FO, Zheng XG, Thompson CB, Turka LA, Nickoloff BJ. Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. J Immunol 1993; 151:6535–45.
-
(1993)
J Immunol
, vol.151
, pp. 6535-6545
-
-
Nestle, F.O.1
Zheng, X.G.2
Thompson, C.B.3
Turka, L.A.4
Nickoloff, B.J.5
-
130
-
-
0028289244
-
Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α
-
Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J Exp Med 1994; 179:1109–18.
-
(1994)
J Exp Med
, vol.179
, pp. 1109-1118
-
-
Sallusto, F.1
Lanzavecchia, A.2
-
132
-
-
85027917020
-
A thymic stromal lymphopoietin-responsive dendritic cell subset mediates allergic responses in the upper airway mucosa
-
e7
-
Melum GR, Farkas L, Scheel C, Van Dieren B, Gran E, Liu YJ et al. A thymic stromal lymphopoietin-responsive dendritic cell subset mediates allergic responses in the upper airway mucosa. J Allergy Clin Immunol 2014; 134:613–21.e7.
-
(2014)
J Allergy Clin Immunol
, vol.134
, pp. 613-621
-
-
Melum, G.R.1
Farkas, L.2
Scheel, C.3
Van Dieren, B.4
Gran, E.5
Liu, Y.J.6
-
133
-
-
84907611125
-
Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-beta
-
Martinez-Cingolani C, Grandclaudon M, Jeanmougin M, Jouve M, Zollinger R, Soumelis V. Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-beta. Blood 2014; 124:2411–20.
-
(2014)
Blood
, vol.124
, pp. 2411-2420
-
-
Martinez-Cingolani, C.1
Grandclaudon, M.2
Jeanmougin, M.3
Jouve, M.4
Zollinger, R.5
Soumelis, V.6
-
135
-
-
0031656781
-
Heterogeneity of dendritic cells in human superficial lymph node: in vitro maturation of immature dendritic cells into mature or activated interdigitating reticulum cells
-
Takahashi K, Asagoe K, Zaishun J, Yanai H, Yoshino T, Hayashi K et al. Heterogeneity of dendritic cells in human superficial lymph node: in vitro maturation of immature dendritic cells into mature or activated interdigitating reticulum cells. Am J Pathol 1998; 153:745–55.
-
(1998)
Am J Pathol
, vol.153
, pp. 745-755
-
-
Takahashi, K.1
Asagoe, K.2
Zaishun, J.3
Yanai, H.4
Yoshino, T.5
Hayashi, K.6
-
136
-
-
60849114965
-
Distinctive localization of antigen-presenting cells in human lymph nodes
-
Angel CE, Chen CJ, Horlacher OC, Winkler S, John T, Browning J et al. Distinctive localization of antigen-presenting cells in human lymph nodes. Blood 2009; 113:1257–67.
-
(2009)
Blood
, vol.113
, pp. 1257-1267
-
-
Angel, C.E.1
Chen, C.J.2
Horlacher, O.C.3
Winkler, S.4
John, T.5
Browning, J.6
-
137
-
-
80052406212
-
Characterization of four conventional dendritic cell subsets in human skin-draining lymph nodes in relation to T-cell activation
-
van de Ven R, van den Hout MF, Lindenberg JJ, Sluijter BJ, van Leeuwen PA, Lougheed SM et al. Characterization of four conventional dendritic cell subsets in human skin-draining lymph nodes in relation to T-cell activation. Blood 2011; 118:2502–10.
-
(2011)
Blood
, vol.118
, pp. 2502-2510
-
-
van de Ven, R.1
van den Hout, M.F.2
Lindenberg, J.J.3
Sluijter, B.J.4
van Leeuwen, P.A.5
Lougheed, S.M.6
-
138
-
-
0035406398
-
Phenotypic characterization of five dendritic cell subsets in human tonsils
-
Summers KL, Hock BD, McKenzie JL, Hart DN. Phenotypic characterization of five dendritic cell subsets in human tonsils. Am J Pathol 2001; 159:285–95.
-
(2001)
Am J Pathol
, vol.159
, pp. 285-295
-
-
Summers, K.L.1
Hock, B.D.2
McKenzie, J.L.3
Hart, D.N.4
-
141
-
-
0037108304
-
+ dendritic cells and monocyte-derived dendritic cells differ in their ability to stimulate T lymphocytes
-
+ dendritic cells and monocyte-derived dendritic cells differ in their ability to stimulate T lymphocytes. Blood 2002; 100:2858–66.
-
(2002)
Blood
, vol.100
, pp. 2858-2866
-
-
Osugi, Y.1
Vuckovic, S.2
Hart, D.N.3
-
142
-
-
85035018283
-
Deficiency of transcription factor RelB perturbs myeloid and DC development by hematopoietic-extrinsic mechanisms
-
Briseño CG, Gargaro M, Durai V, Davidson JT, Theisen DJ, Anderson DA et al. Deficiency of transcription factor RelB perturbs myeloid and DC development by hematopoietic-extrinsic mechanisms. Proc Natl Acad Sci USA 2017; 114:3957–62.
