-
1
-
-
0036906526
-
Langerhans cells renew in the skin throughout life under steady-state conditions
-
Merad M, Manz MG, Karsunky H, et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol. 2002;3(12):1135-1141.
-
(2002)
Nat Immunol
, vol.3
, Issue.12
, pp. 1135-1141
-
-
Merad, M.1
Manz, M.G.2
Karsunky, H.3
-
2
-
-
33645953640
-
Langerhans cells arise from monocytes in vivo
-
Ginhoux F, Tacke F, Angeli V, et al. Langerhans cells arise from monocytes in vivo. Nat Immunol. 2006;7(3):265-273.
-
(2006)
Nat Immunol
, vol.7
, Issue.3
, pp. 265-273
-
-
Ginhoux, F.1
Tacke, F.2
Angeli, V.3
-
3
-
-
84869229157
-
Two distinct types of Langerhans cells populate the skin during steady state and inflammation
-
Seré K, Baek JH, Ober-Blöbaum J, et al. Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity. 2012;37(5):905-916.
-
(2012)
Immunity
, vol.37
, Issue.5
, pp. 905-916
-
-
Seré, K.1
Baek, J.H.2
Ober-Blöbaum, J.3
-
4
-
-
84864124259
-
Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin
-
Nagao K, Kobayashi T, Moro K, et al. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat Immunol. 2012;13(8):744-752.
-
(2012)
Nat Immunol
, vol.13
, Issue.8
, pp. 744-752
-
-
Nagao, K.1
Kobayashi, T.2
Moro, K.3
-
5
-
-
0023266724
-
Further evidence for the self-reproducing capacity of Langerhans cells in human skin
-
Czernielewski JM, Demarchez M. Further evidence for the self-reproducing capacity of Langerhans cells in human skin. J Invest Dermatol. 1987;88(1):17-20.
-
(1987)
J Invest Dermatol
, vol.88
, Issue.1
, pp. 17-20
-
-
Czernielewski, J.M.1
Demarchez, M.2
-
6
-
-
79951693243
-
The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency
-
Bigley V, Haniffa M, Doulatov S, et al. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J Exp Med. 2011;208(2):227-234.
-
(2011)
J Exp Med
, vol.208
, Issue.2
, pp. 227-234
-
-
Bigley, V.1
Haniffa, M.2
Doulatov, S.3
-
7
-
-
78751680917
-
Self-renewal capacity of human epidermal Langerhans cells: Observations made on a composite tissue allograft
-
Kanitakis J, Morelon E, Petruzzo P, Badet L, Dubernard JM. Self-renewal capacity of human epidermal Langerhans cells: observations made on a composite tissue allograft. Exp Dermatol. 2011;20(2):145-146.
-
(2011)
Exp Dermatol
, vol.20
, Issue.2
, pp. 145-146
-
-
Kanitakis, J.1
Morelon, E.2
Petruzzo, P.3
Badet, L.4
Dubernard, J.M.5
-
8
-
-
0021949759
-
Persistence of host Langerhans cells following allogeneic bone marrow transplantation: Possible relationship with acute graft-versus-host disease
-
Perreault C, Pelletier M, Belanger R, et al. Persistence of host Langerhans cells following allogeneic bone marrow transplantation: possible relationship with acute graft-versus-host disease. Br J Haematol. 1985;60(2):253-260.
-
(1985)
Br J Haematol
, vol.60
, Issue.2
, pp. 253-260
-
-
Perreault, C.1
Pelletier, M.2
Belanger, R.3
-
9
-
-
31344469849
-
The fate of human Langerhans cells in hematopoietic stem cell transplantation
-
Collin MP, Hart DN, Jackson GH, et al. The fate of human Langerhans cells in hematopoietic stem cell transplantation. J Exp Med. 2006;203(1):27-33.
-
(2006)
J Exp Med
, vol.203
, Issue.1
, pp. 27-33
-
-
Collin, M.P.1
Hart, D.N.2
Jackson, G.H.3
-
10
-
-
84907598045
-
Langerhans cell homeostasis and turnover after nonmyeloablative and myeloablative allogeneic hematopoietic cell transplantation
-
Mielcarek M, Kirkorian AY, Hackman RC, et al. Langerhans cell homeostasis and turnover after nonmyeloablative and myeloablative allogeneic hematopoietic cell transplantation. Transplantation. 2014;98(5):563-568.
