메뉴 건너뛰기




Volumn 154, Issue 1, 2018, Pages 3-20

Human dendritic cell subsets: an update

Author keywords

antigen presentation processing; dendritic cell; transcriptomics

Indexed keywords

INTERFERON CONSENSUS SEQUENCE BINDING PROTEIN; INTERFERON REGULATORY FACTOR 4; NOTCH2 RECEPTOR; SINAPULTIDE; BIOLOGICAL MARKER;

EID: 85042530066     PISSN: 00192805     EISSN: 13652567     Source Type: Journal    
DOI: 10.1111/imm.12888     Document Type: Review
Times cited : (879)

References (202)
  • 2
    • 84990961171 scopus 로고    scopus 로고
    • Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species
    • Guilliams M, Dutertre CA, Scott CL, McGovern N, Sichien D, Chakarov S et al. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 2016; 45:669–84.
    • (2016) Immunity , vol.45 , pp. 669-684
    • Guilliams, M.1    Dutertre, C.A.2    Scott, C.L.3    McGovern, N.4    Sichien, D.5    Chakarov, S.6
  • 3
    • 85053787162 scopus 로고    scopus 로고
    • Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment
    • Heidkamp GF, Sander J, Lehmann CHK, Heger L, Eissing N, Baranska A et al. Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment. Sci Immunol 2016; 1:eaai7677.
    • (2016) Sci Immunol , vol.1
    • Heidkamp, G.F.1    Sander, J.2    Lehmann, C.H.K.3    Heger, L.4    Eissing, N.5    Baranska, A.6
  • 4
    • 85015777170 scopus 로고    scopus 로고
    • Dendritic cells display subset and tissue-specific maturation dynamics over human life
    • Granot T, Senda T, Carpenter DJ, Matsuoka N, Weiner J, Gordon CL et al. Dendritic cells display subset and tissue-specific maturation dynamics over human life. Immunity 2017; 46:504–15.
    • (2017) Immunity , vol.46 , pp. 504-515
    • Granot, T.1    Senda, T.2    Carpenter, D.J.3    Matsuoka, N.4    Weiner, J.5    Gordon, C.L.6
  • 5
    • 0034547923 scopus 로고    scopus 로고
    • BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood
    • Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 2000; 165:6037–46.
    • (2000) J Immunol , vol.165 , pp. 6037-6046
    • Dzionek, A.1    Fuchs, A.2    Schmidt, P.3    Cremer, S.4    Zysk, M.5    Miltenyi, S.6
  • 8
    • 85014662427 scopus 로고    scopus 로고
    • Human blood CD1c+ dendritic cells encompass CD5high and CD5low subsets that differ significantly in phenotype, gene expression, and functions
    • Yin X, Yu H, Jin X, Li J, Guo H, Shi Q et al. Human blood CD1c+ dendritic cells encompass CD5high and CD5low subsets that differ significantly in phenotype, gene expression, and functions. J Immunol 2017; 198:1553–64.
    • (2017) J Immunol , vol.198 , pp. 1553-1564
    • Yin, X.1    Yu, H.2    Jin, X.3    Li, J.4    Guo, H.5    Shi, Q.6
  • 9
    • 85018582872 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
    • Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 2017; 356:eaah4573.
    • (2017) Science , vol.356
    • Villani, A.C.1    Satija, R.2    Reynolds, G.3    Sarkizova, S.4    Shekhar, K.5    Fletcher, J.6
  • 10
    • 85027934223 scopus 로고    scopus 로고
    • Mapping the human DC lineage through the integration of high-dimensional techniques
    • See P, Dutertre CA, Chen J, Günther P, McGovern N, Irac SE et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science 2017; 356:eaag3009.
    • (2017) Science , vol.356
    • See, P.1    Dutertre, C.A.2    Chen, J.3    Günther, P.4    McGovern, N.5    Irac, S.E.6
  • 11
    • 63049112195 scopus 로고    scopus 로고
    • Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation
    • Haniffa M, Ginhoux F, Wang XN, Bigley V, Abel M, Dimmick I et al. Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. J Exp Med 2009; 206:371–85.
    • (2009) J Exp Med , vol.206 , pp. 371-385
    • Haniffa, M.1    Ginhoux, F.2    Wang, X.N.3    Bigley, V.4    Abel, M.5    Dimmick, I.6
  • 12
    • 84864293006 scopus 로고    scopus 로고
    • Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells
    • Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 2012; 37:60–73.
    • (2012) Immunity , vol.37 , pp. 60-73
    • Haniffa, M.1    Shin, A.2    Bigley, V.3    McGovern, N.4    Teo, P.5    See, P.6
  • 13
    • 84907966318 scopus 로고    scopus 로고
    • Human dermal CD14⁺ cells are a transient population of monocyte-derived macrophages
    • McGovern N, Schlitzer A, Gunawan M, Jardine L, Shin A, Poyner E et al. Human dermal CD14⁺ cells are a transient population of monocyte-derived macrophages. Immunity 2014; 41:465–77.
    • (2014) Immunity , vol.41 , pp. 465-477
    • McGovern, N.1    Schlitzer, A.2    Gunawan, M.3    Jardine, L.4    Shin, A.5    Poyner, E.6
  • 14
    • 84988735756 scopus 로고    scopus 로고
    • Flow cytometric analysis of mononuclear phagocytes in non-diseased human lung and lung-draining lymph nodes
    • Desch AN, Gibbings SL, Goyal R, Kolde R, Bednarek J, Bruno T et al. Flow cytometric analysis of mononuclear phagocytes in non-diseased human lung and lung-draining lymph nodes. Am J Respir Crit Care Med 2016; 193:614–26.
    • (2016) Am J Respir Crit Care Med , vol.193 , pp. 614-626
    • Desch, A.N.1    Gibbings, S.L.2    Goyal, R.3    Kolde, R.4    Bednarek, J.5    Bruno, T.6
  • 15
    • 84975105655 scopus 로고    scopus 로고
    • Dendritic cells and monocytes with distinct inflammatory responses reside in lung mucosa of healthy humans
    • Baharom F, Thomas S, Rankin G, Lepzien R, Pourazar J, Behndig AF et al. Dendritic cells and monocytes with distinct inflammatory responses reside in lung mucosa of healthy humans. J Immunol 2016; 196:4498–509.
    • (2016) J Immunol , vol.196 , pp. 4498-4509
    • Baharom, F.1    Thomas, S.2    Rankin, G.3    Lepzien, R.4    Pourazar, J.5    Behndig, A.F.6
  • 16
    • 85014709776 scopus 로고    scopus 로고
    • Transcriptional classification and functional characterization of human airway macrophage and dendritic cell subsets
    • Patel VI, Booth JL, Duggan ES, Cate S, White VL, Hutchings D et al. Transcriptional classification and functional characterization of human airway macrophage and dendritic cell subsets. J Immunol 2017; 198:1183–201.
    • (2017) J Immunol , vol.198 , pp. 1183-1201
    • Patel, V.I.1    Booth, J.L.2    Duggan, E.S.3    Cate, S.4    White, V.L.5    Hutchings, D.6
  • 17
    • 84890987173 scopus 로고    scopus 로고
    • Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice
    • Watchmaker PB, Lahl K, Lee M, Baumjohann D, Morton J, Kim SJ et al. Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice. Nat Immunol 2014; 15:98–108.
    • (2014) Nat Immunol , vol.15 , pp. 98-108
    • Watchmaker, P.B.1    Lahl, K.2    Lee, M.3    Baumjohann, D.4    Morton, J.5    Kim, S.J.6
  • 18
    • 84876700100 scopus 로고    scopus 로고
    • Human blood dendritic cell antigen 3 (BDCA3)(+) dendritic cells are a potent producer of interferon-λ in response to hepatitis C virus
    • Yoshio S, Kanto T, Kuroda S, Matsubara T, Higashitani K, Kakita N et al. Human blood dendritic cell antigen 3 (BDCA3)(+) dendritic cells are a potent producer of interferon-λ in response to hepatitis C virus. Hepatology 2013; 57:1705–15.
    • (2013) Hepatology , vol.57 , pp. 1705-1715
    • Yoshio, S.1    Kanto, T.2    Kuroda, S.3    Matsubara, T.4    Higashitani, K.5    Kakita, N.6
  • 20
    • 79958053079 scopus 로고    scopus 로고
    • Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status
    • Mittag D, Proietto AI, Loudovaris T, Mannering SI, Vremec D, Shortman K et al. Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status. J Immunol 2011; 186:6207–17.
    • (2011) J Immunol , vol.186 , pp. 6207-6217
    • Mittag, D.1    Proietto, A.I.2    Loudovaris, T.3    Mannering, S.I.4    Vremec, D.5    Shortman, K.6
  • 21
    • 84879591892 scopus 로고    scopus 로고
    • Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells
    • Segura E, Durand M, Amigorena S. Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells. J Exp Med 2013; 210:1035–47.
    • (2013) J Exp Med , vol.210 , pp. 1035-1047
    • Segura, E.1    Durand, M.2    Amigorena, S.3
  • 22
    • 84973521563 scopus 로고    scopus 로고
    • CD1c-related DCs that express CD207/langerin, but are distinguishable from Langerhans cells, are consistently present in human tonsils
    • De Monte A, Olivieri CV, Vitale S, Bailleux S, Castillo L, Giordanengo V et al. CD1c-related DCs that express CD207/langerin, but are distinguishable from Langerhans cells, are consistently present in human tonsils. Front Immunol 2016; 7:197.
    • (2016) Front Immunol , vol.7 , pp. 197
    • De Monte, A.1    Olivieri, C.V.2    Vitale, S.3    Bailleux, S.4    Castillo, L.5    Giordanengo, V.6
  • 23
    • 85021646264 scopus 로고    scopus 로고
    • Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2
    • McGovern N, Shin A, Low G, Duan K, Yao LJ et al. Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature 2017; 546:662–6.
