-
1
-
-
0001406390
-
Electronic separation of biological cells by volume
-
Fulwyler, M. J. Electronic separation of biological cells by volume. Science 150, 910-911 (1965
-
(1965)
Science
, vol.150
, pp. 910-911
-
-
Fulwyler, M.J.1
-
2
-
-
0004039822
-
Chromosome measurement and sorting by flow systems
-
Gray J. W., et al. Chromosome measurement and sorting by flow systems. Proc. Natl Acad. Sci. USA 72, 1231-1234 (1975
-
(1975)
Proc. Natl Acad. Sci. USA
, vol.72
, pp. 1231-1234
-
-
Gray, J.W.1
-
3
-
-
84946916050
-
Flow cytometry strikes gold
-
Robinson, J. P., & Roederer, M. Flow cytometry strikes gold. Science 350, 739-740 (2015
-
(2015)
Science
, vol.350
, pp. 739-740
-
-
Robinson, J.P.1
Roederer, M.2
-
4
-
-
3543069879
-
Seventeen-colour flow cytometry: Unravelling the immune system
-
Perfetto, S. P., Chattopadhyay, P. K., & Roederer, M. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 4, 648-655 (2004
-
(2004)
Nat. Rev. Immunol
, vol.4
, pp. 648-655
-
-
Perfetto, S.P.1
Chattopadhyay, P.K.2
Roederer, M.3
-
6
-
-
68849103521
-
Mass cytometry: Technique for real time single cell multitarget immunoassay based on inductively coupled plasma time of flight mass spectrometry
-
Bandura D. R., et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time of flight mass spectrometry. Anal. Chem. 81, 6813-6822 (2009
-
(2009)
Anal. Chem
, vol.81
, pp. 6813-6822
-
-
Bandura, D.R.1
-
7
-
-
84878506417
-
Spectral flow cytometry
-
Nolan J. P., & Condello, D. Spectral flow cytometry. Curr. Protoc. Cytom. http://www.dx.doi org/ 10.1002/0471142956.cy0127s63 2013
-
(2013)
Curr. Protoc. Cytom
-
-
Nolan, J.P.1
Condello, D.2
-
8
-
-
46149111430
-
Multispectral imaging of hematopoietic cells: Where flow meets morphology
-
McGrath, K. E., Bushnell, T. P., & Palis, J. Multispectral imaging of hematopoietic cells: where flow meets morphology. J. Immunol. Methods 336, 91-97 (2008
-
(2008)
J. Immunol. Methods
, vol.336
, pp. 91-97
-
-
McGrath, K.E.1
Bushnell, T.P.2
Palis, J.3
-
9
-
-
84897954497
-
Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry
-
Giesen C., et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417-422 (2014
-
(2014)
Nat. Methods
, vol.11
, pp. 417-422
-
-
Giesen, C.1
-
10
-
-
55949121648
-
Standardization and optimization of multiparameter intracellular cytokine staining
-
Nomura, L., Maino, V. C., & Maecker, H. T. Standardization and optimization of multiparameter intracellular cytokine staining. Cytometry A 73, 984-991 (2008
-
(2008)
Cytometry A
, vol.73
, pp. 984-991
-
-
Nomura, L.1
Maino, V.C.2
Maecker, H.T.3
-
11
-
-
84857647499
-
Standardizing immunophenotyping for the Human Immunology Project
-
Maecker, H. T., McCoy, J. P., & Nussenblatt, R. Standardizing immunophenotyping for the Human Immunology Project. Nat. Rev. Immunol. 12, 191-200 (2012
-
(2012)
Nat. Rev. Immunol
, vol.12
, pp. 191-200
-
-
Maecker, H.T.1
McCoy, J.P.2
Nussenblatt, R.3
-
12
-
-
84860254968
-
Subjectivity and flow cytometric variability
-
Pachon, G., Caragol, I., & Petriz, J. Subjectivity and flow cytometric variability. Nat. Rev. Immunol. 12, 396-396 (2012
-
(2012)
Nat. Rev. Immunol
, vol.12
, pp. 396
-
-
Pachon, G.1
Caragol, I.2
Petriz, J.3
-
13
-
-
84938414151
-
Data analysis as a source of variability of the HLA-peptide multimer assay: From manual gating to automated recognition of cell clusters
