메뉴 건너뛰기




Volumn 16, Issue 7, 2016, Pages 449-462

Computational flow cytometry: Helping to make sense of high-dimensional immunology data

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL MARKER;

EID: 84975122314     PISSN: 14741733     EISSN: 14741741     Source Type: Journal    
DOI: 10.1038/nri.2016.56     Document Type: Review
Times cited : (371)

References (85)
  • 1
    • 0001406390 scopus 로고
    • Electronic separation of biological cells by volume
    • Fulwyler, M. J. Electronic separation of biological cells by volume. Science 150, 910-911 (1965
    • (1965) Science , vol.150 , pp. 910-911
    • Fulwyler, M.J.1
  • 2
    • 0004039822 scopus 로고
    • Chromosome measurement and sorting by flow systems
    • Gray J. W., et al. Chromosome measurement and sorting by flow systems. Proc. Natl Acad. Sci. USA 72, 1231-1234 (1975
    • (1975) Proc. Natl Acad. Sci. USA , vol.72 , pp. 1231-1234
    • Gray, J.W.1
  • 3
    • 84946916050 scopus 로고    scopus 로고
    • Flow cytometry strikes gold
    • Robinson, J. P., & Roederer, M. Flow cytometry strikes gold. Science 350, 739-740 (2015
    • (2015) Science , vol.350 , pp. 739-740
    • Robinson, J.P.1    Roederer, M.2
  • 4
    • 3543069879 scopus 로고    scopus 로고
    • Seventeen-colour flow cytometry: Unravelling the immune system
    • Perfetto, S. P., Chattopadhyay, P. K., & Roederer, M. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 4, 648-655 (2004
    • (2004) Nat. Rev. Immunol , vol.4 , pp. 648-655
    • Perfetto, S.P.1    Chattopadhyay, P.K.2    Roederer, M.3
  • 6
    • 68849103521 scopus 로고    scopus 로고
    • Mass cytometry: Technique for real time single cell multitarget immunoassay based on inductively coupled plasma time of flight mass spectrometry
    • Bandura D. R., et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time of flight mass spectrometry. Anal. Chem. 81, 6813-6822 (2009
    • (2009) Anal. Chem , vol.81 , pp. 6813-6822
    • Bandura, D.R.1
  • 7
    • 84878506417 scopus 로고    scopus 로고
    • Spectral flow cytometry
    • Nolan J. P., & Condello, D. Spectral flow cytometry. Curr. Protoc. Cytom. http://www.dx.doi org/ 10.1002/0471142956.cy0127s63 2013
    • (2013) Curr. Protoc. Cytom
    • Nolan, J.P.1    Condello, D.2
  • 8
    • 46149111430 scopus 로고    scopus 로고
    • Multispectral imaging of hematopoietic cells: Where flow meets morphology
    • McGrath, K. E., Bushnell, T. P., & Palis, J. Multispectral imaging of hematopoietic cells: where flow meets morphology. J. Immunol. Methods 336, 91-97 (2008
    • (2008) J. Immunol. Methods , vol.336 , pp. 91-97
    • McGrath, K.E.1    Bushnell, T.P.2    Palis, J.3
  • 9
    • 84897954497 scopus 로고    scopus 로고
    • Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry
    • Giesen C., et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417-422 (2014
    • (2014) Nat. Methods , vol.11 , pp. 417-422
    • Giesen, C.1
  • 10
    • 55949121648 scopus 로고    scopus 로고
    • Standardization and optimization of multiparameter intracellular cytokine staining
    • Nomura, L., Maino, V. C., & Maecker, H. T. Standardization and optimization of multiparameter intracellular cytokine staining. Cytometry A 73, 984-991 (2008
    • (2008) Cytometry A , vol.73 , pp. 984-991
    • Nomura, L.1    Maino, V.C.2    Maecker, H.T.3
  • 11
    • 84857647499 scopus 로고    scopus 로고
    • Standardizing immunophenotyping for the Human Immunology Project
    • Maecker, H. T., McCoy, J. P., & Nussenblatt, R. Standardizing immunophenotyping for the Human Immunology Project. Nat. Rev. Immunol. 12, 191-200 (2012
    • (2012) Nat. Rev. Immunol , vol.12 , pp. 191-200