    • (2017) Nature , vol.546 , pp. 662-666
    • McGovern, N.1    Shin, A.2    Low, G.3    Duan, K.4    Yao, L.J.5
  • 25
    • 85043614228 scopus 로고    scopus 로고
    • Profiling of primary peripheral blood- and monocyte-derived dendritic cells using monoclonal antibodies from the HLDA10 Workshop in Wollongong, Australia
    • Autenrieth SE, Grimm S, Rittig SM, Grünebach F, Gouttefangeas C, Bühring HJ. Profiling of primary peripheral blood- and monocyte-derived dendritic cells using monoclonal antibodies from the HLDA10 Workshop in Wollongong, Australia. Clin Transl Immunol 2015; 4:e50.
    • (2015) Clin Transl Immunol , vol.4
    • Autenrieth, S.E.1    Grimm, S.2    Rittig, S.M.3    Grünebach, F.4    Gouttefangeas, C.5    Bühring, H.J.6
  • 27
    • 84975122314 scopus 로고    scopus 로고
    • Computational flow cytometry: helping to make sense of high-dimensional immunology data
    • Saeys Y, Gassen SV, Lambrecht BN. Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat Rev Immunol 2016; 16:449–62.
    • (2016) Nat Rev Immunol , vol.16 , pp. 449-462
    • Saeys, Y.1    Gassen, S.V.2    Lambrecht, B.N.3
  • 29
    • 77953484184 scopus 로고    scopus 로고
    • Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells
    • Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med 2010; 207:1261–71.
    • (2010) J Exp Med , vol.207 , pp. 1261-1271
    • Poulin, L.F.1    Salio, M.2    Griessinger, E.3    Anjos-Afonso, F.4    Craciun, L.5    Chen, J.L.6
  • 30
    • 84905995910 scopus 로고    scopus 로고
    • + progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells
    • + progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells. J Immunol 2014; 193:1622–35.
    • (2014) J Immunol , vol.193 , pp. 1622-1635
    • Balan, S.1    Ollion, V.2    Colletti, N.3    Chelbi, R.4    Montanana-Sanchis, F.5    Liu, H.6
  • 32
    • 85025822732 scopus 로고    scopus 로고
    • Lineage specification of human dendritic cells is marked by IRF8 expression in hematopoietic stem cells and multipotent progenitors
    • Lee J, Zhou YJ, Ma W, Zhang W, Aljoufi A, Luh T et al. Lineage specification of human dendritic cells is marked by IRF8 expression in hematopoietic stem cells and multipotent progenitors. Nat Immunol 2017; 18:877–88.
    • (2017) Nat Immunol , vol.18 , pp. 877-888
    • Lee, J.1    Zhou, Y.J.2    Ma, W.3    Zhang, W.4    Aljoufi, A.5    Luh, T.6
  • 33
    • 84950290139 scopus 로고    scopus 로고
    • Transcriptional heterogeneity and lineage commitment in myeloid progenitors
    • Paul F, Arkin Y, Giladi A, Jaitin DA, Kenigsberg E, Keren-Shaul H et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 2015; 163:1663–77.
    • (2015) Cell , vol.163 , pp. 1663-1677
    • Paul, F.1    Arkin, Y.2    Giladi, A.3    Jaitin, D.A.4    Kenigsberg, E.5    Keren-Shaul, H.6
  • 34
    • 84955164174 scopus 로고    scopus 로고
    • Distinct routes of lineage development reshape the human blood hierarchy across ontogeny
    • Notta F, Zandi S, Takayama N, Dobson S, Gan OI, Wilson G et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 2016; 351:aab2116.
    • (2016) Science , vol.351 , pp. aab2116
    • Notta, F.1    Zandi, S.2    Takayama, N.3    Dobson, S.4    Gan, O.I.5    Wilson, G.6
  • 37
    • 77958532465 scopus 로고    scopus 로고
    • A map for lineage restriction of progenitors during hematopoiesis: the essence of the myeloid-based model
    • Kawamoto H, Ikawa T, Masuda K, Wada H, Katsura Y. A map for lineage restriction of progenitors during hematopoiesis: the essence of the myeloid-based model. Immunol Rev 2010; 238:23–36.
    • (2010) Immunol Rev , vol.238 , pp. 23-36
    • Kawamoto, H.1    Ikawa, T.2    Masuda, K.3    Wada, H.4    Katsura, Y.5
  • 38
    • 19344373223 scopus 로고    scopus 로고
    • Derivation of 2 categories of plasmacytoid dendritic cells in murine bone marrow
    • Pelayo R, Hirose J, Huang J, Garrett KP, Delogu A, Busslinger M et al. Derivation of 2 categories of plasmacytoid dendritic cells in murine bone marrow. Blood 2005; 105:4407–15.
    • (2005) Blood , vol.105 , pp. 4407-4415
    • Pelayo, R.1    Hirose, J.2    Huang, J.3    Garrett, K.P.4    Delogu, A.5    Busslinger, M.6
  • 39
  • 41
    • 0030949479 scopus 로고    scopus 로고
    • The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand
    • Grouard G, Rissoan MC, Filgueira L, Durand I, Banchereau J, Liu YJ. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J Exp Med 1997; 185:1101–11.
    • (1997) J Exp Med , vol.185 , pp. 1101-1111
    • Grouard, G.1    Rissoan, M.C.2    Filgueira, L.3    Durand, I.4    Banchereau, J.5    Liu, Y.J.6
  • 42
    • 67449128181 scopus 로고    scopus 로고
    • CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions
    • Matsui T, Connolly JE, Michnevitz M, Chaussabel D, Yu CI, Glaser C et al. CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions. J Immunol 2009; 182:6815–23.
    • (2009) J Immunol , vol.182 , pp. 6815-6823
    • Matsui, T.1    Connolly, J.E.2    Michnevitz, M.3    Chaussabel, D.4    Yu, C.I.5    Glaser, C.6
  • 43
  • 45
    • 84939945936 scopus 로고    scopus 로고
    • + dendritic cells (DCs) related to blastic plasmacytoid dendritic cell neoplasm represent a unique myeloid DC subset
    • + dendritic cells (DCs) related to blastic plasmacytoid dendritic cell neoplasm represent a unique myeloid DC subset. Protein Cell 2015; 6:297–306.
    • (2015) Protein Cell , vol.6 , pp. 297-306
    • Yu, H.1    Zhang, P.2    Yin, X.3    Yin, Z.4    Shi, Q.5    Cui, Y.6
  • 46
    • 85013293350 scopus 로고    scopus 로고
    • A distinct subset of plasmacytoid dendritic cells induces activation and differentiation of B and T lymphocytes
    • Zhang H, Gregorio JD, Iwahori T, Zhang X, Choi O, Tolentino LL et al. A distinct subset of plasmacytoid dendritic cells induces activation and differentiation of B and T lymphocytes. Proc Natl Acad Sci U S A 2017; 114:1988–93.
    • (2017) Proc Natl Acad Sci U S A , vol.114 , pp. 1988-1993
    • Zhang, H.1    Gregorio, J.D.2    Iwahori, T.3    Zhang, X.4    Choi, O.5    Tolentino, L.L.6
  • 47
    • 0032773794 scopus 로고    scopus 로고
    • Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon
    • Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 1999; 5:919–23.
    • (1999) Nat Med , vol.5 , pp. 919-923
    • Cella, M.1    Jarrossay, D.2    Facchetti, F.3    Alebardi, O.4    Nakajima, H.5    Lanzavecchia, A.6
  • 49
    • 0035905321 scopus 로고    scopus 로고
    • BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon α/β induction
    • Dzionek A, Sohma Y, Nagafune J, Cella M, Colonna M, Facchetti F et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon α/β induction. J Exp Med 2001; 194:1823–34.
    • (2001) J Exp Med , vol.194 , pp. 1823-1834
    • Dzionek, A.1    Sohma, Y.2    Nagafune, J.3    Cella, M.4    Colonna, M.5    Facchetti, F.6
  • 50
    • 84892177710 scopus 로고    scopus 로고
    • Rapid detection of dendritic cell and monocyte disorders using CD4 as a lineage marker of the human peripheral blood antigen-presenting cell compartment
    • Jardine L, Barge D, Ames-Draycott A, Pagan S, Cookson S, Spickett G et al. Rapid detection of dendritic cell and monocyte disorders using CD4 as a lineage marker of the human peripheral blood antigen-presenting cell compartment. Front Immunol 2013; 4:495.
    • (2013) Front Immunol , vol.4 , pp. 495
    • Jardine, L.1    Barge, D.2    Ames-Draycott, A.3    Pagan, S.4    Cookson, S.5    Spickett, G.6
  • 51
    • 51649099812 scopus 로고    scopus 로고
    • CD300a/c regulate type I interferon and TNF-alpha secretion by human plasmacytoid dendritic cells stimulated with TLR7 and TLR9 ligands
    • Ju X, Zenke M, Hart DN, Clark GJ. CD300a/c regulate type I interferon and TNF-alpha secretion by human plasmacytoid dendritic cells stimulated with TLR7 and TLR9 ligands. Blood 2008; 112:1184–94.
    • (2008) Blood , vol.112 , pp. 1184-1194
    • Ju, X.1    Zenke, M.2    Hart, D.N.3    Clark, G.J.4
  • 52
    • 84872350340 scopus 로고    scopus 로고
    • Regulation of TLR7/9 signaling in plasmacytoid dendritic cells
    • Bao M, Liu YJ. Regulation of TLR7/9 signaling in plasmacytoid dendritic cells. Protein Cell 2013; 4:40–52.
    • (2013) Protein Cell , vol.4 , pp. 40-52
    • Bao, M.1    Liu, Y.J.2
  • 53
    • 84926408535 scopus 로고    scopus 로고
    • Haematopoietic and immune defects associated with GATA2 mutation
    • Collin M, Dickinson R, Bigley V. Haematopoietic and immune defects associated with GATA2 mutation. Br J Haematol 2015; 169:173–87.
    • (2015) Br J Haematol , vol.169 , pp. 173-187
    • Collin, M.1    Dickinson, R.2    Bigley, V.3
  • 55
    • 77953282048 scopus 로고    scopus 로고
    • The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner
    • Carotta S, Dakic A, D'Amico A, Pang SH, Greig KT, Nutt SL et al. The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity 2010; 32:628–41.