-
(2017)
Proc Natl Acad Sci USA
, vol.114
, pp. 3957-3962
-
-
Briseño, C.G.1
Gargaro, M.2
Durai, V.3
Davidson, J.T.4
Theisen, D.J.5
Anderson, D.A.6
-
143
-
-
84864296761
-
Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage
-
Meredith MM, Liu K, Darrasse-Jeze G, Kamphorst AO, Schreiber HA, Guermonprez P et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J Exp Med 2012; 209:1153–65.
-
(2012)
J Exp Med
, vol.209
, pp. 1153-1165
-
-
Meredith, M.M.1
Liu, K.2
Darrasse-Jeze, G.3
Kamphorst, A.O.4
Schreiber, H.A.5
Guermonprez, P.6
-
144
-
-
84864297838
-
Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages
-
Satpathy AT, Wumesh KC, Albring JC, Edelson BT, Kretzer NM, Bhattacharya D et al. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J Exp Med 2012; 209:1135–52.
-
(2012)
J Exp Med
, vol.209
, pp. 1135-1152
-
-
Satpathy, A.T.1
Wumesh, K.C.2
Albring, J.C.3
Edelson, B.T.4
Kretzer, N.M.5
Bhattacharya, D.6
-
145
-
-
33846935725
-
Loss of TLR2, TLR4, and TLR5 on Langerhans cells abolishes bacterial recognition
-
van der Aar AM, Sylva-Steenland RM, Bos JD, Kapsenberg ML, de Jong EC, Teunissen MB. Loss of TLR2, TLR4, and TLR5 on Langerhans cells abolishes bacterial recognition. J Immunol 2007; 178:1986–90.
-
(2007)
J Immunol
, vol.178
, pp. 1986-1990
-
-
van der Aar, A.M.1
Sylva-Steenland, R.M.2
Bos, J.D.3
Kapsenberg, M.L.4
de Jong, E.C.5
Teunissen, M.B.6
-
146
-
-
84879541144
-
CD1a, CD1b, and CD1c in immunity against mycobacteria
-
Van Rhijn I, Ly D, Moody DB. CD1a, CD1b, and CD1c in immunity against mycobacteria. Adv Exp Med Biol 2013; 783:181–97.
-
(2013)
Adv Exp Med Biol
, vol.783
, pp. 181-197
-
-
Van Rhijn, I.1
Ly, D.2
Moody, D.B.3
-
147
-
-
84872282547
-
Transcriptional profiling of human dendritic cell populations and models - unique profiles of in vitro dendritic cells and implications on functionality and applicability
-
Lundberg K, Albrekt AS, Nelissen I, Santegoets S, de Gruijl TD, Gibbs S et al. Transcriptional profiling of human dendritic cell populations and models - unique profiles of in vitro dendritic cells and implications on functionality and applicability. PLoS ONE 2013; 8:e52875.
-
(2013)
PLoS ONE
, vol.8
-
-
Lundberg, K.1
Albrekt, A.S.2
Nelissen, I.3
Santegoets, S.4
de Gruijl, T.D.5
Gibbs, S.6
-
148
-
-
84871822108
-
Identification of lineage relationships and novel markers of blood and skin human dendritic cells
-
Harman AN, Bye CR, Nasr N, Sandgren KJ, Kim M, Mercier SK et al. Identification of lineage relationships and novel markers of blood and skin human dendritic cells. J Immunol 2013; 190:66–79.
-
(2013)
J Immunol
, vol.190
, pp. 66-79
-
-
Harman, A.N.1
Bye, C.R.2
Nasr, N.3
Sandgren, K.J.4
Kim, M.5
Mercier, S.K.6
-
149
-
-
84978191647
-
IL-10 promotes homeostatic proliferation of human CD8(+) memory T cells and when produced by CD1c(+) DCs, shapes naive CD8(+) T-cell priming
-
Nizzoli G, Larghi P, Paroni M, Crosti MC, Moro M, Neddermann P et al. IL-10 promotes homeostatic proliferation of human CD8(+) memory T cells and when produced by CD1c(+) DCs, shapes naive CD8(+) T-cell priming. Eur J Immunol 2016; 46:1622–32.
-
(2016)
Eur J Immunol
, vol.46
, pp. 1622-1632
-
-
Nizzoli, G.1
Larghi, P.2
Paroni, M.3
Crosti, M.C.4
Moro, M.5
Neddermann, P.6
-
150
-
-
84983731365
-
Human CD1c(+) DCs are critical cellular mediators of immune responses induced by immunogenic cell death
-
Di Blasio S, Wortel IM, van Bladel DA, de Vries LE, Duiveman-de Boer T, Worah K et al. Human CD1c(+) DCs are critical cellular mediators of immune responses induced by immunogenic cell death. Oncoimmunology 2016; 5:e1192739.