    • Maecker, H.T.1    McCoy, J.P.2    Nussenblatt, R.3
  • 12
    • 84860254968 scopus 로고    scopus 로고
    • Subjectivity and flow cytometric variability
    • Pachon, G., Caragol, I., & Petriz, J. Subjectivity and flow cytometric variability. Nat. Rev. Immunol. 12, 396-396 (2012
    • (2012) Nat. Rev. Immunol , vol.12 , pp. 396
    • Pachon, G.1    Caragol, I.2    Petriz, J.3
  • 13
    • 84938414151 scopus 로고    scopus 로고
    • Data analysis as a source of variability of the HLA-peptide multimer assay: From manual gating to automated recognition of cell clusters
    • Gouttefangeas C., et al. Data analysis as a source of variability of the HLA-peptide multimer assay: from manual gating to automated recognition of cell clusters. Cancer Immunol. Immunother. 64, 585-598 (2015
    • (2015) Cancer Immunol. Immunother , vol.64 , pp. 585-598
    • Gouttefangeas, C.1
  • 14
    • 84911172425 scopus 로고    scopus 로고
    • Beyond the age of cellular discovery
    • Irish, J. Beyond the age of cellular discovery. Nat. Immunol. 15, 1095-1097 (2014
    • (2014) Nat. Immunol , vol.15 , pp. 1095-1097
    • Irish, J.1
  • 15
    • 74049120780 scopus 로고    scopus 로고
    • Data file standard for flow cytometry version FCS 3.1
    • Spidlen J., et al. Data file standard for flow cytometry version FCS 3.1. Cytometry A 77, 97-100 (2010
    • (2010) Cytometry A , vol.77 , pp. 97-100
    • Spidlen, J.1
  • 17
    • 84932196277 scopus 로고    scopus 로고
    • ISAC's Gating ML 2.0 data exchange standard for gating description
    • Spidlen, J., Moore, W., & Brinkman, R. R. ISAC's Gating ML 2.0 data exchange standard for gating description. Cytometry A 87, 683-687 (2015
    • (2015) Cytometry A , vol.87 , pp. 683-687
    • Spidlen, J.1    Moore, W.2    Brinkman, R.R.3
  • 18
    • 84919608784 scopus 로고    scopus 로고
    • ISAC's classification results file format
    • Spidlen, J., Bray, C., & Brinkman, R. R. ISAC's classification results file format. Cytometry A 87, 86-88 (2014
    • (2014) Cytometry A , vol.87 , pp. 86-88
    • Spidlen, J.1    Bray, C.2    Brinkman, R.R.3
  • 19
    • 84869884407 scopus 로고    scopus 로고
    • ICEFormat-The image cytometry experiment format
    • Spidlen, J., & Novo, D. ICEFormat-The image cytometry experiment format. Cytometry A 81, 1015-1018 (2012
    • (2012) Cytometry A , vol.81 , pp. 1015-1018
    • Spidlen, J.1    Novo, D.2
  • 20
    • 84946562563 scopus 로고    scopus 로고
    • Standardized multi-color flow cytometry and computational biomarker discovery
    • Schlickeiser, S., Streitz, M., & Sawitzki, B. Standardized multi-color flow cytometry and computational biomarker discovery. Methods Mol. Biol. 1371, 225-238 (2016
    • (2016) Methods Mol. Biol , vol.1371 , pp. 225-238
    • Schlickeiser, S.1    Streitz, M.2    Sawitzki, B.3
  • 21
    • 84937812027 scopus 로고    scopus 로고
    • A proposal for unified flow cytometer parameter naming
    • Roederer, M A proposal for unified flow cytometer parameter naming. Cytometry A 87 689-691 2015
    • (2015) Cytometry A , vol.87 , pp. 689-691
    • Roederer, M.1
  • 22
    • 1642463402 scopus 로고    scopus 로고
    • New approaches to fluorescence compensation and visualization of FACS data
    • Tung, J. W., Parks, D. R., Moore, W. A., Herzenberg, L. A., & Herzenberg, L. A. New approaches to fluorescence compensation and visualization of FACS data. Clin. Immunol. 110, 277-283 (2004
    • (2004) Clin. Immunol , vol.110 , pp. 277-283
    • Tung, J.W.1    Parks, D.R.2    Moore, W.A.3    Herzenberg, L.A.4    Herzenberg, L.A.5
  • 23
    • 53049110682 scopus 로고    scopus 로고