    • (2010) Immunity , vol.32 , pp. 628-641
    • Carotta, S.1    Dakic, A.2    D'Amico, A.3    Pang, S.H.4    Greig, K.T.5    Nutt, S.L.6
  • 56
    • 20444466497 scopus 로고    scopus 로고
    • The transcriptional repressor Gfi1 controls STAT3-dependent dendritic cell development and function
    • Rathinam C, Geffers R, Yucel R, Buer J, Welte K, Moroy T et al. The transcriptional repressor Gfi1 controls STAT3-dependent dendritic cell development and function. Immunity 2005; 22:717–28.
    • (2005) Immunity , vol.22 , pp. 717-728
    • Rathinam, C.1    Geffers, R.2    Yucel, R.3    Buer, J.4    Welte, K.5    Moroy, T.6
  • 58
    • 84946554097 scopus 로고    scopus 로고
    • Transcriptional regulation of mononuclear phagocyte development
    • Tussiwand R, Gautier EL. Transcriptional regulation of mononuclear phagocyte development. Front Immunol 2015; 6:533.
    • (2015) Front Immunol , vol.6 , pp. 533
    • Tussiwand, R.1    Gautier, E.L.2
  • 59
    • 84937967684 scopus 로고    scopus 로고
    • The multifaceted biology of plasmacytoid dendritic cells
    • Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 2015; 15:471–85.
    • (2015) Nat Rev Immunol , vol.15 , pp. 471-485
    • Swiecki, M.1    Colonna, M.2
  • 62
    • 85039429317 scopus 로고    scopus 로고
    • Biallelic interferon regulatory factor 8 mutation: a complex immunodeficiency syndrome with dendritic cell deficiency, monocytopenia, and immune dysregulation
    • Bigley V, Maisuria S, Cytlak U, Jardine L, Care MA, Green K et al. Biallelic interferon regulatory factor 8 mutation: a complex immunodeficiency syndrome with dendritic cell deficiency, monocytopenia, and immune dysregulation. J Allergy Clin Immunol 2017; doi: 10.1016/j.jaci.2017.08.044
    • (2017) J Allergy Clin Immunol
    • Bigley, V.1    Maisuria, S.2    Cytlak, U.3    Jardine, L.4    Care, M.A.5    Green, K.6
  • 63
    • 85044601524 scopus 로고    scopus 로고
    • D, Kuehn HS, Altmann TG, A. Ikaros family zinc finger 1 regulates dendritic cell development and function in humans. Nature
    • In press
    • Cytlak U, Resteu AB. D, Kuehn HS, Altmann TG, A. Ikaros family zinc finger 1 regulates dendritic cell development and function in humans. Nature. Communications 2018; In press.
    • (2018) Communications
    • Cytlak, U.1    Resteu, A.B.2
  • 64
    • 0034684654 scopus 로고    scopus 로고
    • Id2 and Id3 inhibit development of CD34(+) stem cells into predendritic cell (pre-DC)2 but not into pre-DC1. Evidence for a lymphoid origin of pre-DC2
    • Spits H, Couwenberg F, Bakker AQ, Weijer K, Uittenbogaart CH. Id2 and Id3 inhibit development of CD34(+) stem cells into predendritic cell (pre-DC)2 but not into pre-DC1. Evidence for a lymphoid origin of pre-DC2. J Exp Med 2000; 192:1775–84.
    • (2000) J Exp Med , vol.192 , pp. 1775-1784
    • Spits, H.1    Couwenberg, F.2    Bakker, A.Q.3    Weijer, K.4    Uittenbogaart, C.H.5
  • 65
    • 84905093427 scopus 로고    scopus 로고
    • ETO family protein Mtg16 regulates the balance of dendritic cell subsets by repressing Id2
    • Ghosh HS, Ceribelli M, Matos I, Lazarovici A, Bussemaker HJ, Lasorella A et al. ETO family protein Mtg16 regulates the balance of dendritic cell subsets by repressing Id2. J Exp Med 2014; 211:1623–35.
    • (2014) J Exp Med , vol.211 , pp. 1623-1635
    • Ghosh, H.S.1    Ceribelli, M.2    Matos, I.3    Lazarovici, A.4    Bussemaker, H.J.5    Lasorella, A.6
  • 66
    • 84971567648 scopus 로고    scopus 로고
    • The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2
    • Scott CL, Soen B, Martens L, Skrypek N, Saelens W, Taminau J et al. The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2. J Exp Med 2016; 213:897–911.
    • (2016) J Exp Med , vol.213 , pp. 897-911
    • Scott, C.L.1    Soen, B.2    Martens, L.3    Skrypek, N.4    Saelens, W.5    Taminau, J.6
  • 68
    • 79959413238 scopus 로고    scopus 로고
    • NFIL3/E4BP4 is a key transcription factor for CD8alpha dendritic cell development
    • Kashiwada M, Pham NL, Pewe LL, Harty JT, Rothman PB. NFIL3/E4BP4 is a key transcription factor for CD8alpha dendritic cell development. Blood 2011; 117:6193–7.
    • (2011) Blood , vol.117 , pp. 6193-6197
    • Kashiwada, M.1    Pham, N.L.2    Pewe, L.L.3    Harty, J.T.4    Rothman, P.B.5
  • 69
    • 84978300165 scopus 로고    scopus 로고
    • Human plasmacytoid dentritic cells elicit a Type I Interferon response by sensing DNA via the cGAS-STING signaling pathway
    • Bode C, Fox M, Tewary P, Steinhagen A, Ellerkmann RK, Klinman D et al. Human plasmacytoid dentritic cells elicit a Type I Interferon response by sensing DNA via the cGAS-STING signaling pathway. Eur J Immunol 2016; 46:1615–21.
    • (2016) Eur J Immunol , vol.46 , pp. 1615-1621
    • Bode, C.1    Fox, M.2    Tewary, P.3    Steinhagen, A.4    Ellerkmann, R.K.5    Klinman, D.6
  • 70
    • 84924105256 scopus 로고    scopus 로고
    • Viral entry route determines how human plasmacytoid dendritic cells produce type I interferons
    • Bruni D, Chazal M, Sinigaglia L, Chauveau L, Schwartz O, Després P et al. Viral entry route determines how human plasmacytoid dendritic cells produce type I interferons. Sci Signal 2015; 8:ra25.
    • (2015) Sci Signal , vol.8 , pp. ra25
    • Bruni, D.1    Chazal, M.2    Sinigaglia, L.3    Chauveau, L.4    Schwartz, O.5    Després, P.6
  • 71
    • 17144404177 scopus 로고    scopus 로고
    • IRF-7 is the master regulator of type-I interferon-dependent immune responses
    • Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005; 434:772–7.
    • (2005) Nature , vol.434 , pp. 772-777
    • Honda, K.1    Yanai, H.2    Negishi, H.3    Asagiri, M.4    Sato, M.5    Mizutani, T.6
  • 72
    • 84959166943 scopus 로고    scopus 로고
    • Death receptor 6 is a novel plasmacytoid dendritic cell-specific receptor and modulates type I interferon production
    • Li J, Du Q, Hu R, Wang Y, Yin X, Yu H et al. Death receptor 6 is a novel plasmacytoid dendritic cell-specific receptor and modulates type I interferon production. Protein Cell 2016; 7:291–4.
    • (2016) Protein Cell , vol.7 , pp. 291-294
    • Li, J.1    Du, Q.2    Hu, R.3    Wang, Y.4    Yin, X.5    Yu, H.6
  • 73
    • 84958554674 scopus 로고    scopus 로고
    • S1PR4 signaling attenuates ILT 7 internalization to limit IFN-α production by human plasmacytoid dendritic cells
    • Dillmann C, Ringel C, Ringleb J, Mora J, Olesch C, Fink AF et al. S1PR4 signaling attenuates ILT 7 internalization to limit IFN-α production by human plasmacytoid dendritic cells. J Immunol 2016; 196:1579–90.
    • (2016) J Immunol , vol.196 , pp. 1579-1590
    • Dillmann, C.1    Ringel, C.2    Ringleb, J.3    Mora, J.4    Olesch, C.5    Fink, A.F.6
  • 74
    • 84956658839 scopus 로고    scopus 로고
    • S1PR1-mediated IFNAR1 degradation modulates plasmacytoid dendritic cell interferon-α autoamplification
    • Teijaro JR, Studer S, Leaf N, Kiosses WB, Nguyen N, Matsuki K et al. S1PR1-mediated IFNAR1 degradation modulates plasmacytoid dendritic cell interferon-α autoamplification. Proc Natl Acad Sci USA 2016; 113:1351–6.
    • (2016) Proc Natl Acad Sci USA , vol.113 , pp. 1351-1356
    • Teijaro, J.R.1    Studer, S.2    Leaf, N.3    Kiosses, W.B.4    Nguyen, N.5    Matsuki, K.6
  • 75
    • 84928377935 scopus 로고    scopus 로고
    • Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency
    • Ciancanelli MJ, Huang SX, Luthra P, Garner H, Itan Y, Volpi S et al. Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 2015; 348:448–53.
    • (2015) Science , vol.348 , pp. 448-453
    • Ciancanelli, M.J.1    Huang, S.X.2    Luthra, P.3    Garner, H.4    Itan, Y.5    Volpi, S.6
  • 76
    • 84901807538 scopus 로고    scopus 로고
    • Plasmacytoid dendritic cell depletion in DOCK8 deficiency: rescue of severe herpetic infections with IFN-α 2b therapy
    • e3
    • Keles S, Jabara HH, Reisli I, McDonald DR, Barlan I, Hanna-Wakim R et al. Plasmacytoid dendritic cell depletion in DOCK8 deficiency: rescue of severe herpetic infections with IFN-α 2b therapy. J Allergy Clin Immunol 2014; 133:1753–5.e3.