-
(2016)
Oncoimmunology
, vol.5
-
-
Di Blasio, S.1
Wortel, I.M.2
van Bladel, D.A.3
de Vries, L.E.4
Duiveman-de Boer, T.5
Worah, K.6
-
151
-
-
84870276714
-
Identification of Axl as a downstream effector of TGF-beta1 during Langerhans cell differentiation and epidermal homeostasis
-
Bauer T, Zagorska A, Jurkin J, Yasmin N, Köffel R, Richter S et al. Identification of Axl as a downstream effector of TGF-beta1 during Langerhans cell differentiation and epidermal homeostasis. J Exp Med 2012; 209:2033–47.
-
(2012)
J Exp Med
, vol.209
, pp. 2033-2047
-
-
Bauer, T.1
Zagorska, A.2
Jurkin, J.3
Yasmin, N.4
Köffel, R.5
Richter, S.6
-
152
-
-
84931564512
-
The clash of Langerhans cell homeostasis in skin: should I stay or should I go?
-
Hieronymus T, Zenke M, Baek JH, Sere K. The clash of Langerhans cell homeostasis in skin: should I stay or should I go? Semin Cell Dev Biol 2015; 41:30–8.
-
(2015)
Semin Cell Dev Biol
, vol.41
, pp. 30-38
-
-
Hieronymus, T.1
Zenke, M.2
Baek, J.H.3
Sere, K.4
-
153
-
-
84935049583
-
Modular expression analysis reveals functional conservation between human Langerhans cells and mouse cross-priming dendritic cells
-
Artyomov MN, Munk A, Gorvel L, Korenfeld D, Cella M, Tung T et al. Modular expression analysis reveals functional conservation between human Langerhans cells and mouse cross-priming dendritic cells. J Exp Med 2015; 212:743–57.
-
(2015)
J Exp Med
, vol.212
, pp. 743-757
-
-
Artyomov, M.N.1
Munk, A.2
Gorvel, L.3
Korenfeld, D.4
Cella, M.5
Tung, T.6
-
154
-
-
84861849482
-
Human Langerhans cells use an IL-15R-α/IL-15/pSTAT5-dependent mechanism to break T-cell tolerance against the self-differentiation tumor antigen WT1
-
Romano E, Cotari JW, Barreira da Silva R, Betts BC, Chung DJ, Avogadri F et al. Human Langerhans cells use an IL-15R-α/IL-15/pSTAT5-dependent mechanism to break T-cell tolerance against the self-differentiation tumor antigen WT1. Blood 2012; 119:5182–90.
-
(2012)
Blood
, vol.119
, pp. 5182-5190
-
-
Romano, E.1
Cotari, J.W.2
Barreira da Silva, R.3
Betts, B.C.4
Chung, D.J.5
Avogadri, F.6
-
155
-
-
84862495038
-
The differential production of cytokines by human Langerhans cells and dermal CD14(+) DCs controls CTL priming
-
Banchereau J, Thompson-Snipes L, Zurawski S, Blanck JP, Cao Y, Clayton S et al. The differential production of cytokines by human Langerhans cells and dermal CD14(+) DCs controls CTL priming. Blood 2012; 119:5742–9.
-
(2012)
Blood
, vol.119
, pp. 5742-5749
-
-
Banchereau, J.1
Thompson-Snipes, L.2
Zurawski, S.3
Blanck, J.P.4
Cao, Y.5
Clayton, S.6
-
156
-
-
0037136302
-
Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin
-
Geissmann F, Dieu-Nosjean MC, Dezutter C, Valladeau J, Kayal S, Leborgne M et al. Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin. J Exp Med 2002; 196:417–30.
-
(2002)
J Exp Med
, vol.196
, pp. 417-430
-
-
Geissmann, F.1
Dieu-Nosjean, M.C.2
Dezutter, C.3
Valladeau, J.4
Kayal, S.5
Leborgne, M.6
-
157
-
-
84993929533
-
Of skin and bone: did Langerhans cells and osteoclasts evolve from a common ancestor
-
Mueller CG, Voisin B. Of skin and bone: did Langerhans cells and osteoclasts evolve from a common ancestor. J Anat 2016 doi: 10.1111/joa.12543
-
(2016)
J Anat
-
-
Mueller, C.G.1
Voisin, B.2
-
159
-
-
84999752022
-
Mafb lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells
-
Wu X, Briseño CG, Durai V, Albring JC, Haldar M, Bagadia P et al. Mafb lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells. J Exp Med 2016; 213:2553–65.