    • MIFlowCyt: The minimum information about a flow cytometry experiment
    • Lee J. A., et al. MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A 73, 926-930 (2008
    • (2008) Cytometry A , vol.73 , pp. 926-930
    • Lee, J.A.1
  • 24
    • 84865645292 scopus 로고    scopus 로고
    • EuroFlow antibody panels for standardized n dimensional flow cytometric immunophenotyping of normal reactive and malignant leukocytes
    • van Dongen J. J. M., et al. EuroFlow antibody panels for standardized n dimensional flow cytometric immunophenotyping of normal reactive and malignant leukocytes. Leukemia 26, 1908-1975 (2012
    • (2012) Leukemia , vol.26 , pp. 1908-1975
    • Van Dongen, J.J.M.1
  • 25
    • 84957539424 scopus 로고    scopus 로고
    • Standardizing flow cytometry immunophenotyping analysis from the Human ImmunoPhenotyping Consortium
    • Finak G., et al. Standardizing flow cytometry immunophenotyping analysis from the Human ImmunoPhenotyping Consortium. Sci. Rep. 6, 20686 (2016
    • (2016) Sci. Rep , vol.6 , pp. 20686
    • Finak, G.1
  • 26
    • 84933505672 scopus 로고    scopus 로고
    • Semiautomated and standardized cytometric procedures for multi-panel and multi-parametric whole blood immunophenotyping
    • Hasan M., et al. Semiautomated and standardized cytometric procedures for multi-panel and multi-parametric whole blood immunophenotyping. Clin. Immunol. 157, 261-276 (2015
    • (2015) Clin. Immunol , vol.157 , pp. 261-276
    • Hasan, M.1
  • 27
    • 77956475400 scopus 로고    scopus 로고
    • Publication of optimized multicolor immunofluorescence panels
    • Mahnke, Y., Chattopadhyay, P., & Roederer, M. Publication of optimized multicolor immunofluorescence panels. Cytometry A 77, 814-818 (2010
    • (2010) Cytometry A , vol.77 , pp. 814-818
    • Mahnke, Y.1    Chattopadhyay, P.2    Roederer, M.3
  • 28
    • 84874666550 scopus 로고    scopus 로고
    • Critical assessment of automated flow cytometry data analysis techniques
    • Aghaeepour N., et al. Critical assessment of automated flow cytometry data analysis techniques. Nat. Methods 10, 445-445 (2013
    • (2013) Nat. Methods , vol.10 , pp. 445
    • Aghaeepour, N.1
  • 29
    • 84957081995 scopus 로고    scopus 로고
    • A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes
    • Aghaeepour, N., et al A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes. Cytometry A 89 16-21 2015
    • (2015) Cytometry , vol.A89 , pp. 16-21
    • Aghaeepour, N.1
  • 30
    • 28744458859 scopus 로고    scopus 로고
    • Bioconductor: Open software development for computational biology and bioinformatics
    • Gentleman R. C., et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004
    • (2004) Genome Biol , vol.5 , pp. R80
    • Gentleman, R.C.1
  • 31
    • 33646361583 scopus 로고    scopus 로고
    • Genepattern 2.0
    • Reich M., et al. GenePattern 2.0. Nat. Genet. 38, 500-501 (2006
    • (2006) Nat. Genet , vol.38 , pp. 500-501
    • Reich, M.1
  • 33
    • 65949097067 scopus 로고    scopus 로고
    • FlowCore: A Bioconductor package for high throughput flow cytometry
    • Hahne F., et al. flowCore: a Bioconductor package for high throughput flow cytometry. BMC Bioinformatics 10, 106 (2009
    • (2009) BMC Bioinformatics , vol.10 , pp. 106
    • Hahne, F.1
  • 34
    • 34250695049 scopus 로고    scopus 로고
    • Data quality assessment of ungated flow cytometry data in high throughput experiments
    • Le Meur N., et al. Data quality assessment of ungated flow cytometry data in high throughput experiments. Cytometry A 71, 393-403 (2007
    • (2007) Cytometry A , vol.71 , pp. 393-403
    • Le Meur, N.1
  • 35