-
Gouttefangeas C., et al. Data analysis as a source of variability of the HLA-peptide multimer assay: from manual gating to automated recognition of cell clusters. Cancer Immunol. Immunother. 64, 585-598 (2015
-
(2015)
Cancer Immunol. Immunother
, vol.64
, pp. 585-598
-
-
Gouttefangeas, C.1
-
14
-
-
84911172425
-
Beyond the age of cellular discovery
-
Irish, J. Beyond the age of cellular discovery. Nat. Immunol. 15, 1095-1097 (2014
-
(2014)
Nat. Immunol
, vol.15
, pp. 1095-1097
-
-
Irish, J.1
-
15
-
-
74049120780
-
Data file standard for flow cytometry version FCS 3.1
-
Spidlen J., et al. Data file standard for flow cytometry version FCS 3.1. Cytometry A 77, 97-100 (2010
-
(2010)
Cytometry A
, vol.77
, pp. 97-100
-
-
Spidlen, J.1
-
16
-
-
79952325548
-
Flow cytometry data standards
-
Spidlen, J., Shooshtari, P. T., Kollmann, R., & Brinkman, R. R. Flow cytometry data standards. BMC Res. Notes 4, 50 (2011
-
(2011)
BMC Res. Notes
, vol.4
, pp. 50
-
-
Spidlen, J.1
Shooshtari, P.T.2
Kollmann, R.3
Brinkman, R.R.4
-
17
-
-
84932196277
-
ISAC's Gating ML 2.0 data exchange standard for gating description
-
Spidlen, J., Moore, W., & Brinkman, R. R. ISAC's Gating ML 2.0 data exchange standard for gating description. Cytometry A 87, 683-687 (2015
-
(2015)
Cytometry A
, vol.87
, pp. 683-687
-
-
Spidlen, J.1
Moore, W.2
Brinkman, R.R.3
-
18
-
-
84919608784
-
ISAC's classification results file format
-
Spidlen, J., Bray, C., & Brinkman, R. R. ISAC's classification results file format. Cytometry A 87, 86-88 (2014
-
(2014)
Cytometry A
, vol.87
, pp. 86-88
-
-
Spidlen, J.1
Bray, C.2
Brinkman, R.R.3
-
19
-
-
84869884407
-
ICEFormat-The image cytometry experiment format
-
Spidlen, J., & Novo, D. ICEFormat-The image cytometry experiment format. Cytometry A 81, 1015-1018 (2012
-
(2012)
Cytometry A
, vol.81
, pp. 1015-1018
-
-
Spidlen, J.1
Novo, D.2
-
20
-
-
84946562563
-
Standardized multi-color flow cytometry and computational biomarker discovery
-
Schlickeiser, S., Streitz, M., & Sawitzki, B. Standardized multi-color flow cytometry and computational biomarker discovery. Methods Mol. Biol. 1371, 225-238 (2016
-
(2016)
Methods Mol. Biol
, vol.1371
, pp. 225-238
-
-
Schlickeiser, S.1
Streitz, M.2
Sawitzki, B.3
-
21
-
-
84937812027
-
A proposal for unified flow cytometer parameter naming
-
Roederer, M A proposal for unified flow cytometer parameter naming. Cytometry A 87 689-691 2015
-
(2015)
Cytometry A
, vol.87
, pp. 689-691
-
-
Roederer, M.1
-
22
-
-
1642463402
-
New approaches to fluorescence compensation and visualization of FACS data
-
Tung, J. W., Parks, D. R., Moore, W. A., Herzenberg, L. A., & Herzenberg, L. A. New approaches to fluorescence compensation and visualization of FACS data. Clin. Immunol. 110, 277-283 (2004
-
(2004)
Clin. Immunol
, vol.110
, pp. 277-283
-
-
Tung, J.W.1
Parks, D.R.2
Moore, W.A.3
Herzenberg, L.A.4
Herzenberg, L.A.5
-
23
-
-
53049110682
-
MIFlowCyt: The minimum information about a flow cytometry experiment
-
Lee J. A., et al. MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A 73, 926-930 (2008
-
(2008)
Cytometry A
, vol.73
, pp. 926-930
-
-
Lee, J.A.1
-
24
-
-
84865645292
-
EuroFlow antibody panels for standardized n dimensional flow cytometric immunophenotyping of normal reactive and malignant leukocytes