    • (2014) J Allergy Clin Immunol , vol.133 , pp. 1753-1755
    • Keles, S.1    Jabara, H.H.2    Reisli, I.3    McDonald, D.R.4    Barlan, I.5    Hanna-Wakim, R.6
  • 77
    • 84915786458 scopus 로고    scopus 로고
    • Short communication: plasmacytoid dendritic cells from HIV-1 elite controllers maintain a gut-homing phenotype associated with immune activation
    • Li H, Goepfert P, Reeves RK. Short communication: plasmacytoid dendritic cells from HIV-1 elite controllers maintain a gut-homing phenotype associated with immune activation. AIDS Res Hum Retroviruses 2014; 30:1213–5.
    • (2014) AIDS Res Hum Retroviruses , vol.30 , pp. 1213-1215
    • Li, H.1    Goepfert, P.2    Reeves, R.K.3
  • 78
    • 33947661034 scopus 로고    scopus 로고
    • TLR ligand-dependent activation of naive CD4 T cells by plasmacytoid dendritic cells is impaired in hepatitis C virus infection
    • Yonkers NL, Rodriguez B, Milkovich KA, Asaad R, Lederman MM, Heeger PS et al. TLR ligand-dependent activation of naive CD4 T cells by plasmacytoid dendritic cells is impaired in hepatitis C virus infection. J Immunol 2007; 178:4436–44.
    • (2007) J Immunol , vol.178 , pp. 4436-4444
    • Yonkers, N.L.1    Rodriguez, B.2    Milkovich, K.A.3    Asaad, R.4    Lederman, M.M.5    Heeger, P.S.6
  • 79
    • 79251543296 scopus 로고    scopus 로고
    • Hepatitis B virus lacks immune activating capacity, but actively inhibits plasmacytoid dendritic cell function
    • Woltman AM, Op den Brouw ML, Biesta PJ, Shi CC, Janssen HL. Hepatitis B virus lacks immune activating capacity, but actively inhibits plasmacytoid dendritic cell function. PLoS ONE 2011; 6:e15324.
    • (2011) PLoS ONE , vol.6
    • Woltman, A.M.1    Op den Brouw, M.L.2    Biesta, P.J.3    Shi, C.C.4    Janssen, H.L.5
  • 80
    • 79952468782 scopus 로고    scopus 로고
    • Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus
    • Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 2011; 3:73ra19.
    • (2011) Sci Transl Med , vol.3 , pp. 73ra19
    • Lande, R.1    Ganguly, D.2    Facchinetti, V.3    Frasca, L.4    Conrad, C.5    Gregorio, J.6
  • 81
    • 69549135324 scopus 로고    scopus 로고
    • Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8
    • Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S, Facchinetti V et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med 2009; 206:1983–94.
    • (2009) J Exp Med , vol.206 , pp. 1983-1994
    • Ganguly, D.1    Chamilos, G.2    Lande, R.3    Gregorio, J.4    Meller, S.5    Facchinetti, V.6
  • 82
    • 84930440712 scopus 로고    scopus 로고
    • IFN-α production by plasmacytoid dendritic cell associations with polymorphisms in gene loci related to autoimmune and inflammatory diseases
    • Berggren O, Alexsson A, Morris DL, Tandre K, Weber G, Vyse TJ et al. IFN-α production by plasmacytoid dendritic cell associations with polymorphisms in gene loci related to autoimmune and inflammatory diseases. Hum Mol Genet 2015; 24:3571–81.
    • (2015) Hum Mol Genet , vol.24 , pp. 3571-3581
    • Berggren, O.1    Alexsson, A.2    Morris, D.L.3    Tandre, K.4    Weber, G.5    Vyse, T.J.6
  • 83
    • 43249130188 scopus 로고    scopus 로고
    • Targeting DCIR on human plasmacytoid dendritic cells results in antigen presentation and inhibits IFN-α production
    • Meyer-Wentrup F, Benitez-Ribas D, Tacken PJ, Punt CJ, Figdor CG, de Vries IJ et al. Targeting DCIR on human plasmacytoid dendritic cells results in antigen presentation and inhibits IFN-α production. Blood 2008; 111:4245–53.
    • (2008) Blood , vol.111 , pp. 4245-4253
    • Meyer-Wentrup, F.1    Benitez-Ribas, D.2    Tacken, P.J.3    Punt, C.J.4    Figdor, C.G.5    de Vries, I.J.6
  • 85
    • 84887494213 scopus 로고    scopus 로고
    • Targeting uptake receptors on human plasmacytoid dendritic cells triggers antigen cross-presentation and robust type I IFN secretion
    • Tel J, Sittig SP, Blom RA, Cruz LJ, Schreibelt G, Figdor CG et al. Targeting uptake receptors on human plasmacytoid dendritic cells triggers antigen cross-presentation and robust type I IFN secretion. J Immunol 2013; 191:5005–12.
    • (2013) J Immunol , vol.191 , pp. 5005-5012
    • Tel, J.1    Sittig, S.P.2    Blom, R.A.3    Cruz, L.J.4    Schreibelt, G.5    Figdor, C.G.6
  • 87
    • 84938861731 scopus 로고    scopus 로고
    • Defects in plasmacytoid dendritic cell expression of inducible costimulator ligand and IFN-α are associated in asthma with disease persistence
    • Froidure A, Vandenplas O, D'Alpaos V, Evrard G, Pilette C. Defects in plasmacytoid dendritic cell expression of inducible costimulator ligand and IFN-α are associated in asthma with disease persistence. Am J Respir Crit Care Med 2015; 192:392–5.
    • (2015) Am J Respir Crit Care Med , vol.192 , pp. 392-395
    • Froidure, A.1    Vandenplas, O.2    D'Alpaos, V.3    Evrard, G.4    Pilette, C.5
  • 88
    • 84862617592 scopus 로고    scopus 로고
    • Innate IFNs and plasmacytoid dendritic cells constrain Th2 cytokine responses to rhinovirus: a regulatory mechanism with relevance to asthma
    • Pritchard AL, Carroll ML, Burel JG, White OJ, Phipps S, Upham JW. Innate IFNs and plasmacytoid dendritic cells constrain Th2 cytokine responses to rhinovirus: a regulatory mechanism with relevance to asthma. J Immunol 2012; 188:5898–905.
    • (2012) J Immunol , vol.188 , pp. 5898-5905
    • Pritchard, A.L.1    Carroll, M.L.2    Burel, J.G.3    White, O.J.4    Phipps, S.5    Upham, J.W.6
  • 89
    • 84942376836 scopus 로고    scopus 로고
    • Breast cancer cell-derived GM-CSF licenses regulatory Th2 induction by plasmacytoid predendritic cells in aggressive disease subtypes
    • Ghirelli C, Reyal F, Jeanmougin M, Zollinger R, Sirven P, Michea P et al. Breast cancer cell-derived GM-CSF licenses regulatory Th2 induction by plasmacytoid predendritic cells in aggressive disease subtypes. Cancer Res 2015; 75:2775–87.
    • (2015) Cancer Res , vol.75 , pp. 2775-2787
    • Ghirelli, C.1    Reyal, F.2    Jeanmougin, M.3    Zollinger, R.4    Sirven, P.5    Michea, P.6
  • 91
    • 84859957011 scopus 로고    scopus 로고
    • F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells
    • Ahrens S, Zelenay S, Sancho D, Hanc P, Kjaer S, Feest C et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 2012; 36:635–45.
    • (2012) Immunity , vol.36 , pp. 635-645
    • Ahrens, S.1    Zelenay, S.2    Sancho, D.3    Hanc, P.4    Kjaer, S.5    Feest, C.6
  • 93
    • 77953506509 scopus 로고    scopus 로고
    • The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells
    • Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J Exp Med 2010; 207:1283–92.
    • (2010) J Exp Med , vol.207 , pp. 1283-1292
    • Crozat, K.1    Guiton, R.2    Contreras, V.3    Feuillet, V.4    Dutertre, C.A.5    Ventre, E.6
  • 96
    • 0037386339 scopus 로고    scopus 로고
    • Transcriptional profiling identifies Id2 function in dendritic cell development
    • Hacker C, Kirsch RD, Ju XS, Hieronymus T, Gust TC, Kuhl C et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol 2003; 4:380–6.
    • (2003) Nat Immunol , vol.4 , pp. 380-386
    • Hacker, C.1    Kirsch, R.D.2    Ju, X.S.3    Hieronymus, T.4    Gust, T.C.5    Kuhl, C.6
  • 97
    • 0037310617 scopus 로고    scopus 로고
    • Cutting edge: IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells
    • Tsujimura H, Tamura T, Ozato K. Cutting edge: IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells. J Immunol 2003; 170:1131–5.
    • (2003) J Immunol , vol.170 , pp. 1131-1135
    • Tsujimura, H.1    Tamura, T.2    Ozato, K.3
  • 99
    • 84939976213 scopus 로고    scopus 로고
    • Regulation of myelopoiesis by the transcription factor IRF8
    • Tamura T, Kurotaki D, Koizumi SI. Regulation of myelopoiesis by the transcription factor IRF8. Int J Hematol 2015; 101:342–51.
    • (2015) Int J Hematol , vol.101 , pp. 342-351
    • Tamura, T.1    Kurotaki, D.2    Koizumi, S.I.3
  • 100
    • 84990966822 scopus 로고    scopus 로고
    • IRF8 transcription factor controls survival and function of terminally differentiated conventional and plasmacytoid dendritic cells, respectively
    • Sichien D, Scott CL, Martens L, Vanderkerken M, Van Gassen S, Plantinga M et al. IRF8 transcription factor controls survival and function of terminally differentiated conventional and plasmacytoid dendritic cells, respectively. Immunity 2016; 45:626–40.
    • (2016) Immunity , vol.45 , pp. 626-640
    • Sichien, D.1    Scott, C.L.2    Martens, L.3    Vanderkerken, M.4    Van Gassen, S.5    Plantinga, M.6
  • 101
    • 41349119601 scopus 로고    scopus 로고
    • The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse
    • Tailor P, Tamura T, Morse HC, Ozato K. The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse. Blood 2008; 111:1942–5.