    • 84961282081 scopus 로고    scopus 로고
    • FlowClean: Automated identification and removal of fluorescence anomalies in flow cytometry data
    • Fletez-Brant K., et al. flowClean: automated identification and removal of fluorescence anomalies in flow cytometry data. Cytometry A 89, 461-471 (2016
    • (2016) Cytometry A , vol.89 , pp. 461-471
    • Fletez-Brant, K.1
  • 36
    • 77249135054 scopus 로고    scopus 로고
    • Per-channel basis normalization methods for flow cytometry data
    • Hahne F., et al. Per-channel basis normalization methods for flow cytometry data. Cytometry A 77, 121-131 (2010
    • (2010) Cytometry A , vol.77 , pp. 121-131
    • Hahne, F.1
  • 37
    • 84961288133 scopus 로고    scopus 로고
    • OpenCyto: An open source infrastructure for scalable robust, reproducible, and automated, end to end flow cytometry data analysis
    • Finak, G., et al. OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end to end flow cytometry data analysis. PLoS Comput. Biol. 10, e1003806 (2014
    • (2014) PLoS Comput. Biol , vol.10 , pp. e1003806
    • Finak, G.1
  • 38
    • 84928189767 scopus 로고    scopus 로고
    • FlowDensity: Reproducing manual gating of flow cytometry data by automated density-based cell population identification
    • Malek M., et al. flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification. Bioinformatics 31, 606-607 (2015
    • (2015) Bioinformatics , vol.31 , pp. 606-607
    • Malek, M.1
  • 39
    • 84928175995 scopus 로고    scopus 로고
    • Thinking outside the gate: Single-cell assessments in multiple dimensions
    • Kvistborg P., et al. Thinking outside the gate: single-cell assessments in multiple dimensions. Immunity 42, 591-592 (2015
    • (2015) Immunity , vol.42 , pp. 591-592
    • Kvistborg, P.1
  • 40
    • 84937685382 scopus 로고    scopus 로고
    • Algorithmic tools for mining high-dimensional cytometry data
    • Chester, C., & Maecker, H. T. Algorithmic tools for mining high-dimensional cytometry data. J. Immunol. 195, 773-779 (2015
    • (2015) J. Immunol , vol.195 , pp. 773-779
    • Chester, C.1    Maecker, H.T.2
  • 41
    • 84953836592 scopus 로고    scopus 로고
    • The end of gating? An introduction to automated analysis of high dimensional cytometry data
    • Mair F., et al. The end of gating? An introduction to automated analysis of high dimensional cytometry data. Eur. J. Immunol. 46, 34-43 (2016
    • (2016) Eur. J. Immunol , vol.46 , pp. 34-43
    • Mair, F.1
  • 42
    • 84983121572 scopus 로고    scopus 로고
    • Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data
    • Diggins, K. E., Ferrell, P. B., Irish, J. M. Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data. Methods. 82, 55-63 (2015
    • (2015) Methods , vol.82 , pp. 55-63
    • Diggins, K.E.1    Ferrell, P.B.2    Irish, J.M.3
  • 43
    • 84922059501 scopus 로고    scopus 로고
    • Conditional density-based analysis of T cell signaling in single-cell data
    • Krishnaswamy S., et al. Conditional density-based analysis of T cell signaling in single-cell data. Science 346, 1250689 (2014
    • (2014) Science , vol.346 , pp. 1250689
    • Krishnaswamy, S.1
  • 44
    • 84899574465 scopus 로고    scopus 로고
    • Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
    • Bendall S. C., et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714-725 (2014
    • (2014) Cell , vol.157 , pp. 714-725
    • Bendall, S.C.1
  • 45
    • 34248139722 scopus 로고    scopus 로고
    • Subject classification obtained by cluster analysis and principal component analysis applied to flow cytometric data