-
(2016)
J Exp Med
, vol.213
, pp. 2553-2565
-
-
Wu, X.1
Briseño, C.G.2
Durai, V.3
Albring, J.C.4
Haldar, M.5
Bagadia, P.6
-
160
-
-
84986893432
-
CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation
-
Price JG, Idoyaga J, Salmon H, Hogstad B, Bigarella CL, Ghaffari S et al. CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation. Nat Immunol 2015; 16:1060–8.
-
(2015)
Nat Immunol
, vol.16
, pp. 1060-1068
-
-
Price, J.G.1
Idoyaga, J.2
Salmon, H.3
Hogstad, B.4
Bigarella, C.L.5
Ghaffari, S.6
-
161
-
-
0023266724
-
Further evidence for the self-reproducing capacity of Langerhans cells in human skin
-
Czernielewski JM, Demarchez M. Further evidence for the self-reproducing capacity of Langerhans cells in human skin. J Invest Dermatol 1987; 88:17–20.
-
(1987)
J Invest Dermatol
, vol.88
, pp. 17-20
-
-
Czernielewski, J.M.1
Demarchez, M.2
-
162
-
-
79951693243
-
The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency
-
Bigley V, Haniffa M, Doulatov S, Wang XN, Dickinson R, McGovern N et al. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J Exp Med 2011; 208:227–34.
-
(2011)
J Exp Med
, vol.208
, pp. 227-234
-
-
Bigley, V.1
Haniffa, M.2
Doulatov, S.3
Wang, X.N.4
Dickinson, R.5
McGovern, N.6
-
163
-
-
78751680917
-
Self-renewal capacity of human epidermal Langerhans cells: observations made on a composite tissue allograft
-
Kanitakis J, Morelon E, Petruzzo P, Badet L, Dubernard JM. Self-renewal capacity of human epidermal Langerhans cells: observations made on a composite tissue allograft. Exp Dermatol 2011; 20:145–6.
-
(2011)
Exp Dermatol
, vol.20
, pp. 145-146
-
-
Kanitakis, J.1
Morelon, E.2
Petruzzo, P.3
Badet, L.4
Dubernard, J.M.5
-
164
-
-
84941024695
-
Distinct Murine Mucosal Langerhans Cell Subsets Develop from Pre-dendritic Cells and Monocytes
-
Capucha T, Mizraji G, Segev H, Blecher-Gonen R, Winter D, Khalaileh A et al. Distinct Murine Mucosal Langerhans Cell Subsets Develop from Pre-dendritic Cells and Monocytes. Immunity 2015; 43:369–81.
-
(2015)
Immunity
, vol.43
, pp. 369-381
-
-
Capucha, T.1
Mizraji, G.2
Segev, H.3
Blecher-Gonen, R.4
Winter, D.5
Khalaileh, A.6
-
165
-
-
84952632023
-
Langerhans cell origin and regulation
-
Collin M, Milne P. Langerhans cell origin and regulation. Curr Opin Hematol 2016; 23:28–35.
-
(2016)
Curr Opin Hematol
, vol.23
, pp. 28-35
-
-
Collin, M.1
Milne, P.2
-
166
-
-
84893297507
-
Human embryonic epidermis contains a diverse Langerhans cell precursor pool
-
Schuster C, Mildner M, Mairhofer M, Bauer W, Fiala C, Prior M et al. Human embryonic epidermis contains a diverse Langerhans cell precursor pool. Development 2014; 141:807–15.
-
(2014)
Development
, vol.141
, pp. 807-815
-
-
Schuster, C.1
Mildner, M.2
Mairhofer, M.3
Bauer, W.4
Fiala, C.5
Prior, M.6
-
167
-
-
0034672339
-
Ligation of E-cadherin on in vitro-generated immature Langerhans-type dendritic cells inhibits their maturation
-
Riedl E, Stockl J, Majdic O, Scheinecker C, Knapp W, Strobl H. Ligation of E-cadherin on in vitro-generated immature Langerhans-type dendritic cells inhibits their maturation. Blood 2000; 96:4276–84.
-
(2000)
Blood
, vol.96
, pp. 4276-4284
-
-
Riedl, E.1
Stockl, J.2
Majdic, O.3
Scheinecker, C.4
Knapp, W.5
Strobl, H.6
-
168
-
-
84876688421
-
β-Catenin promotes the differentiation of epidermal langerhans dendritic cells
-
Yasmin N, Konradi S, Eisenwort G, Schichl YM, Seyerl M, Bauer T et al. β-Catenin promotes the differentiation of epidermal langerhans dendritic cells. J Invest Dermatol 2013; 133:1250–9.