-
van Dongen J. J. M., et al. EuroFlow antibody panels for standardized n dimensional flow cytometric immunophenotyping of normal reactive and malignant leukocytes. Leukemia 26, 1908-1975 (2012
-
(2012)
Leukemia
, vol.26
, pp. 1908-1975
-
-
Van Dongen, J.J.M.1
-
25
-
-
84957539424
-
Standardizing flow cytometry immunophenotyping analysis from the Human ImmunoPhenotyping Consortium
-
Finak G., et al. Standardizing flow cytometry immunophenotyping analysis from the Human ImmunoPhenotyping Consortium. Sci. Rep. 6, 20686 (2016
-
(2016)
Sci. Rep
, vol.6
, pp. 20686
-
-
Finak, G.1
-
26
-
-
84933505672
-
Semiautomated and standardized cytometric procedures for multi-panel and multi-parametric whole blood immunophenotyping
-
Hasan M., et al. Semiautomated and standardized cytometric procedures for multi-panel and multi-parametric whole blood immunophenotyping. Clin. Immunol. 157, 261-276 (2015
-
(2015)
Clin. Immunol
, vol.157
, pp. 261-276
-
-
Hasan, M.1
-
27
-
-
77956475400
-
Publication of optimized multicolor immunofluorescence panels
-
Mahnke, Y., Chattopadhyay, P., & Roederer, M. Publication of optimized multicolor immunofluorescence panels. Cytometry A 77, 814-818 (2010
-
(2010)
Cytometry A
, vol.77
, pp. 814-818
-
-
Mahnke, Y.1
Chattopadhyay, P.2
Roederer, M.3
-
28
-
-
84874666550
-
Critical assessment of automated flow cytometry data analysis techniques
-
Aghaeepour N., et al. Critical assessment of automated flow cytometry data analysis techniques. Nat. Methods 10, 445-445 (2013
-
(2013)
Nat. Methods
, vol.10
, pp. 445
-
-
Aghaeepour, N.1
-
29
-
-
84957081995
-
A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes
-
Aghaeepour, N., et al A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes. Cytometry A 89 16-21 2015
-
(2015)
Cytometry
, vol.A89
, pp. 16-21
-
-
Aghaeepour, N.1
-
30
-
-
28744458859
-
Bioconductor: Open software development for computational biology and bioinformatics
-
Gentleman R. C., et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004
-
(2004)
Genome Biol
, vol.5
, pp. R80
-
-
Gentleman, R.C.1
-
31
-
-
33646361583
-
Genepattern 2.0
-
Reich M., et al. GenePattern 2.0. Nat. Genet. 38, 500-501 (2006
-
(2006)
Nat. Genet
, vol.38
, pp. 500-501
-
-
Reich, M.1
-
32
-
-
34347267675
-
Quality assurance for polychromatic flow cytometry
-
Perfetto, S. P., Ambrozak, D., Nguyen, R., Chattopadhyay, P., & Roederer, M. Quality assurance for polychromatic flow cytometry. Nat. Protoc. 1, 1522-1530 (2006
-
(2006)
Nat. Protoc
, vol.1
, pp. 1522-1530
-
-
Perfetto, S.P.1
Ambrozak, D.2
Nguyen, R.3
Chattopadhyay, P.4
Roederer, M.5
-
33
-
-
65949097067
-
FlowCore: A Bioconductor package for high throughput flow cytometry
-
Hahne F., et al. flowCore: a Bioconductor package for high throughput flow cytometry. BMC Bioinformatics 10, 106 (2009
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 106
-
-
Hahne, F.1
-
34
-
-
34250695049
-
Data quality assessment of ungated flow cytometry data in high throughput experiments
-
Le Meur N., et al. Data quality assessment of ungated flow cytometry data in high throughput experiments. Cytometry A 71, 393-403 (2007
-
(2007)
Cytometry A
, vol.71
, pp. 393-403
-
-
Le Meur, N.1
-
35
-
-
84961282081
-