    • (2008) Blood , vol.111 , pp. 1942-1945
    • Tailor, P.1    Tamura, T.2    Morse, H.C.3    Ozato, K.4
  • 103
    • 84919683350 scopus 로고    scopus 로고
    • β-catenin signaling drives differentiation and proinflammatory function of IRF8-dependent dendritic cells
    • Cohen SB, Smith NL, McDougal C, Pepper M, Shah S, Yap GS et al. β-catenin signaling drives differentiation and proinflammatory function of IRF8-dependent dendritic cells. J Immunol 2015; 194:210–22.
    • (2015) J Immunol , vol.194 , pp. 210-222
    • Cohen, S.B.1    Smith, N.L.2    McDougal, C.3    Pepper, M.4    Shah, S.5    Yap, G.S.6
  • 104
    • 84860240081 scopus 로고    scopus 로고
    • DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues
    • Poulin LF, Reyal Y, Uronen-Hansson H, Schraml BU, Sancho D, Murphy KM et al. DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues. Blood 2012; 119:6052–62.
    • (2012) Blood , vol.119 , pp. 6052-6062
    • Poulin, L.F.1    Reyal, Y.2    Uronen-Hansson, H.3    Schraml, B.U.4    Sancho, D.5    Murphy, K.M.6
  • 109
    • 84958999354 scopus 로고    scopus 로고
    • A comparative study of the T cell stimulatory and polarizing capacity of human primary blood dendritic cell subsets
    • Sittig SP, Bakdash G, Weiden J, Sköld AE, Tel J, Figdor CG et al. A comparative study of the T cell stimulatory and polarizing capacity of human primary blood dendritic cell subsets. Mediators Inflamm 2016; 2016:3605643.
    • (2016) Mediators Inflamm , vol.2016 , pp. 3605643
    • Sittig, S.P.1    Bakdash, G.2    Weiden, J.3    Sköld, A.E.4    Tel, J.5    Figdor, C.G.6
  • 110
    • 84900842537 scopus 로고    scopus 로고
    • Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming
    • Dalod M, Chelbi R, Malissen B, Lawrence T. Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming. EMBO J 2014; 33:1104–16.
    • (2014) EMBO J , vol.33 , pp. 1104-1116
    • Dalod, M.1    Chelbi, R.2    Malissen, B.3    Lawrence, T.4
  • 115
    • 84924535047 scopus 로고    scopus 로고
    • Antibodies targeting Clec9A promote strong humoral immunity without adjuvant in mice and non-human primates
    • Li J, Ahmet F, Sullivan LC, Brooks AG, Kent SJ, De Rose R et al. Antibodies targeting Clec9A promote strong humoral immunity without adjuvant in mice and non-human primates. Eur J Immunol 2015; 45:854–64.
    • (2015) Eur J Immunol , vol.45 , pp. 854-864
    • Li, J.1    Ahmet, F.2    Sullivan, L.C.3    Brooks, A.G.4    Kent, S.J.5    De Rose, R.6
  • 116
    • 84875642301 scopus 로고    scopus 로고
    • Human blood mDC subsets exhibit distinct TLR repertoire and responsiveness
    • Hemont C, Neel A, Heslan M, Braudeau C, Josien R. Human blood mDC subsets exhibit distinct TLR repertoire and responsiveness. J Leukoc Biol 2013; 93:599–609.
    • (2013) J Leukoc Biol , vol.93 , pp. 599-609
    • Hemont, C.1    Neel, A.2    Heslan, M.3    Braudeau, C.4    Josien, R.5
  • 118
    • 84924778328 scopus 로고    scopus 로고
    • Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation
    • Liu S, Cai X, Wu J, Cong Q, Chen X, Li T et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 2015; 347:aaa2630.
    • (2015) Science , vol.347 , pp. aaa2630
    • Liu, S.1    Cai, X.2    Wu, J.3    Cong, Q.4    Chen, X.5    Li, T.6
  • 122
    • 84961726923 scopus 로고    scopus 로고
    • Crucial roles of XCR1-expressing dendritic cells and the XCR1-XCL1 chemokine axis in intestinal immune homeostasis
    • Ohta T, Sugiyama M, Hemmi H, Yamazaki C, Okura S, Sasaki I et al. Crucial roles of XCR1-expressing dendritic cells and the XCR1-XCL1 chemokine axis in intestinal immune homeostasis. Sci Rep 2016; 6:23505.
    • (2016) Sci Rep , vol.6 , pp. 23505
    • Ohta, T.1    Sugiyama, M.2    Hemmi, H.3    Yamazaki, C.4    Okura, S.5    Sasaki, I.6
  • 125
  • 126
    • 84974809024 scopus 로고    scopus 로고
    • TLR10 is a negative regulator of both MyD88-dependent and -independent TLR signaling
    • Jiang S, Li X, Hess NJ, Guan Y, Tapping RI. TLR10 is a negative regulator of both MyD88-dependent and -independent TLR signaling. J Immunol 2016; 196:3834–41.
    • (2016) J Immunol , vol.196 , pp. 3834-3841
    • Jiang, S.1    Li, X.2    Hess, N.J.3    Guan, Y.4    Tapping, R.I.5
  • 127
    • 84862791853 scopus 로고    scopus 로고
    • The role of thrombomodulin lectin-like domain in inflammation
    • Li YH, Kuo CH, Shi GY, Wu HL. The role of thrombomodulin lectin-like domain in inflammation. J Biomed Sci 2012; 19:34.
    • (2012) J Biomed Sci , vol.19 , pp. 34
    • Li, Y.H.1    Kuo, C.H.2    Shi, G.Y.3    Wu, H.L.4
  • 128
    • 0027137486 scopus 로고
    • Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization
    • Lenz A, Heine M, Schuler G, Romani N. Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization. J Clin Invest 1993; 92:2587–96.
    • (1993) J Clin Invest , vol.92 , pp. 2587-2596
    • Lenz, A.1    Heine, M.2    Schuler, G.3    Romani, N.4
  • 129
    • 0027432320 scopus 로고
    • Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets
    • Nestle FO, Zheng XG, Thompson CB, Turka LA, Nickoloff BJ. Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. J Immunol 1993; 151:6535–45.
    • (1993) J Immunol , vol.151 , pp. 6535-6545
    • Nestle, F.O.1    Zheng, X.G.2    Thompson, C.B.3    Turka, L.A.4    Nickoloff, B.J.5
  • 130
    • 0028289244 scopus 로고
    • Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α
    • Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J Exp Med 1994; 179:1109–18.
    • (1994) J Exp Med , vol.179 , pp. 1109-1118
    • Sallusto, F.1    Lanzavecchia, A.2
  • 132
    • 85027917020 scopus 로고    scopus 로고
    • A thymic stromal lymphopoietin-responsive dendritic cell subset mediates allergic responses in the upper airway mucosa
    • e7
    • Melum GR, Farkas L, Scheel C, Van Dieren B, Gran E, Liu YJ et al. A thymic stromal lymphopoietin-responsive dendritic cell subset mediates allergic responses in the upper airway mucosa. J Allergy Clin Immunol 2014; 134:613–21.e7.
    • (2014) J Allergy Clin Immunol , vol.134 , pp. 613-621
    • Melum, G.R.1    Farkas, L.2    Scheel, C.3    Van Dieren, B.4    Gran, E.5    Liu, Y.J.6
  • 133
    • 84907611125 scopus 로고    scopus 로고
    • Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-beta
    • Martinez-Cingolani C, Grandclaudon M, Jeanmougin M, Jouve M, Zollinger R, Soumelis V. Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-beta. Blood 2014; 124:2411–20.
    • (2014) Blood , vol.124 , pp. 2411-2420
    • Martinez-Cingolani, C.1    Grandclaudon, M.2    Jeanmougin, M.3    Jouve, M.4    Zollinger, R.5    Soumelis, V.6
  • 135
    • 0031656781 scopus 로고    scopus 로고
    • Heterogeneity of dendritic cells in human superficial lymph node: in vitro maturation of immature dendritic cells into mature or activated interdigitating reticulum cells
    • Takahashi K, Asagoe K, Zaishun J, Yanai H, Yoshino T, Hayashi K et al. Heterogeneity of dendritic cells in human superficial lymph node: in vitro maturation of immature dendritic cells into mature or activated interdigitating reticulum cells. Am J Pathol 1998; 153:745–55.
    • (1998) Am J Pathol , vol.153 , pp. 745-755
    • Takahashi, K.1    Asagoe, K.2    Zaishun, J.3    Yanai, H.4    Yoshino, T.5    Hayashi, K.6
  • 136
    • 60849114965 scopus 로고    scopus 로고
    • Distinctive localization of antigen-presenting cells in human lymph nodes
    • Angel CE, Chen CJ, Horlacher OC, Winkler S, John T, Browning J et al. Distinctive localization of antigen-presenting cells in human lymph nodes. Blood 2009; 113:1257–67.
    • (2009) Blood , vol.113 , pp. 1257-1267
    • Angel, C.E.1    Chen, C.J.2    Horlacher, O.C.3    Winkler, S.4    John, T.5    Browning, J.6
  • 137
    • 80052406212 scopus 로고    scopus 로고
    • Characterization of four conventional dendritic cell subsets in human skin-draining lymph nodes in relation to T-cell activation
    • van de Ven R, van den Hout MF, Lindenberg JJ, Sluijter BJ, van Leeuwen PA, Lougheed SM et al. Characterization of four conventional dendritic cell subsets in human skin-draining lymph nodes in relation to T-cell activation. Blood 2011; 118:2502–10.
    • (2011) Blood , vol.118 , pp. 2502-2510
    • van de Ven, R.1    van den Hout, M.F.2    Lindenberg, J.J.3    Sluijter, B.J.4    van Leeuwen, P.A.5    Lougheed, S.M.6
  • 138
    • 0035406398 scopus 로고    scopus 로고
    • Phenotypic characterization of five dendritic cell subsets in human tonsils
    • Summers KL, Hock BD, McKenzie JL, Hart DN. Phenotypic characterization of five dendritic cell subsets in human tonsils. Am J Pathol 2001; 159:285–95.