-
(2013)
J Invest Dermatol
, vol.133
, pp. 1250-1259
-
-
Yasmin, N.1
Konradi, S.2
Eisenwort, G.3
Schichl, Y.M.4
Seyerl, M.5
Bauer, T.6
-
169
-
-
73949147392
-
Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network
-
Chorro L, Sarde A, Li M, Woollard KJ, Chambon P, Malissen B et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J Exp Med 2009; 206:3089–100.
-
(2009)
J Exp Med
, vol.206
, pp. 3089-3100
-
-
Chorro, L.1
Sarde, A.2
Li, M.3
Woollard, K.J.4
Chambon, P.5
Malissen, B.6
-
170
-
-
84869229157
-
Two distinct types of Langerhans cells populate the skin during steady state and inflammation
-
Seré K, Baek JH, Ober-Blöbaum J, Müller-Newen G, Tacke F, Yokota Y et al. Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity 2012; 37:905–16.
-
(2012)
Immunity
, vol.37
, pp. 905-916
-
-
Seré, K.1
Baek, J.H.2
Ober-Blöbaum, J.3
Müller-Newen, G.4
Tacke, F.5
Yokota, Y.6
-
171
-
-
84864124259
-
Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin
-
Nagao K, Kobayashi T, Moro K, Ohyama M, Adachi T, Kitashima DY et al. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat Immunol 2012; 13:744–52.
-
(2012)
Nat Immunol
, vol.13
, pp. 744-752
-
-
Nagao, K.1
Kobayashi, T.2
Moro, K.3
Ohyama, M.4
Adachi, T.5
Kitashima, D.Y.6
-
172
-
-
31344469849
-
The fate of human Langerhans cells in hematopoietic stem cell transplantation
-
Collin MP, Hart DN, Jackson GH, Cook G, Cavet J, Mackinnon S et al. The fate of human Langerhans cells in hematopoietic stem cell transplantation. J Exp Med 2006; 203:27–33.
-
(2006)
J Exp Med
, vol.203
, pp. 27-33
-
-
Collin, M.P.1
Hart, D.N.2
Jackson, G.H.3
Cook, G.4
Cavet, J.5
Mackinnon, S.6
-
173
-
-
84907598045
-
Langerhans cell homeostasis and turnover after nonmyeloablative and myeloablative allogeneic hematopoietic cell transplantation
-
Mielcarek M, Kirkorian AY, Hackman RC, Price J, Storer BE, Wood BL et al. Langerhans cell homeostasis and turnover after nonmyeloablative and myeloablative allogeneic hematopoietic cell transplantation. Transplantation 2014; 98:563–8.
-
(2014)
Transplantation
, vol.98
, pp. 563-568
-
-
Mielcarek, M.1
Kirkorian, A.Y.2
Hackman, R.C.3
Price, J.4
Storer, B.E.5
Wood, B.L.6
-
174
-
-
0030761480
-
flt3 ligand in cooperation with transforming growth factor-beta1 potentiates in vitro development of Langerhans-type dendritic cells and allows single-cell dendritic cell cluster formation under serum-free conditions
-
Strobl H, Bello-Fernandez C, Riedl E, Pickl WF, Majdic O, Lyman SD et al. flt3 ligand in cooperation with transforming growth factor-beta1 potentiates in vitro development of Langerhans-type dendritic cells and allows single-cell dendritic cell cluster formation under serum-free conditions. Blood 1997; 90:1425–34.
-
(1997)
Blood
, vol.90
, pp. 1425-1434
-
-
Strobl, H.1
Bello-Fernandez, C.2
Riedl, E.3
Pickl, W.F.4
Majdic, O.5
Lyman, S.D.6
-
175
-
-
0032536795
-
Transforming growth factor beta1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells
-
Geissmann F, Prost C, Monnet JP, Dy M, Brousse N, Hermine O. Transforming growth factor beta1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J Exp Med 1998; 187:961–6.
-
(1998)
J Exp Med
, vol.187
, pp. 961-966
-
-
Geissmann, F.1
Prost, C.2
Monnet, J.P.3
Dy, M.4
Brousse, N.5
Hermine, O.6
-
176
-
-
25644458587
-
A novel role for Notch ligand Delta-1 as a regulator of human Langerhans cell development from blood monocytes
-
Hoshino N, Katayama N, Shibasaki T, Ohishi K, Nishioka J, Masuya M et al. A novel role for Notch ligand Delta-1 as a regulator of human Langerhans cell development from blood monocytes. J Leukoc Biol 2005; 78:921–9.
-
(2005)
J Leukoc Biol
, vol.78
, pp. 921-929
-
-
Hoshino, N.1
Katayama, N.2
Shibasaki, T.3
Ohishi, K.4
Nishioka, J.5
Masuya, M.6
-
177
-
-
84871583494
-
Notch is active in Langerhans cell histiocytosis and confers pathognomonic features on dendritic cells
-
Hutter C, Kauer M, Simonitsch-Klupp I, Jug G, Schwentner R, Leitner J et al. Notch is active in Langerhans cell histiocytosis and confers pathognomonic features on dendritic cells. Blood 2012; 120:5199–208.