    • Lugli E., et al. Subject classification obtained by cluster analysis and principal component analysis applied to flow cytometric data. Cytometry A 71, 334-344 (2007
    • (2007) Cytometry A , vol.71 , pp. 334-344
    • Lugli, E.1
  • 47
    • 84880280631 scopus 로고    scopus 로고
    • ViSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
    • Amir E. D., et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545-552 (2013
    • (2013) Nat. Biotechnol , vol.31 , pp. 545-552
    • Amir, E.D.1
  • 48
    • 84954104516 scopus 로고    scopus 로고
    • Categorical analysis of human T cell heterogeneity with one-dimensional soli-expression by nonlinear stochastic embedding
    • Cheng, Y., Wong, M. T., van der Maaten, L., & Newell, E. W. Categorical analysis of human T cell heterogeneity with one-dimensional soli-expression by nonlinear stochastic embedding. J. Immunol. 196, 924-932 (2016
    • (2016) J. Immunol , vol.196 , pp. 924-932
    • Cheng, Y.1    Wong, M.T.2    Van Der Maaten, L.3    Newell, E.W.4
  • 49
    • 84934442835 scopus 로고    scopus 로고
    • Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis
    • Levine J. H., et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184-197 (2015
    • (2015) Cell , vol.162 , pp. 184-197
    • Levine, J.H.1
  • 50
    • 80054768631 scopus 로고    scopus 로고
    • Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE
    • Qiu P., et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 29, 886-891 (2011
    • (2011) Nat. Biotechnol , vol.29 , pp. 886-891
    • Qiu, P.1
  • 51
    • 84924258718 scopus 로고    scopus 로고
    • A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry
    • Zunder, E R., Lujan, E., Goltsev, Y., Wernig, M., & Nolan, G. P. A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry. Cell Stem Cell 16 323-337 2015
    • (2015) Cell Stem Cell , vol.16 , pp. 323-337
    • Zunder, E.R.1    Lujan, E.2    Goltsev, Y.3    Wernig, M.4    Nolan, G.P.5
  • 52
    • 84932198501 scopus 로고    scopus 로고
    • FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data
    • Van Gassen S., et al. FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 87, 636-645 (2015
    • (2015) Cytometry A , vol.87 , pp. 636-645
    • Van Gassen, S.1
  • 53
    • 84937604921 scopus 로고    scopus 로고
    • An interactive reference framework for modeling a dynamic immune system
    • Spitzer M. H., et al. An interactive reference framework for modeling a dynamic immune system. Science 349, 1259425 (2015
    • (2015) Science , vol.349 , pp. 1259425
    • Spitzer, M.H.1
  • 54
    • 66649115648 scopus 로고    scopus 로고
    • Automated high-dimensional flow cytometric data analysis
    • Pyne S., et al. Automated high-dimensional flow cytometric data analysis. Proc. Natl Acad. Sci. USA 106, 8519-8524 (2009
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 8519-8524
    • Pyne, S.1
  • 55
    • 42049123647 scopus 로고    scopus 로고
    • Automated gating of flow cytometry data via robust model-based clustering
    • Lo, K., Brinkman, R. R., & Gottardo, R. Automated gating of flow cytometry data via robust model-based clustering. Cytometry A 73, 321-332 (2008
    • (2008) Cytometry A , vol.73 , pp. 321-332
    • Lo, K.1    Brinkman, R.R.2    Gottardo, R.3
  • 56
    • 77949555869 scopus 로고    scopus 로고
    • Merging mixture components for cell population identification in flow cytometry
    • Finak, G., Bashashati, A., Brinkman, R., & Gottardo, R. Merging mixture components for cell population identification in flow cytometry. Adv. Bioinformatics 2009, 247646 (2009
    • (2009) Adv. Bioinformatics , vol.2009 , pp. 247646
    • Finak, G.1    Bashashati, A.2    Brinkman, R.3    Gottardo, R.4