    • (2001) Am J Pathol , vol.159 , pp. 285-295
    • Summers, K.L.1    Hock, B.D.2    McKenzie, J.L.3    Hart, D.N.4
  • 141
    • 0037108304 scopus 로고    scopus 로고
    • + dendritic cells and monocyte-derived dendritic cells differ in their ability to stimulate T lymphocytes
    • + dendritic cells and monocyte-derived dendritic cells differ in their ability to stimulate T lymphocytes. Blood 2002; 100:2858–66.
    • (2002) Blood , vol.100 , pp. 2858-2866
    • Osugi, Y.1    Vuckovic, S.2    Hart, D.N.3
  • 142
    • 85035018283 scopus 로고    scopus 로고
    • Deficiency of transcription factor RelB perturbs myeloid and DC development by hematopoietic-extrinsic mechanisms
    • Briseño CG, Gargaro M, Durai V, Davidson JT, Theisen DJ, Anderson DA et al. Deficiency of transcription factor RelB perturbs myeloid and DC development by hematopoietic-extrinsic mechanisms. Proc Natl Acad Sci USA 2017; 114:3957–62.
    • (2017) Proc Natl Acad Sci USA , vol.114 , pp. 3957-3962
    • Briseño, C.G.1    Gargaro, M.2    Durai, V.3    Davidson, J.T.4    Theisen, D.J.5    Anderson, D.A.6
  • 143
    • 84864296761 scopus 로고    scopus 로고
    • Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage
    • Meredith MM, Liu K, Darrasse-Jeze G, Kamphorst AO, Schreiber HA, Guermonprez P et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J Exp Med 2012; 209:1153–65.
    • (2012) J Exp Med , vol.209 , pp. 1153-1165
    • Meredith, M.M.1    Liu, K.2    Darrasse-Jeze, G.3    Kamphorst, A.O.4    Schreiber, H.A.5    Guermonprez, P.6
  • 144
    • 84864297838 scopus 로고    scopus 로고
    • Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages
    • Satpathy AT, Wumesh KC, Albring JC, Edelson BT, Kretzer NM, Bhattacharya D et al. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J Exp Med 2012; 209:1135–52.
    • (2012) J Exp Med , vol.209 , pp. 1135-1152
    • Satpathy, A.T.1    Wumesh, K.C.2    Albring, J.C.3    Edelson, B.T.4    Kretzer, N.M.5    Bhattacharya, D.6
  • 146
    • 84879541144 scopus 로고    scopus 로고
    • CD1a, CD1b, and CD1c in immunity against mycobacteria
    • Van Rhijn I, Ly D, Moody DB. CD1a, CD1b, and CD1c in immunity against mycobacteria. Adv Exp Med Biol 2013; 783:181–97.
    • (2013) Adv Exp Med Biol , vol.783 , pp. 181-197
    • Van Rhijn, I.1    Ly, D.2    Moody, D.B.3
  • 147
    • 84872282547 scopus 로고    scopus 로고
    • Transcriptional profiling of human dendritic cell populations and models - unique profiles of in vitro dendritic cells and implications on functionality and applicability
    • Lundberg K, Albrekt AS, Nelissen I, Santegoets S, de Gruijl TD, Gibbs S et al. Transcriptional profiling of human dendritic cell populations and models - unique profiles of in vitro dendritic cells and implications on functionality and applicability. PLoS ONE 2013; 8:e52875.
    • (2013) PLoS ONE , vol.8
    • Lundberg, K.1    Albrekt, A.S.2    Nelissen, I.3    Santegoets, S.4    de Gruijl, T.D.5    Gibbs, S.6
  • 148
    • 84871822108 scopus 로고    scopus 로고
    • Identification of lineage relationships and novel markers of blood and skin human dendritic cells
    • Harman AN, Bye CR, Nasr N, Sandgren KJ, Kim M, Mercier SK et al. Identification of lineage relationships and novel markers of blood and skin human dendritic cells. J Immunol 2013; 190:66–79.
    • (2013) J Immunol , vol.190 , pp. 66-79
    • Harman, A.N.1    Bye, C.R.2    Nasr, N.3    Sandgren, K.J.4    Kim, M.5    Mercier, S.K.6
  • 149
    • 84978191647 scopus 로고    scopus 로고
    • IL-10 promotes homeostatic proliferation of human CD8(+) memory T cells and when produced by CD1c(+) DCs, shapes naive CD8(+) T-cell priming
    • Nizzoli G, Larghi P, Paroni M, Crosti MC, Moro M, Neddermann P et al. IL-10 promotes homeostatic proliferation of human CD8(+) memory T cells and when produced by CD1c(+) DCs, shapes naive CD8(+) T-cell priming. Eur J Immunol 2016; 46:1622–32.
    • (2016) Eur J Immunol , vol.46 , pp. 1622-1632
    • Nizzoli, G.1    Larghi, P.2    Paroni, M.3    Crosti, M.C.4    Moro, M.5    Neddermann, P.6
  • 151
    • 84870276714 scopus 로고    scopus 로고
    • Identification of Axl as a downstream effector of TGF-beta1 during Langerhans cell differentiation and epidermal homeostasis
    • Bauer T, Zagorska A, Jurkin J, Yasmin N, Köffel R, Richter S et al. Identification of Axl as a downstream effector of TGF-beta1 during Langerhans cell differentiation and epidermal homeostasis. J Exp Med 2012; 209:2033–47.
    • (2012) J Exp Med , vol.209 , pp. 2033-2047
    • Bauer, T.1    Zagorska, A.2    Jurkin, J.3    Yasmin, N.4    Köffel, R.5    Richter, S.6
  • 152
    • 84931564512 scopus 로고    scopus 로고
    • The clash of Langerhans cell homeostasis in skin: should I stay or should I go?
    • Hieronymus T, Zenke M, Baek JH, Sere K. The clash of Langerhans cell homeostasis in skin: should I stay or should I go? Semin Cell Dev Biol 2015; 41:30–8.
    • (2015) Semin Cell Dev Biol , vol.41 , pp. 30-38
    • Hieronymus, T.1    Zenke, M.2    Baek, J.H.3    Sere, K.4
  • 153
    • 84935049583 scopus 로고    scopus 로고
    • Modular expression analysis reveals functional conservation between human Langerhans cells and mouse cross-priming dendritic cells
    • Artyomov MN, Munk A, Gorvel L, Korenfeld D, Cella M, Tung T et al. Modular expression analysis reveals functional conservation between human Langerhans cells and mouse cross-priming dendritic cells. J Exp Med 2015; 212:743–57.
    • (2015) J Exp Med , vol.212 , pp. 743-757
    • Artyomov, M.N.1    Munk, A.2    Gorvel, L.3    Korenfeld, D.4    Cella, M.5    Tung, T.6
  • 154
    • 84861849482 scopus 로고    scopus 로고
    • Human Langerhans cells use an IL-15R-α/IL-15/pSTAT5-dependent mechanism to break T-cell tolerance against the self-differentiation tumor antigen WT1
    • Romano E, Cotari JW, Barreira da Silva R, Betts BC, Chung DJ, Avogadri F et al. Human Langerhans cells use an IL-15R-α/IL-15/pSTAT5-dependent mechanism to break T-cell tolerance against the self-differentiation tumor antigen WT1. Blood 2012; 119:5182–90.
    • (2012) Blood , vol.119 , pp. 5182-5190
    • Romano, E.1    Cotari, J.W.2    Barreira da Silva, R.3    Betts, B.C.4    Chung, D.J.5    Avogadri, F.6
  • 155
    • 84862495038 scopus 로고    scopus 로고
    • The differential production of cytokines by human Langerhans cells and dermal CD14(+) DCs controls CTL priming
    • Banchereau J, Thompson-Snipes L, Zurawski S, Blanck JP, Cao Y, Clayton S et al. The differential production of cytokines by human Langerhans cells and dermal CD14(+) DCs controls CTL priming. Blood 2012; 119:5742–9.
    • (2012) Blood , vol.119 , pp. 5742-5749
    • Banchereau, J.1    Thompson-Snipes, L.2    Zurawski, S.3    Blanck, J.P.4    Cao, Y.5    Clayton, S.6
  • 156
    • 0037136302 scopus 로고    scopus 로고
    • Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin
    • Geissmann F, Dieu-Nosjean MC, Dezutter C, Valladeau J, Kayal S, Leborgne M et al. Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin. J Exp Med 2002; 196:417–30.
    • (2002) J Exp Med , vol.196 , pp. 417-430
    • Geissmann, F.1    Dieu-Nosjean, M.C.2    Dezutter, C.3    Valladeau, J.4    Kayal, S.5    Leborgne, M.6
  • 157
    • 84993929533 scopus 로고    scopus 로고
    • Of skin and bone: did Langerhans cells and osteoclasts evolve from a common ancestor
    • Mueller CG, Voisin B. Of skin and bone: did Langerhans cells and osteoclasts evolve from a common ancestor. J Anat 2016 doi: 10.1111/joa.12543
    • (2016) J Anat
    • Mueller, C.G.1    Voisin, B.2
  • 158
    • 84857048899 scopus 로고    scopus 로고
    • Changing views of the role of Langerhans cells
    • Romani N, Brunner PM, Stingl G. Changing views of the role of Langerhans cells. J Invest Dermatol 2012; 132:872–81.
    • (2012) J Invest Dermatol , vol.132 , pp. 872-881
    • Romani, N.1    Brunner, P.M.2    Stingl, G.3
  • 159
    • 84999752022 scopus 로고    scopus 로고
    • Mafb lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells
    • Wu X, Briseño CG, Durai V, Albring JC, Haldar M, Bagadia P et al. Mafb lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells. J Exp Med 2016; 213:2553–65.
    • (2016) J Exp Med , vol.213 , pp. 2553-2565
    • Wu, X.1    Briseño, C.G.2    Durai, V.3    Albring, J.C.4    Haldar, M.5    Bagadia, P.6
  • 160
    • 84986893432 scopus 로고    scopus 로고
    • CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation
    • Price JG, Idoyaga J, Salmon H, Hogstad B, Bigarella CL, Ghaffari S et al. CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation. Nat Immunol 2015; 16:1060–8.