-
(2012)
Blood
, vol.120
, pp. 5199-5208
-
-
Hutter, C.1
Kauer, M.2
Simonitsch-Klupp, I.3
Jug, G.4
Schwentner, R.5
Leitner, J.6
-
178
-
-
85006288771
-
Human skin dendritic cell fate is differentially regulated by the monocyte identity factor KLF4 during steady state and inflammation
-
Jurkin J, Krump C, Köffel R, Fieber C, Schuster C, Brunner PM et al. Human skin dendritic cell fate is differentially regulated by the monocyte identity factor KLF4 during steady state and inflammation. J Allergy Clin Immunol 2016; 139:1873–84.
-
(2016)
J Allergy Clin Immunol
, vol.139
, pp. 1873-1884
-
-
Jurkin, J.1
Krump, C.2
Köffel, R.3
Fieber, C.4
Schuster, C.5
Brunner, P.M.6
-
179
-
-
85024099686
-
Hematopoietic origin of Langerhans cell histiocytosis and Erdheim-Chester disease in adults
-
Milne P, Bigley V, Bacon CM, Néel A, McGovern N, Bomken S et al. Hematopoietic origin of Langerhans cell histiocytosis and Erdheim-Chester disease in adults. Blood 2017; 130:167–75.
-
(2017)
Blood
, vol.130
, pp. 167-175
-
-
Milne, P.1
Bigley, V.2
Bacon, C.M.3
Néel, A.4
McGovern, N.5
Bomken, S.6
-
180
-
-
84983528036
-
CD1a on Langerhans cells controls inflammatory skin disease
-
Kim JH, Hu Y, Yongqing T, Kim J, Hughes VA, Le Nours J et al. CD1a on Langerhans cells controls inflammatory skin disease. Nat Immunol 2016; 17:1159–66.
-
(2016)
Nat Immunol
, vol.17
, pp. 1159-1166
-
-
Kim, J.H.1
Hu, Y.2
Yongqing, T.3
Kim, J.4
Hughes, V.A.5
Le Nours, J.6
-
181
-
-
84861462335
-
Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells
-
Seneschal J, Clark RA, Gehad A, Baecher-Allan CM, Kupper TS. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 2012; 36:873–84.
-
(2012)
Immunity
, vol.36
, pp. 873-884
-
-
Seneschal, J.1
Clark, R.A.2
Gehad, A.3
Baecher-Allan, C.M.4
Kupper, T.S.5
-
182
-
-
84923000491
-
Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation
-
Kashem SW, Igyarto BZ, Gerami-Nejad M, Kumamoto Y, Mohammed JA, Jarrett E et al. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity 2015; 42:356–66.
-
(2015)
Immunity
, vol.42
, pp. 356-366
-
-
Kashem, S.W.1
Igyarto, B.Z.2
Gerami-Nejad, M.3
Kumamoto, Y.4
Mohammed, J.A.5
Jarrett, E.6
-
183
-
-
84856826706
-
CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization
-
Langlet C, Tamoutounour S, Henri S, Luche H, Ardouin L, Grégoire C et al. CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization. J Immunol 2012; 188:1751–60.
-
(2012)
J Immunol
, vol.188
, pp. 1751-1760
-
-
Langlet, C.1
Tamoutounour, S.2
Henri, S.3
Luche, H.4
Ardouin, L.5
Grégoire, C.6
-
184
-
-
84883830692
-
Inflammatory dendritic cells in mice and humans
-
Segura E, Amigorena S. Inflammatory dendritic cells in mice and humans. Trends Immunol 2013; 34:440–5.
-
(2013)
Trends Immunol
, vol.34
, pp. 440-445
-
-
Segura, E.1
Amigorena, S.2
-
185
-
-
84931561466
-
Dendritic cells and monocyte-derived cells: Two complementary and integrated functional systems
-
Schlitzer A, McGovern N, Ginhoux F. Dendritic cells and monocyte-derived cells: Two complementary and integrated functional systems. Semin Cell Dev Biol 2015; 41:9–22.
-
(2015)
Semin Cell Dev Biol
, vol.41
, pp. 9-22
-
-
Schlitzer, A.1
McGovern, N.2
Ginhoux, F.3
-
186
-
-
0029922964
-
Immunomorphological and ultrastructural characterization of Langerhans cells and a novel, inflammatory dendritic epidermal cell (IDEC) population in lesional skin of atopic eczema
-
Wollenberg A, Kraft S, Hanau D, Bieber T. Immunomorphological and ultrastructural characterization of Langerhans cells and a novel, inflammatory dendritic epidermal cell (IDEC) population in lesional skin of atopic eczema. J Invest Dermatol 1996; 106:446–53.