FlowClean: Automated identification and removal of fluorescence anomalies in flow cytometry data
-
Fletez-Brant K., et al. flowClean: automated identification and removal of fluorescence anomalies in flow cytometry data. Cytometry A 89, 461-471 (2016
-
(2016)
Cytometry A
, vol.89
, pp. 461-471
-
-
Fletez-Brant, K.1
-
36
-
-
77249135054
-
Per-channel basis normalization methods for flow cytometry data
-
Hahne F., et al. Per-channel basis normalization methods for flow cytometry data. Cytometry A 77, 121-131 (2010
-
(2010)
Cytometry A
, vol.77
, pp. 121-131
-
-
Hahne, F.1
-
37
-
-
84961288133
-
OpenCyto: An open source infrastructure for scalable robust, reproducible, and automated, end to end flow cytometry data analysis
-
Finak, G., et al. OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end to end flow cytometry data analysis. PLoS Comput. Biol. 10, e1003806 (2014
-
(2014)
PLoS Comput. Biol
, vol.10
, pp. e1003806
-
-
Finak, G.1
-
38
-
-
84928189767
-
FlowDensity: Reproducing manual gating of flow cytometry data by automated density-based cell population identification
-
Malek M., et al. flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification. Bioinformatics 31, 606-607 (2015
-
(2015)
Bioinformatics
, vol.31
, pp. 606-607
-
-
Malek, M.1
-
39
-
-
84928175995
-
Thinking outside the gate: Single-cell assessments in multiple dimensions
-
Kvistborg P., et al. Thinking outside the gate: single-cell assessments in multiple dimensions. Immunity 42, 591-592 (2015
-
(2015)
Immunity
, vol.42
, pp. 591-592
-
-
Kvistborg, P.1
-
40
-
-
84937685382
-
Algorithmic tools for mining high-dimensional cytometry data
-
Chester, C., & Maecker, H. T. Algorithmic tools for mining high-dimensional cytometry data. J. Immunol. 195, 773-779 (2015
-
(2015)
J. Immunol
, vol.195
, pp. 773-779
-
-
Chester, C.1
Maecker, H.T.2
-
41
-
-
84953836592
-
The end of gating? An introduction to automated analysis of high dimensional cytometry data
-
Mair F., et al. The end of gating? An introduction to automated analysis of high dimensional cytometry data. Eur. J. Immunol. 46, 34-43 (2016
-
(2016)
Eur. J. Immunol
, vol.46
, pp. 34-43
-
-
Mair, F.1
-
42
-
-
84983121572
-
Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data
-
Diggins, K. E., Ferrell, P. B., Irish, J. M. Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data. Methods. 82, 55-63 (2015
-
(2015)
Methods
, vol.82
, pp. 55-63
-
-
Diggins, K.E.1
Ferrell, P.B.2
Irish, J.M.3
-
43
-
-
84922059501
-
Conditional density-based analysis of T cell signaling in single-cell data
-
Krishnaswamy S., et al. Conditional density-based analysis of T cell signaling in single-cell data. Science 346, 1250689 (2014
-
(2014)
Science
, vol.346
, pp. 1250689
-
-
Krishnaswamy, S.1
-
44
-
-
84899574465
-
Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
-
Bendall S. C., et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714-725 (2014
-
(2014)
Cell
, vol.157
, pp. 714-725
-
-
Bendall, S.C.1
-
45
-
-
34248139722
-
Subject classification obtained by cluster analysis and principal component analysis applied to flow cytometric data
-
Lugli E., et al. Subject classification obtained by cluster analysis and principal component analysis applied to flow cytometric data. Cytometry A 71, 334-344 (2007
-
(2007)
Cytometry A
, vol.71