    • (2015) Nat Immunol , vol.16 , pp. 1060-1068
    • Price, J.G.1    Idoyaga, J.2    Salmon, H.3    Hogstad, B.4    Bigarella, C.L.5    Ghaffari, S.6
  • 161
    • 0023266724 scopus 로고
    • Further evidence for the self-reproducing capacity of Langerhans cells in human skin
    • Czernielewski JM, Demarchez M. Further evidence for the self-reproducing capacity of Langerhans cells in human skin. J Invest Dermatol 1987; 88:17–20.
    • (1987) J Invest Dermatol , vol.88 , pp. 17-20
    • Czernielewski, J.M.1    Demarchez, M.2
  • 162
  • 163
    • 78751680917 scopus 로고    scopus 로고
    • Self-renewal capacity of human epidermal Langerhans cells: observations made on a composite tissue allograft
    • Kanitakis J, Morelon E, Petruzzo P, Badet L, Dubernard JM. Self-renewal capacity of human epidermal Langerhans cells: observations made on a composite tissue allograft. Exp Dermatol 2011; 20:145–6.
    • (2011) Exp Dermatol , vol.20 , pp. 145-146
    • Kanitakis, J.1    Morelon, E.2    Petruzzo, P.3    Badet, L.4    Dubernard, J.M.5
  • 164
    • 84941024695 scopus 로고    scopus 로고
    • Distinct Murine Mucosal Langerhans Cell Subsets Develop from Pre-dendritic Cells and Monocytes
    • Capucha T, Mizraji G, Segev H, Blecher-Gonen R, Winter D, Khalaileh A et al. Distinct Murine Mucosal Langerhans Cell Subsets Develop from Pre-dendritic Cells and Monocytes. Immunity 2015; 43:369–81.
    • (2015) Immunity , vol.43 , pp. 369-381
    • Capucha, T.1    Mizraji, G.2    Segev, H.3    Blecher-Gonen, R.4    Winter, D.5    Khalaileh, A.6
  • 165
    • 84952632023 scopus 로고    scopus 로고
    • Langerhans cell origin and regulation
    • Collin M, Milne P. Langerhans cell origin and regulation. Curr Opin Hematol 2016; 23:28–35.
    • (2016) Curr Opin Hematol , vol.23 , pp. 28-35
    • Collin, M.1    Milne, P.2
  • 166
    • 84893297507 scopus 로고    scopus 로고
    • Human embryonic epidermis contains a diverse Langerhans cell precursor pool
    • Schuster C, Mildner M, Mairhofer M, Bauer W, Fiala C, Prior M et al. Human embryonic epidermis contains a diverse Langerhans cell precursor pool. Development 2014; 141:807–15.
    • (2014) Development , vol.141 , pp. 807-815
    • Schuster, C.1    Mildner, M.2    Mairhofer, M.3    Bauer, W.4    Fiala, C.5    Prior, M.6
  • 167
    • 0034672339 scopus 로고    scopus 로고
    • Ligation of E-cadherin on in vitro-generated immature Langerhans-type dendritic cells inhibits their maturation
    • Riedl E, Stockl J, Majdic O, Scheinecker C, Knapp W, Strobl H. Ligation of E-cadherin on in vitro-generated immature Langerhans-type dendritic cells inhibits their maturation. Blood 2000; 96:4276–84.
    • (2000) Blood , vol.96 , pp. 4276-4284
    • Riedl, E.1    Stockl, J.2    Majdic, O.3    Scheinecker, C.4    Knapp, W.5    Strobl, H.6
  • 169
    • 73949147392 scopus 로고    scopus 로고
    • Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network
    • Chorro L, Sarde A, Li M, Woollard KJ, Chambon P, Malissen B et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J Exp Med 2009; 206:3089–100.
    • (2009) J Exp Med , vol.206 , pp. 3089-3100
    • Chorro, L.1    Sarde, A.2    Li, M.3    Woollard, K.J.4    Chambon, P.5    Malissen, B.6
  • 170
    • 84869229157 scopus 로고    scopus 로고
    • Two distinct types of Langerhans cells populate the skin during steady state and inflammation
    • Seré K, Baek JH, Ober-Blöbaum J, Müller-Newen G, Tacke F, Yokota Y et al. Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity 2012; 37:905–16.
    • (2012) Immunity , vol.37 , pp. 905-916
    • Seré, K.1    Baek, J.H.2    Ober-Blöbaum, J.3    Müller-Newen, G.4    Tacke, F.5    Yokota, Y.6
  • 171
    • 84864124259 scopus 로고    scopus 로고
    • Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin
    • Nagao K, Kobayashi T, Moro K, Ohyama M, Adachi T, Kitashima DY et al. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat Immunol 2012; 13:744–52.
    • (2012) Nat Immunol , vol.13 , pp. 744-752
    • Nagao, K.1    Kobayashi, T.2    Moro, K.3    Ohyama, M.4    Adachi, T.5    Kitashima, D.Y.6
  • 172
    • 31344469849 scopus 로고    scopus 로고
    • The fate of human Langerhans cells in hematopoietic stem cell transplantation
    • Collin MP, Hart DN, Jackson GH, Cook G, Cavet J, Mackinnon S et al. The fate of human Langerhans cells in hematopoietic stem cell transplantation. J Exp Med 2006; 203:27–33.
    • (2006) J Exp Med , vol.203 , pp. 27-33
    • Collin, M.P.1    Hart, D.N.2    Jackson, G.H.3    Cook, G.4    Cavet, J.5    Mackinnon, S.6
  • 173
    • 84907598045 scopus 로고    scopus 로고
    • Langerhans cell homeostasis and turnover after nonmyeloablative and myeloablative allogeneic hematopoietic cell transplantation
    • Mielcarek M, Kirkorian AY, Hackman RC, Price J, Storer BE, Wood BL et al. Langerhans cell homeostasis and turnover after nonmyeloablative and myeloablative allogeneic hematopoietic cell transplantation. Transplantation 2014; 98:563–8.
    • (2014) Transplantation , vol.98 , pp. 563-568
    • Mielcarek, M.1    Kirkorian, A.Y.2    Hackman, R.C.3    Price, J.4    Storer, B.E.5    Wood, B.L.6
  • 174
    • 0030761480 scopus 로고    scopus 로고
    • flt3 ligand in cooperation with transforming growth factor-beta1 potentiates in vitro development of Langerhans-type dendritic cells and allows single-cell dendritic cell cluster formation under serum-free conditions
    • Strobl H, Bello-Fernandez C, Riedl E, Pickl WF, Majdic O, Lyman SD et al. flt3 ligand in cooperation with transforming growth factor-beta1 potentiates in vitro development of Langerhans-type dendritic cells and allows single-cell dendritic cell cluster formation under serum-free conditions. Blood 1997; 90:1425–34.
    • (1997) Blood , vol.90 , pp. 1425-1434
    • Strobl, H.1    Bello-Fernandez, C.2    Riedl, E.3    Pickl, W.F.4    Majdic, O.5    Lyman, S.D.6
  • 175
    • 0032536795 scopus 로고    scopus 로고
    • Transforming growth factor beta1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells
    • Geissmann F, Prost C, Monnet JP, Dy M, Brousse N, Hermine O. Transforming growth factor beta1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J Exp Med 1998; 187:961–6.
    • (1998) J Exp Med , vol.187 , pp. 961-966
    • Geissmann, F.1    Prost, C.2    Monnet, J.P.3    Dy, M.4    Brousse, N.5    Hermine, O.6
  • 176
    • 25644458587 scopus 로고    scopus 로고
    • A novel role for Notch ligand Delta-1 as a regulator of human Langerhans cell development from blood monocytes
    • Hoshino N, Katayama N, Shibasaki T, Ohishi K, Nishioka J, Masuya M et al. A novel role for Notch ligand Delta-1 as a regulator of human Langerhans cell development from blood monocytes. J Leukoc Biol 2005; 78:921–9.
    • (2005) J Leukoc Biol , vol.78 , pp. 921-929
    • Hoshino, N.1    Katayama, N.2    Shibasaki, T.3    Ohishi, K.4    Nishioka, J.5    Masuya, M.6
  • 177
    • 84871583494 scopus 로고    scopus 로고
    • Notch is active in Langerhans cell histiocytosis and confers pathognomonic features on dendritic cells
    • Hutter C, Kauer M, Simonitsch-Klupp I, Jug G, Schwentner R, Leitner J et al. Notch is active in Langerhans cell histiocytosis and confers pathognomonic features on dendritic cells. Blood 2012; 120:5199–208.
    • (2012) Blood , vol.120 , pp. 5199-5208
    • Hutter, C.1    Kauer, M.2    Simonitsch-Klupp, I.3    Jug, G.4    Schwentner, R.5    Leitner, J.6
  • 178
    • 85006288771 scopus 로고    scopus 로고
    • Human skin dendritic cell fate is differentially regulated by the monocyte identity factor KLF4 during steady state and inflammation
    • Jurkin J, Krump C, Köffel R, Fieber C, Schuster C, Brunner PM et al. Human skin dendritic cell fate is differentially regulated by the monocyte identity factor KLF4 during steady state and inflammation. J Allergy Clin Immunol 2016; 139:1873–84.
    • (2016) J Allergy Clin Immunol , vol.139 , pp. 1873-1884
    • Jurkin, J.1    Krump, C.2    Köffel, R.3    Fieber, C.4    Schuster, C.5    Brunner, P.M.6
  • 179
    • 85024099686 scopus 로고    scopus 로고
    • Hematopoietic origin of Langerhans cell histiocytosis and Erdheim-Chester disease in adults
    • Milne P, Bigley V, Bacon CM, Néel A, McGovern N, Bomken S et al. Hematopoietic origin of Langerhans cell histiocytosis and Erdheim-Chester disease in adults. Blood 2017; 130:167–75.