-
(1996)
J Invest Dermatol
, vol.106
, pp. 446-453
-
-
Wollenberg, A.1
Kraft, S.2
Hanau, D.3
Bieber, T.4
-
187
-
-
0036177227
-
Expression and function of the mannose receptor CD206 on epidermal dendritic cells in inflammatory skin diseases
-
Wollenberg A, Mommaas M, Oppel T, Schottdorf EM, Gunther S, Moderer M. Expression and function of the mannose receptor CD206 on epidermal dendritic cells in inflammatory skin diseases. J Invest Dermatol 2002; 118:327–34.
-
(2002)
J Invest Dermatol
, vol.118
, pp. 327-334
-
-
Wollenberg, A.1
Mommaas, M.2
Oppel, T.3
Schottdorf, E.M.4
Gunther, S.5
Moderer, M.6
-
188
-
-
58149331211
-
Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells
-
Zaba LC, Fuentes-Duculan J, Eungdamrong NJ, Abello MV, Novitskaya I, Pierson KC et al. Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J Invest Dermatol 2009; 129:79–88.
-
(2009)
J Invest Dermatol
, vol.129
, pp. 79-88
-
-
Zaba, L.C.1
Fuentes-Duculan, J.2
Eungdamrong, N.J.3
Abello, M.V.4
Novitskaya, I.5
Pierson, K.C.6
-
189
-
-
84897440036
-
Characterisation of leukocytes in a human skin blister model of acute inflammation and resolution
-
Jenner W, Motwani M, Veighey K, Newson J, Audzevich T, Nicolaou A et al. Characterisation of leukocytes in a human skin blister model of acute inflammation and resolution. PLoS ONE 2014; 9:e89375.
-
(2014)
PLoS ONE
, vol.9
-
-
Jenner, W.1
Motwani, M.2
Veighey, K.3
Newson, J.4
Audzevich, T.5
Nicolaou, A.6
-
190
-
-
84957055162
-
Rapid recruitment of CD14(+) monocytes in experimentally induced allergic rhinitis in human subjects
-
e12
-
Eguíluz-Gracia I, Bosco A, Dollner R, Melum GR, Lexberg MH, Jones AC et al. Rapid recruitment of CD14(+) monocytes in experimentally induced allergic rhinitis in human subjects. J Allergy Clin Immunol 2016; 137:1872–81.e12.
-
(2016)
J Allergy Clin Immunol
, vol.137
, pp. 1872-1881
-
-
Eguíluz-Gracia, I.1
Bosco, A.2
Dollner, R.3
Melum, G.R.4
Lexberg, M.H.5
Jones, A.C.6
-
191
-
-
84858414938
-
Rapid accumulation of CD14+CD11c+ dendritic cells in gut mucosa of celiac disease after in vivo gluten challenge
-
Beitnes AC, Raki M, Brottveit M, Lundin KE, Jahnsen FL, Sollid LM. Rapid accumulation of CD14+CD11c+ dendritic cells in gut mucosa of celiac disease after in vivo gluten challenge. PLoS ONE 2012; 7:e33556.
-
(2012)
PLoS ONE
, vol.7
-
-
Beitnes, A.C.1
Raki, M.2
Brottveit, M.3
Lundin, K.E.4
Jahnsen, F.L.5
Sollid, L.M.6
-
192
-
-
0029151268
-
Direct evidence of monocyte recruitment to inflammatory bowel disease mucosa
-
Grimm MC, Pullman WE, Bennett GM, Sullivan PJ, Pavli P, Doe WF. Direct evidence of monocyte recruitment to inflammatory bowel disease mucosa. J Gastroenterol Hepatol 1995; 10:387–95.
-
(1995)
J Gastroenterol Hepatol
, vol.10
, pp. 387-395
-
-
Grimm, M.C.1
Pullman, W.E.2
Bennett, G.M.3
Sullivan, P.J.4
Pavli, P.5
Doe, W.F.6
-
193
-
-
84876349699
-
Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors
-
Bain CC, Scott CL, Uronen-Hansson H, Gudjonsson S, Jansson O, Grip O et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol 2013; 6:498–510.
-
(2013)
Mucosal Immunol
, vol.6
, pp. 498-510
-
-
Bain, C.C.1
Scott, C.L.2
Uronen-Hansson, H.3
Gudjonsson, S.4
Jansson, O.5
Grip, O.6
-
194
-
-
85008500782
-
Peritoneal macrophage heterogeneity is associated with different peritoneal dialysis outcomes
-
Liao CT, Andrews R, Wallace LE, Khan MW, Kift-Morgan A, Topley N et al. Peritoneal macrophage heterogeneity is associated with different peritoneal dialysis outcomes. Kidney Int 2017; 91:1088–103.