  • 57
    • 84933509460 scopus 로고    scopus 로고
    • Automated flow cytometric analysis across large numbers of samples and cell types
    • Chen X., et al. Automated flow cytometric analysis across large numbers of samples and cell types. Clin. Immunol. 157, 249-260 (2015
    • (2015) Clin. Immunol , vol.157 , pp. 249-260
    • Chen, X.1
  • 58
    • 84932194111 scopus 로고    scopus 로고
    • ImmunoClust-An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets
    • Sorensen, T., Baumgart, S., Durek, P., Grutzkau, A., & Haupl, T. immunoClust-An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. Cytometry A 87, 603-615 (2015
    • (2015) Cytometry A , vol.87 , pp. 603-615
    • Sorensen, T.1    Baumgart, S.2    Durek, P.3    Grutzkau, A.4    Haupl, T.5
  • 59
    • 84899064968 scopus 로고    scopus 로고
    • SWIFT-scalable clustering for automated identification of rare cell populations in large high-dimensional flow cytometry datasets part 1: Algorithm design
    • Naim, I., et al. SWIFT-scalable clustering for automated identification of rare cell populations in large high-dimensional flow cytometry datasets, part 1: algorithm design. Cytometry A 85, 408-421 (2014
    • (2014) Cytometry A , vol.85 , pp. 408-421
    • Naim, I.1
  • 60
    • 78650436333 scopus 로고    scopus 로고
    • Rapid cell population identification in flow cytometry data
    • Aghaeepour, N., Nikolic, R., Hoos, H. H., & Brinkman, R. R. Rapid cell population identification in flow cytometry data. Cytometry A 79, 6-13 (2010
    • (2010) Cytometry A , vol.79 , pp. 6-13
    • Aghaeepour, N.1    Nikolic, R.2    Hoos, H.H.3    Brinkman, R.R.4
  • 61
    • 77954938186 scopus 로고    scopus 로고
    • Data reduction for spectral clustering to analyze high throughput flow cytometry data
    • Zare, H., Shooshtari, P., Gupta, A., & Brinkman, R. R. Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinformatics 11, 403 (2010
    • (2010) BMC Bioinformatics , vol.11 , pp. 403
    • Zare, H.1    Shooshtari, P.2    Gupta, A.3    Brinkman, R.R.4
  • 62
    • 77956565464 scopus 로고    scopus 로고
    • Elucidation of seventeen human peripheral blood B cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data
    • Qian Y., et al. Elucidation of seventeen human peripheral blood B cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry B. Clin. Cytom 78, S69-S82 (2010
    • (2010) Cytometry B. Clin. Cytom , vol.78 , pp. S69-S82
    • Qian, Y.1
  • 63
    • 84865139571 scopus 로고    scopus 로고
    • FlowPeaks: A fast unsupervised clustering for flow cytometry data via K means and density peak finding
    • Ge, Y., & Sealfon, S. C. flowPeaks: a fast unsupervised clustering for flow cytometry data via K means and density peak finding. Bioinformatics. 28, 2052-2058 (2012
    • (2012) Bioinformatics , vol.28 , pp. 2052-2058
    • Ge, Y.1    Sealfon, S.C.2
  • 64
    • 84953851427 scopus 로고    scopus 로고
    • BayesFlow: Latent modeling of flow cytometry cell populations
    • Johnsson, K., Wallin, J., & Fontes, M. BayesFlow: latent modeling of flow cytometry cell populations. BMC Bioinformatics 17, 25 (2016
    • (2016) BMC Bioinformatics , vol.17 , pp. 25
    • Johnsson, K.1    Wallin, J.2    Fontes, M.3
  • 65
    • 84891956083 scopus 로고    scopus 로고
    • Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE
    • Shekhar, K., Brodin, P., Davis, M. M., & Chakraborty, A. K. Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proc. Natl Acad. Sci. USA 111, 202-207 (2013
    • (2013) Proc. Natl Acad. Sci. USA , vol.111 , pp. 202-207
    • Shekhar, K.1    Brodin, P.2    Davis, M.M.3    Chakraborty, A.K.4
  • 66