, pp. 334-344
-
-
Lugli, E.1
-
47
-
-
84880280631
-
ViSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
-
Amir E. D., et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545-552 (2013
-
(2013)
Nat. Biotechnol
, vol.31
, pp. 545-552
-
-
Amir, E.D.1
-
48
-
-
84954104516
-
Categorical analysis of human T cell heterogeneity with one-dimensional soli-expression by nonlinear stochastic embedding
-
Cheng, Y., Wong, M. T., van der Maaten, L., & Newell, E. W. Categorical analysis of human T cell heterogeneity with one-dimensional soli-expression by nonlinear stochastic embedding. J. Immunol. 196, 924-932 (2016
-
(2016)
J. Immunol
, vol.196
, pp. 924-932
-
-
Cheng, Y.1
Wong, M.T.2
Van Der Maaten, L.3
Newell, E.W.4
-
49
-
-
84934442835
-
Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis
-
Levine J. H., et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184-197 (2015
-
(2015)
Cell
, vol.162
, pp. 184-197
-
-
Levine, J.H.1
-
50
-
-
80054768631
-
Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE
-
Qiu P., et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 29, 886-891 (2011
-
(2011)
Nat. Biotechnol
, vol.29
, pp. 886-891
-
-
Qiu, P.1
-
51
-
-
84924258718
-
A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry
-
Zunder, E R., Lujan, E., Goltsev, Y., Wernig, M., & Nolan, G. P. A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry. Cell Stem Cell 16 323-337 2015
-
(2015)
Cell Stem Cell
, vol.16
, pp. 323-337
-
-
Zunder, E.R.1
Lujan, E.2
Goltsev, Y.3
Wernig, M.4
Nolan, G.P.5
-
52
-
-
84932198501
-
FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data
-
Van Gassen S., et al. FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 87, 636-645 (2015
-
(2015)
Cytometry A
, vol.87
, pp. 636-645
-
-
Van Gassen, S.1
-
53
-
-
84937604921
-
An interactive reference framework for modeling a dynamic immune system
-
Spitzer M. H., et al. An interactive reference framework for modeling a dynamic immune system. Science 349, 1259425 (2015
-
(2015)
Science
, vol.349
, pp. 1259425
-
-
Spitzer, M.H.1
-
54
-
-
66649115648
-
Automated high-dimensional flow cytometric data analysis
-
Pyne S., et al. Automated high-dimensional flow cytometric data analysis. Proc. Natl Acad. Sci. USA 106, 8519-8524 (2009
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.106
, pp. 8519-8524
-
-
Pyne, S.1
-
55
-
-
42049123647
-
Automated gating of flow cytometry data via robust model-based clustering
-
Lo, K., Brinkman, R. R., & Gottardo, R. Automated gating of flow cytometry data via robust model-based clustering. Cytometry A 73, 321-332 (2008
-
(2008)
Cytometry A
, vol.73
, pp. 321-332
-
-
Lo, K.1
Brinkman, R.R.2
Gottardo, R.3
-
56
-
-
77949555869
-
Merging mixture components for cell population identification in flow cytometry
-
Finak, G., Bashashati, A., Brinkman, R., & Gottardo, R. Merging mixture components for cell population identification in flow cytometry. Adv. Bioinformatics 2009, 247646 (2009
-
(2009)
Adv. Bioinformatics
, vol.2009
, pp. 247646
-
-
Finak, G.1
Bashashati, A.2
Brinkman, R.3
Gottardo, R.4
-
57
-
-
84933509460
-
Automated flow cytometric analysis across large numbers of samples and cell types
-
Chen X., et al. Automated flow cytometric analysis across large numbers of samples and cell types. Clin. Immunol. 157, 249-260 (2015