-
(2017)
Kidney Int
, vol.91
, pp. 1088-1103
-
-
Liao, C.T.1
Andrews, R.2
Wallace, L.E.3
Khan, M.W.4
Kift-Morgan, A.5
Topley, N.6
-
195
-
-
84938528519
-
A Hitchhiker's guide to myeloid cell subsets: practical implementation of a novel mononuclear phagocyte classification system
-
Guilliams M, van de Laar L. A Hitchhiker's guide to myeloid cell subsets: practical implementation of a novel mononuclear phagocyte classification system. Front Immunol 2015; 6:406.
-
(2015)
Front Immunol
, vol.6
, pp. 406
-
-
Guilliams, M.1
van de Laar, L.2
-
196
-
-
84900869746
-
Paradigm shift in dendritic cell-based immunotherapy: from generated monocyte-derived DCs to naturally circulating DC subsets
-
Wimmers F, Schreibelt G, Skold AE, Figdor CG, De Vries IJ. Paradigm shift in dendritic cell-based immunotherapy: from generated monocyte-derived DCs to naturally circulating DC subsets. Front Immunol 2014; 5:165.
-
(2014)
Front Immunol
, vol.5
, pp. 165
-
-
Wimmers, F.1
Schreibelt, G.2
Skold, A.E.3
Figdor, C.G.4
De Vries, I.J.5
-
197
-
-
33745062776
-
Human 6-sulfo LacNAc-expressing dendritic cells are principal producers of early interleukin-12 and are controlled by erythrocytes
-
Schakel K, von Kietzell M, Hansel A, Ebling A, Schulze L, Haase M et al. Human 6-sulfo LacNAc-expressing dendritic cells are principal producers of early interleukin-12 and are controlled by erythrocytes. Immunity 2006; 24:767–77.
-
(2006)
Immunity
, vol.24
, pp. 767-777
-
-
Schakel, K.1
von Kietzell, M.2
Hansel, A.3
Ebling, A.4
Schulze, L.5
Haase, M.6
-
198
-
-
84951299070
-
slan-defined subsets of CD16-positive monocytes: impact of granulomatous inflammation and M-CSF receptor mutation
-
Hofer TP, Zawada AM, Frankenberger M, Skokann K, Satzl AA, Gesierich W et al. slan-defined subsets of CD16-positive monocytes: impact of granulomatous inflammation and M-CSF receptor mutation. Blood 2015; 126:2601–10.
-
(2015)
Blood
, vol.126
, pp. 2601-2610
-
-
Hofer, T.P.1
Zawada, A.M.2
Frankenberger, M.3
Skokann, K.4
Satzl, A.A.5
Gesierich, W.6
-
199
-
-
77957020717
-
Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors
-
Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 2010; 33:375–86.
-
(2010)
Immunity
, vol.33
, pp. 375-386
-
-
Cros, J.1
Cagnard, N.2
Woollard, K.3
Patey, N.4
Zhang, S.Y.5
Senechal, B.6
-
200
-
-
85030671864
-
Transcriptional profiling reveals functional dichotomy between human slan(+) non-classical monocytes and myeloid dendritic cells
-
van Leeuwen-Kerkhoff N, Lundberg K, Westers TM, Kordasti S, Bontkes HJ, de Gruijl TD et al. Transcriptional profiling reveals functional dichotomy between human slan(+) non-classical monocytes and myeloid dendritic cells. J Leukoc Biol 2017; 102:1055–68.
-
(2017)
J Leukoc Biol
, vol.102
, pp. 1055-1068
-
-
van Leeuwen-Kerkhoff, N.1
Lundberg, K.2
Westers, T.M.3
Kordasti, S.4
Bontkes, H.J.5
de Gruijl, T.D.6
-
201
-
-
85022003883
-
The fate and lifespan of human monocyte subsets in steady state and systemic inflammation
-
Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med 2017; 214:1913–23.
-
(2017)
J Exp Med
, vol.214
, pp. 1913-1923
-
-
Patel, A.A.1
Zhang, Y.2
Fullerton, J.N.3
Boelen, L.4
Rongvaux, A.5
Maini, A.A.6
-
202
-
-
85042182229
-
Human dendritic cell subset 4 (DC4) correlate to a subset of CD14dim/- CD16++ monocytes
-
Calzetti F, Tamassia N, Micheletti A, Finotti G, Bianchetto-Aguilera F, Cassatella MA. Human dendritic cell subset 4 (DC4) correlate to a subset of CD14dim/- CD16++ monocytes. J Allergy Clin Immunol 2018 doi: 10.1016/j.jaci.2017.12.988
-
(2018)
J Allergy Clin Immunol
-
-
Calzetti, F.1
Tamassia, N.2
Micheletti, A.3
Finotti, G.4
Bianchetto-Aguilera, F.5
Cassatella, M.A.6
|