    • 84911016319 scopus 로고    scopus 로고
    • High-dimensional analysis of the murine myeloid cell system
    • Becher B., et al. High-dimensional analysis of the murine myeloid cell system. Nat. Immunol. 15, 1181-1189 (2014
    • (2014) Nat. Immunol , vol.15 , pp. 1181-1189
    • Becher, B.1
  • 67
    • 84880849822 scopus 로고    scopus 로고
    • Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples
    • Cron A., et al. Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples. PLoS Comput. Biol. 9, e1003130 (2013
    • (2013) PLoS Comput. Biol , vol.9 , pp. e1003130
    • Cron, A.1
  • 68
    • 84908548681 scopus 로고    scopus 로고
    • A non-parametric Bayesian model for joint cell clustering and cluster matching: Identification of anomalous sample phenotypes with random effects
    • Dundar M., Akova, F., Yerebakan, H. Z., & Rajwa, B. A non-parametric Bayesian model for joint cell clustering and cluster matching: identification of anomalous sample phenotypes with random effects. BMC Bioinformatics. 15, 314 2014
    • (2014) BMC Bioinformatics , vol.15 , pp. 314
    • Dundar, M.1    Akova, F.2    Yerebakan, H.Z.3    Rajwa, B.4
  • 69
    • 84983094968 scopus 로고    scopus 로고
    • Mapping cell populations in flow cytometry data for cross-sample comparison using the Friedman-Rafsky test statistic as a distance measure
    • Hsiao C., et al. Mapping cell populations in flow cytometry data for cross-sample comparison using the Friedman-Rafsky test statistic as a distance measure. Cytometry A 89, 71-88 (2016
    • (2016) Cytometry A , vol.89 , pp. 71-88
    • Hsiao, C.1
  • 70
    • 84925550970 scopus 로고    scopus 로고
    • Cell population identification using fluorescence-minus-one controls with a one-class classifying algorithm
    • Feher, K., Kirsch, J., Radbruch, A., Chang, H. D., & Kaiser, T. Cell population identification using fluorescence-minus-one controls with a one-class classifying algorithm. Bioinformatics. 30, 3372-3378 (2014
    • (2014) Bioinformatics , vol.30 , pp. 3372-3378
    • Feher, K.1    Kirsch, J.2    Radbruch, A.3    Chang, H.D.4    Kaiser, T.5
  • 71
    • 84855257738 scopus 로고    scopus 로고
    • Automated analysis of multidimensional flow cytometry data improves diagnostic accuracy between mantle cell lymphoma and small lymphocytic lymphoma
    • Zare H., et al. Automated analysis of multidimensional flow cytometry data improves diagnostic accuracy between mantle cell lymphoma and small lymphocytic lymphoma. Am. J. Clin. Pathol. 137, 75-85 (2012
    • (2012) Am. J. Clin. Pathol , vol.137 , pp. 75-85
    • Zare, H.1
  • 72
    • 84862598238 scopus 로고    scopus 로고
    • B cells with high side scatter parameter by flow cytometry correlate with inferior survival in diffuse large B cell lymphoma
    • Bashashati A., et al. B cells with high side scatter parameter by flow cytometry correlate with inferior survival in diffuse large B cell lymphoma. Am. J. Clin. Pathol. 137, 805-814 (2012
    • (2012) Am J. Clin. Pathol , vol.137 , pp. 805-814
    • Bashashati, A.1
  • 73
    • 84899506044 scopus 로고    scopus 로고
    • Enhanced flowtype/rchyoptimyx: A bioconductor pipeline for discovery in high-dimensional cytometry data
    • O'Neill, K., Jalali, A., Aghaeepour, N., Hoos, H., & Brinkman, R. R. Enhanced flowType/RchyOptimyx: a Bioconductor pipeline for discovery in high-dimensional cytometry data. Bioinformatics 30, 1329-1330 (2014
    • (2014) Bioinformatics , vol.30 , pp. 1329-1330
    • O'Neill, K.1    Jalali, A.2    Aghaeepour, N.3    Hoos, H.4    Brinkman, R.R.5
  • 75
    • 84930945915 scopus 로고    scopus 로고