-
(2015)
Clin. Immunol
, vol.157
, pp. 249-260
-
-
Chen, X.1
-
58
-
-
84932194111
-
ImmunoClust-An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets
-
Sorensen, T., Baumgart, S., Durek, P., Grutzkau, A., & Haupl, T. immunoClust-An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. Cytometry A 87, 603-615 (2015
-
(2015)
Cytometry A
, vol.87
, pp. 603-615
-
-
Sorensen, T.1
Baumgart, S.2
Durek, P.3
Grutzkau, A.4
Haupl, T.5
-
59
-
-
84899064968
-
SWIFT-scalable clustering for automated identification of rare cell populations in large high-dimensional flow cytometry datasets part 1: Algorithm design
-
Naim, I., et al. SWIFT-scalable clustering for automated identification of rare cell populations in large high-dimensional flow cytometry datasets, part 1: algorithm design. Cytometry A 85, 408-421 (2014
-
(2014)
Cytometry A
, vol.85
, pp. 408-421
-
-
Naim, I.1
-
60
-
-
78650436333
-
Rapid cell population identification in flow cytometry data
-
Aghaeepour, N., Nikolic, R., Hoos, H. H., & Brinkman, R. R. Rapid cell population identification in flow cytometry data. Cytometry A 79, 6-13 (2010
-
(2010)
Cytometry A
, vol.79
, pp. 6-13
-
-
Aghaeepour, N.1
Nikolic, R.2
Hoos, H.H.3
Brinkman, R.R.4
-
61
-
-
77954938186
-
Data reduction for spectral clustering to analyze high throughput flow cytometry data
-
Zare, H., Shooshtari, P., Gupta, A., & Brinkman, R. R. Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinformatics 11, 403 (2010
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 403
-
-
Zare, H.1
Shooshtari, P.2
Gupta, A.3
Brinkman, R.R.4
-
62
-
-
77956565464
-
Elucidation of seventeen human peripheral blood B cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data
-
Qian Y., et al. Elucidation of seventeen human peripheral blood B cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry B. Clin. Cytom 78, S69-S82 (2010
-
(2010)
Cytometry B. Clin. Cytom
, vol.78
, pp. S69-S82
-
-
Qian, Y.1
-
63
-
-
84865139571
-
FlowPeaks: A fast unsupervised clustering for flow cytometry data via K means and density peak finding
-
Ge, Y., & Sealfon, S. C. flowPeaks: a fast unsupervised clustering for flow cytometry data via K means and density peak finding. Bioinformatics. 28, 2052-2058 (2012
-
(2012)
Bioinformatics
, vol.28
, pp. 2052-2058
-
-
Ge, Y.1
Sealfon, S.C.2
-
64
-
-
84953851427
-
BayesFlow: Latent modeling of flow cytometry cell populations
-
Johnsson, K., Wallin, J., & Fontes, M. BayesFlow: latent modeling of flow cytometry cell populations. BMC Bioinformatics 17, 25 (2016
-
(2016)
BMC Bioinformatics
, vol.17
, pp. 25
-
-
Johnsson, K.1
Wallin, J.2
Fontes, M.3
-
65
-
-
84891956083
-
Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE
-
Shekhar, K., Brodin, P., Davis, M. M., & Chakraborty, A. K. Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proc. Natl Acad. Sci. USA 111, 202-207 (2013
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 202-207
-
-
Shekhar, K.1
Brodin, P.2
Davis, M.M.3
Chakraborty, A.K.4
-
66
-
-
84911016319
-
High-dimensional analysis of the murine myeloid cell system
-
Becher B., et al. High-dimensional analysis of the murine myeloid cell system. Nat. Immunol. 15, 1181-1189 (2014
-
(2014)
Nat. Immunol
, vol.15
, pp. 1181-1189
-
-
Becher, B.1
-
67
-
-
84880849822
-
Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples
-
Cron A., et al. Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples. PLoS Comput. Biol. 9, e1003130 (2013
-
(2013)
PLoS Comput. Biol
, vol.9
, pp. e1003130
-
-
Cron, A.1
-
68
-
-
84908548681
-
A non-parametric Bayesian model for joint cell clustering and cluster matching: Identification of anomalous sample phenotypes with random effects
-
Dundar M., Akova, F., Yerebakan, H. Z., & Rajwa, B. A non-parametric Bayesian model for joint cell clustering and cluster matching: identification of anomalous sample phenotypes with random effects. BMC Bioinformatics. 15, 314 2014
-
(2014)
BMC Bioinformatics
, vol.15
, pp. 314
-
-
Dundar, M.1
Akova, F.2
Yerebakan, H.Z.3
Rajwa, B.4
-
69
-
-
84983094968
-
Mapping cell populations in flow cytometry data for cross-sample comparison using the Friedman-Rafsky test statistic as a distance measure
-
Hsiao C., et al. Mapping cell populations in flow cytometry data for cross-sample comparison using the Friedman-Rafsky test statistic as a distance measure. Cytometry A 89, 71-88 (2016
-
(2016)
Cytometry A
, vol.89
, pp. 71-88
-
-
Hsiao, C.1
-
70
-
-
84925550970
-
Cell population identification using fluorescence-minus-one controls with a one-class classifying algorithm
-
Feher, K., Kirsch, J., Radbruch, A., Chang, H. D., & Kaiser, T. Cell population identification using fluorescence-minus-one controls with a one-class classifying algorithm. Bioinformatics. 30, 3372-3378 (2014
-
(2014)
Bioinformatics
, vol.30
, pp. 3372-3378
-
-
Feher, K.1
Kirsch, J.2
Radbruch, A.3
Chang, H.D.4
Kaiser, T.5
-
71
-
-
84855257738
-
Automated analysis of multidimensional flow cytometry data improves diagnostic accuracy between mantle cell lymphoma and small lymphocytic lymphoma
-
Zare H., et al. Automated analysis of multidimensional flow cytometry data improves diagnostic accuracy between mantle cell lymphoma and small lymphocytic lymphoma. Am. J. Clin. Pathol. 137, 75-85 (2012
-
(2012)
Am. J. Clin. Pathol
, vol.137
, pp. 75-85
-
-
Zare, H.1
-
72
-
-
84862598238
-
B cells with high side scatter parameter by flow cytometry correlate with inferior survival in diffuse large B cell lymphoma
-
Bashashati A., et al. B cells with high side scatter parameter by flow cytometry correlate with inferior survival in diffuse large B cell lymphoma. Am. J. Clin. Pathol. 137, 805-814 (2012
-
(2012)
Am J. Clin. Pathol
, vol.137
, pp. 805-814
-
-
Bashashati, A.1
-
73
-
-
84899506044
-
Enhanced flowtype/rchyoptimyx: A bioconductor pipeline for discovery in high-dimensional cytometry data
-
O'Neill, K., Jalali, A., Aghaeepour, N., Hoos, H., & Brinkman, R. R. Enhanced flowType/RchyOptimyx: a Bioconductor pipeline for discovery in high-dimensional cytometry data. Bioinformatics 30, 1329-1330 (2014
-
(2014)
Bioinformatics
, vol.30
, pp. 1329-1330
-
-
O'Neill, K.1
Jalali, A.2
Aghaeepour, N.3
Hoos, H.4
Brinkman, R.R.5
-
74
-
-
84903703398
-
Automated identification of stratifying signatures in cellular subpopulations
-
Bruggner, R. V., Bodenmiller, B., Dill, D. L., Tibshirani, R. J., & Nolan, G. P. Automated identification of stratifying signatures in cellular subpopulations. Proc. Natl Acad. Sci. USA 111, E2770-E2777 (2014
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. E2770-E2777
-
-
Bruggner, R.V.1