    • (2017) Blood , vol.130 , pp. 167-175
    • Milne, P.1    Bigley, V.2    Bacon, C.M.3    Néel, A.4    McGovern, N.5    Bomken, S.6
  • 181
    • 84861462335 scopus 로고    scopus 로고
    • Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells
    • Seneschal J, Clark RA, Gehad A, Baecher-Allan CM, Kupper TS. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 2012; 36:873–84.
    • (2012) Immunity , vol.36 , pp. 873-884
    • Seneschal, J.1    Clark, R.A.2    Gehad, A.3    Baecher-Allan, C.M.4    Kupper, T.S.5
  • 182
    • 84923000491 scopus 로고    scopus 로고
    • Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation
    • Kashem SW, Igyarto BZ, Gerami-Nejad M, Kumamoto Y, Mohammed JA, Jarrett E et al. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity 2015; 42:356–66.
    • (2015) Immunity , vol.42 , pp. 356-366
    • Kashem, S.W.1    Igyarto, B.Z.2    Gerami-Nejad, M.3    Kumamoto, Y.4    Mohammed, J.A.5    Jarrett, E.6
  • 183
    • 84856826706 scopus 로고    scopus 로고
    • CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization
    • Langlet C, Tamoutounour S, Henri S, Luche H, Ardouin L, Grégoire C et al. CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization. J Immunol 2012; 188:1751–60.
    • (2012) J Immunol , vol.188 , pp. 1751-1760
    • Langlet, C.1    Tamoutounour, S.2    Henri, S.3    Luche, H.4    Ardouin, L.5    Grégoire, C.6
  • 184
    • 84883830692 scopus 로고    scopus 로고
    • Inflammatory dendritic cells in mice and humans
    • Segura E, Amigorena S. Inflammatory dendritic cells in mice and humans. Trends Immunol 2013; 34:440–5.
    • (2013) Trends Immunol , vol.34 , pp. 440-445
    • Segura, E.1    Amigorena, S.2
  • 185
    • 84931561466 scopus 로고    scopus 로고
    • Dendritic cells and monocyte-derived cells: Two complementary and integrated functional systems
    • Schlitzer A, McGovern N, Ginhoux F. Dendritic cells and monocyte-derived cells: Two complementary and integrated functional systems. Semin Cell Dev Biol 2015; 41:9–22.
    • (2015) Semin Cell Dev Biol , vol.41 , pp. 9-22
    • Schlitzer, A.1    McGovern, N.2    Ginhoux, F.3
  • 186
    • 0029922964 scopus 로고    scopus 로고
    • Immunomorphological and ultrastructural characterization of Langerhans cells and a novel, inflammatory dendritic epidermal cell (IDEC) population in lesional skin of atopic eczema
    • Wollenberg A, Kraft S, Hanau D, Bieber T. Immunomorphological and ultrastructural characterization of Langerhans cells and a novel, inflammatory dendritic epidermal cell (IDEC) population in lesional skin of atopic eczema. J Invest Dermatol 1996; 106:446–53.
    • (1996) J Invest Dermatol , vol.106 , pp. 446-453
    • Wollenberg, A.1    Kraft, S.2    Hanau, D.3    Bieber, T.4
  • 187
    • 0036177227 scopus 로고    scopus 로고
    • Expression and function of the mannose receptor CD206 on epidermal dendritic cells in inflammatory skin diseases
    • Wollenberg A, Mommaas M, Oppel T, Schottdorf EM, Gunther S, Moderer M. Expression and function of the mannose receptor CD206 on epidermal dendritic cells in inflammatory skin diseases. J Invest Dermatol 2002; 118:327–34.
    • (2002) J Invest Dermatol , vol.118 , pp. 327-334
    • Wollenberg, A.1    Mommaas, M.2    Oppel, T.3    Schottdorf, E.M.4    Gunther, S.5    Moderer, M.6
  • 188
  • 189
    • 84897440036 scopus 로고    scopus 로고
    • Characterisation of leukocytes in a human skin blister model of acute inflammation and resolution
    • Jenner W, Motwani M, Veighey K, Newson J, Audzevich T, Nicolaou A et al. Characterisation of leukocytes in a human skin blister model of acute inflammation and resolution. PLoS ONE 2014; 9:e89375.
    • (2014) PLoS ONE , vol.9
    • Jenner, W.1    Motwani, M.2    Veighey, K.3    Newson, J.4    Audzevich, T.5    Nicolaou, A.6
  • 190
  • 191
    • 84858414938 scopus 로고    scopus 로고
    • Rapid accumulation of CD14+CD11c+ dendritic cells in gut mucosa of celiac disease after in vivo gluten challenge
    • Beitnes AC, Raki M, Brottveit M, Lundin KE, Jahnsen FL, Sollid LM. Rapid accumulation of CD14+CD11c+ dendritic cells in gut mucosa of celiac disease after in vivo gluten challenge. PLoS ONE 2012; 7:e33556.
    • (2012) PLoS ONE , vol.7
    • Beitnes, A.C.1    Raki, M.2    Brottveit, M.3    Lundin, K.E.4    Jahnsen, F.L.5    Sollid, L.M.6
  • 193
    • 84876349699 scopus 로고    scopus 로고
    • Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors
    • Bain CC, Scott CL, Uronen-Hansson H, Gudjonsson S, Jansson O, Grip O et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol 2013; 6:498–510.
    • (2013) Mucosal Immunol , vol.6 , pp. 498-510
    • Bain, C.C.1    Scott, C.L.2    Uronen-Hansson, H.3    Gudjonsson, S.4    Jansson, O.5    Grip, O.6
  • 194
    • 85008500782 scopus 로고    scopus 로고
    • Peritoneal macrophage heterogeneity is associated with different peritoneal dialysis outcomes
    • Liao CT, Andrews R, Wallace LE, Khan MW, Kift-Morgan A, Topley N et al. Peritoneal macrophage heterogeneity is associated with different peritoneal dialysis outcomes. Kidney Int 2017; 91:1088–103.
    • (2017) Kidney Int , vol.91 , pp. 1088-1103
    • Liao, C.T.1    Andrews, R.2    Wallace, L.E.3    Khan, M.W.4    Kift-Morgan, A.5    Topley, N.6
  • 195
    • 84938528519 scopus 로고    scopus 로고
    • A Hitchhiker's guide to myeloid cell subsets: practical implementation of a novel mononuclear phagocyte classification system
    • Guilliams M, van de Laar L. A Hitchhiker's guide to myeloid cell subsets: practical implementation of a novel mononuclear phagocyte classification system. Front Immunol 2015; 6:406.
    • (2015) Front Immunol , vol.6 , pp. 406
    • Guilliams, M.1    van de Laar, L.2
  • 196
    • 84900869746 scopus 로고    scopus 로고
    • Paradigm shift in dendritic cell-based immunotherapy: from generated monocyte-derived DCs to naturally circulating DC subsets
    • Wimmers F, Schreibelt G, Skold AE, Figdor CG, De Vries IJ. Paradigm shift in dendritic cell-based immunotherapy: from generated monocyte-derived DCs to naturally circulating DC subsets. Front Immunol 2014; 5:165.
    • (2014) Front Immunol , vol.5 , pp. 165
    • Wimmers, F.1    Schreibelt, G.2    Skold, A.E.3    Figdor, C.G.4    De Vries, I.J.5
  • 197
    • 33745062776 scopus 로고    scopus 로고
    • Human 6-sulfo LacNAc-expressing dendritic cells are principal producers of early interleukin-12 and are controlled by erythrocytes
    • Schakel K, von Kietzell M, Hansel A, Ebling A, Schulze L, Haase M et al. Human 6-sulfo LacNAc-expressing dendritic cells are principal producers of early interleukin-12 and are controlled by erythrocytes. Immunity 2006; 24:767–77.
    • (2006) Immunity , vol.24 , pp. 767-777
    • Schakel, K.1    von Kietzell, M.2    Hansel, A.3    Ebling, A.4    Schulze, L.5    Haase, M.6
  • 198
    • 84951299070 scopus 로고    scopus 로고
    • slan-defined subsets of CD16-positive monocytes: impact of granulomatous inflammation and M-CSF receptor mutation
    • Hofer TP, Zawada AM, Frankenberger M, Skokann K, Satzl AA, Gesierich W et al. slan-defined subsets of CD16-positive monocytes: impact of granulomatous inflammation and M-CSF receptor mutation. Blood 2015; 126:2601–10.
    • (2015) Blood , vol.126 , pp. 2601-2610
    • Hofer, T.P.1    Zawada, A.M.2    Frankenberger, M.3    Skokann, K.4    Satzl, A.A.5    Gesierich, W.6
  • 199
    • 77957020717 scopus 로고    scopus 로고
    • Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors
    • Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 2010; 33:375–86.
    • (2010) Immunity , vol.33 , pp. 375-386
    • Cros, J.1    Cagnard, N.2    Woollard, K.3    Patey, N.4    Zhang, S.Y.5    Senechal, B.6
  • 200
    • 85030671864 scopus 로고    scopus 로고
    • Transcriptional profiling reveals functional dichotomy between human slan(+) non-classical monocytes and myeloid dendritic cells
    • van Leeuwen-Kerkhoff N, Lundberg K, Westers TM, Kordasti S, Bontkes HJ, de Gruijl TD et al. Transcriptional profiling reveals functional dichotomy between human slan(+) non-classical monocytes and myeloid dendritic cells. J Leukoc Biol 2017; 102:1055–68.
    • (2017) J Leukoc Biol , vol.102 , pp. 1055-1068
    • van Leeuwen-Kerkhoff, N.1    Lundberg, K.2    Westers, T.M.3    Kordasti, S.4    Bontkes, H.J.5    de Gruijl, T.D.6
  • 201
    • 85022003883 scopus 로고    scopus 로고
    • The fate and lifespan of human monocyte subsets in steady state and systemic inflammation
    • Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med 2017; 214:1913–23.
    • (2017) J Exp Med , vol.214 , pp. 1913-1923
    • Patel, A.A.1    Zhang, Y.2    Fullerton, J.N.3    Boelen, L.4    Rongvaux, A.5    Maini, A.A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.