    • COMPASS identifies T cell subsets correlated with clinical outcomes
    • Lin L., et al. COMPASS identifies T cell subsets correlated with clinical outcomes. Nat. Biotechnol. 33, 610-616 (2015
    • (2015) Nat. Biotechnol , vol.33 , pp. 610-616
    • Lin, L.1
  • 76
    • 84983094027 scopus 로고    scopus 로고
    • Competitive SWIFT cluster templates enhance detection of aging changes
    • Rebhahn J. A., et al. Competitive SWIFT cluster templates enhance detection of aging changes. Cytometry A 89, 59-70 (2016
    • (2016) Cytometry A , vol.89 , pp. 59-70
    • Rebhahn, J.A.1
  • 77
    • 84983191355 scopus 로고    scopus 로고
    • FloReMi: Flow density survival regression using minimal feature redundancy
    • Van Gassen, S., Vens, C., Dhaene, T., Lambrecht, B. N., & Saeys, Y. FloReMi: flow density survival regression using minimal feature redundancy. Cytometry A 89, 22-29 (2016
    • (2016) Cytometry A , vol.89 , pp. 22-29
    • Van Gassen, S.1    Vens, C.2    Dhaene, T.3    Lambrecht, B.N.4    Saeys, Y.5
  • 78
    • 84932083455 scopus 로고    scopus 로고
    • Probability state modeling theory
    • Bagwell C. B., et al. Probability state modeling theory. Cytometry A 87, 646-660 (2015
    • (2015) Cytometry A , vol.87 , pp. 646-660
    • Bagwell, C.B.1
  • 79
    • 84885958989 scopus 로고    scopus 로고
    • Probability state modeling of memory CD8+ T cell differentiation
    • Inokuma, M. S., Maino, V. C., & Bagwell, C. B. Probability state modeling of memory CD8+ T cell differentiation. J. Immunol. Methods 397, 8-17 (2013
    • (2013) J. Immunol. Methods , vol.397 , pp. 8-17
    • Inokuma, M.S.1    Maino, V.C.2    Bagwell, C.B.3
  • 80
    • 84932096702 scopus 로고    scopus 로고
    • Human B cell and progenitor stages as determined by probability state modeling of multidimensional cytometry data
    • Bagwell C. B., et al. Human B cell and progenitor stages as determined by probability state modeling of multidimensional cytometry data. Cytometry B Clin. Cytom. 88, 214-226 (2015
    • (2015) Cytometry B Clin. Cytom , vol.88 , pp. 214-226
    • Bagwell, C.B.1
  • 81
    • 84924365758 scopus 로고    scopus 로고
    • Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape
    • Marco E., et al. Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proc. Natl Acad. Sci. 111, E5643-E5650 (2014
    • (2014) Proc. Natl Acad. Sci , vol.111 , pp. E5643-E5650
    • Marco, E.1
  • 82
    • 84974587998 scopus 로고    scopus 로고
    • Wishbone identifies bifurcating developmental trajectories from single cell data
    • Setty, M.et al. Wishbone identifies bifurcating developmental trajectories from single cell data. Nat. Biotechnol. http://dx.doi.org/10.1038/nbt.3569 (2016
    • (2016) Nat. Biotechnol
    • Setty, M.1
  • 83
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell, C., et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386 (2014
    • (2014) Nat. Biotechnol , vol.32 , pp. 381-386
    • Trapnell, C.1
  • 84
    • 84941010341 scopus 로고    scopus 로고
    • Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis
    • Shin J., et al. Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17, 360-372 (2015
    • (2015) Cell Stem Cell , vol.17 , pp. 360-372
    • Shin, J.1
  • 85
    • 84958103478 scopus 로고    scopus 로고
    • Single-cell RNA-sequencing reveals a continuous spectrum of differentiation in hematopoietic cells
    • Macaulay I. C., et al. Single-cell RNA-sequencing reveals a continuous spectrum of differentiation in hematopoietic cells. Cell Rep. 14, 966-977 (2016
    • (2016) Cell Rep , vol.14 , pp. 966-977
    • Macaulay, I.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.