Bodenmiller, B.2
Dill, D.L.3
Tibshirani, R.J.4
Nolan, G.P.5
-
75
-
-
84930945915
-
COMPASS identifies T cell subsets correlated with clinical outcomes
-
Lin L., et al. COMPASS identifies T cell subsets correlated with clinical outcomes. Nat. Biotechnol. 33, 610-616 (2015
-
(2015)
Nat. Biotechnol
, vol.33
, pp. 610-616
-
-
Lin, L.1
-
76
-
-
84983094027
-
Competitive SWIFT cluster templates enhance detection of aging changes
-
Rebhahn J. A., et al. Competitive SWIFT cluster templates enhance detection of aging changes. Cytometry A 89, 59-70 (2016
-
(2016)
Cytometry A
, vol.89
, pp. 59-70
-
-
Rebhahn, J.A.1
-
77
-
-
84983191355
-
FloReMi: Flow density survival regression using minimal feature redundancy
-
Van Gassen, S., Vens, C., Dhaene, T., Lambrecht, B. N., & Saeys, Y. FloReMi: flow density survival regression using minimal feature redundancy. Cytometry A 89, 22-29 (2016
-
(2016)
Cytometry A
, vol.89
, pp. 22-29
-
-
Van Gassen, S.1
Vens, C.2
Dhaene, T.3
Lambrecht, B.N.4
Saeys, Y.5
-
78
-
-
84932083455
-
Probability state modeling theory
-
Bagwell C. B., et al. Probability state modeling theory. Cytometry A 87, 646-660 (2015
-
(2015)
Cytometry A
, vol.87
, pp. 646-660
-
-
Bagwell, C.B.1
-
79
-
-
84885958989
-
Probability state modeling of memory CD8+ T cell differentiation
-
Inokuma, M. S., Maino, V. C., & Bagwell, C. B. Probability state modeling of memory CD8+ T cell differentiation. J. Immunol. Methods 397, 8-17 (2013
-
(2013)
J. Immunol. Methods
, vol.397
, pp. 8-17
-
-
Inokuma, M.S.1
Maino, V.C.2
Bagwell, C.B.3
-
80
-
-
84932096702
-
Human B cell and progenitor stages as determined by probability state modeling of multidimensional cytometry data
-
Bagwell C. B., et al. Human B cell and progenitor stages as determined by probability state modeling of multidimensional cytometry data. Cytometry B Clin. Cytom. 88, 214-226 (2015
-
(2015)
Cytometry B Clin. Cytom
, vol.88
, pp. 214-226
-
-
Bagwell, C.B.1
-
81
-
-
84924365758
-
Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape
-
Marco E., et al. Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proc. Natl Acad. Sci. 111, E5643-E5650 (2014
-
(2014)
Proc. Natl Acad. Sci
, vol.111
, pp. E5643-E5650
-
-
Marco, E.1
-
82
-
-
84974587998
-
Wishbone identifies bifurcating developmental trajectories from single cell data
-
Setty, M.et al. Wishbone identifies bifurcating developmental trajectories from single cell data. Nat. Biotechnol. http://dx.doi.org/10.1038/nbt.3569 (2016
-
(2016)
Nat. Biotechnol
-
-
Setty, M.1
-
83
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
Trapnell, C., et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386 (2014
-
(2014)
Nat. Biotechnol
, vol.32
, pp. 381-386
-
-
Trapnell, C.1
-
84
-
-
84941010341
-
Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis
-
Shin J., et al. Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17, 360-372 (2015
-
(2015)
Cell Stem Cell
, vol.17
, pp. 360-372
-
-
Shin, J.1
-
85
-
-
84958103478
-
Single-cell RNA-sequencing reveals a continuous spectrum of differentiation in hematopoietic cells
-
Macaulay I. C., et al. Single-cell RNA-sequencing reveals a continuous spectrum of differentiation in hematopoietic cells. Cell Rep. 14, 966-977 (2016
-
(2016)
Cell Rep
, vol.14
, pp. 966-977
-
-
Macaulay, I.C.1
|