-
(2014)
Transplantation
, vol.98
, Issue.5
, pp. 563-568
-
-
Mielcarek, M.1
Kirkorian, A.Y.2
Hackman, R.C.3
-
11
-
-
0032536795
-
Transforming growth factor beta1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells
-
Geissmann F, Prost C, Monnet JP, Dy M, Brousse N, Hermine O. Transforming growth factor beta1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J Exp Med. 1998;187(6):961-966.
-
(1998)
J Exp Med
, vol.187
, Issue.6
, pp. 961-966
-
-
Geissmann, F.1
Prost, C.2
Monnet, J.P.3
Dy, M.4
Brousse, N.5
Hermine, O.6
-
12
-
-
25644458587
-
A novel role for Notch ligand Delta-1 as a regulator of human Langerhans cell development from blood monocytes
-
Hoshino N, Katayama N, Shibasaki T, et al. A novel role for Notch ligand Delta-1 as a regulator of human Langerhans cell development from blood monocytes. J Leukoc Biol. 2005;78(4):921-929.
-
(2005)
J Leukoc Biol
, vol.78
, Issue.4
, pp. 921-929
-
-
Hoshino, N.1
Katayama, N.2
Shibasaki, T.3
-
13
-
-
84871583494
-
Notch is active in Langerhans cell histiocytosis and confers pathognomonic features on dendritic cells
-
Hutter C, Kauer M, Simonitsch-Klupp I, et al. Notch is active in Langerhans cell histiocytosis and confers pathognomonic features on dendritic cells. Blood. 2012;120(26):5199-5208.
-
(2012)
Blood
, vol.120
, Issue.26
, pp. 5199-5208
-
-
Hutter, C.1
Kauer, M.2
Simonitsch-Klupp, I.3
-
14
-
-
10144260007
-
CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha
-
Caux C, Vanbervliet B, Massacrier C, et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. J Exp Med. 1996;184(2):695-706.
-
(1996)
J Exp Med
, vol.184
, Issue.2
, pp. 695-706
-
-
Caux, C.1
Vanbervliet, B.2
Massacrier, C.3
-
15
-
-
0030039979
-
Generation of human dendritic cells/Langerhans cells from circulating CD34+ hematopoietic progenitor cells
-
Strunk D, Rappersberger K, Egger C, et al. Generation of human dendritic cells/Langerhans cells from circulating CD34+ hematopoietic progenitor cells. Blood. 1996;87(4):1292-1302.
-
(1996)
Blood
, vol.87
, Issue.4
, pp. 1292-1302
-
-
Strunk, D.1
Rappersberger, K.2
Egger, C.3
-
16
-
-
0033179148
-
A CD1a+/CD11c+ subset of human blood dendritic cells is a direct precursor of Langerhans cells
-
Ito T, Inaba M, Inaba K, et al. A CD1a+/CD11c+ subset of human blood dendritic cells is a direct precursor of Langerhans cells. J Immunol. 1999;163(3):1409-1419.
-
(1999)
J Immunol
, vol.163
, Issue.3
, pp. 1409-1419
-
-
Ito, T.1
Inaba, M.2
Inaba, K.3
-
17
-
-
0011882760
-
Peripheral blood dendritic cell subset analysis
-
Mason D, ed. Oxford: Oxford University Press
-
MacDonald KPA, Munster D, Clark G, Vuckovic S, Hart DNJ. Peripheral blood dendritic cell subset analysis. In: Mason D, ed. Leucocyte Typing VII. Oxford: Oxford University Press; 2002:315-319.
-
(2002)
Leucocyte Typing VII
, pp. 315-319
-
-
MacDonald, K.P.A.1
Munster, D.2
Clark, G.3
Vuckovic, S.4
Hart, D.N.J.5
-
18
-
-
84864293006
-
Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells
-
Haniffa M, Shin A, Bigley V, et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity. 2012;37(1):60-73.
-
(2012)
Immunity
, vol.37
, Issue.1
, pp. 60-73
-
-
Haniffa, M.1
Shin, A.2
Bigley, V.3
-
19
-
-
0026446156
-
GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells
-
Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature. 1992;360(6401):258-261.
-
(1992)
Nature
, vol.360
, Issue.6401
, pp. 258-261
-
-
Caux, C.1
Dezutter-Dambuyant, C.2
Schmitt, D.3
Banchereau, J.4
-
20
-
-
0030586565
-
TGF-beta 1 promotes in vitro development of dendritic cells from CD34+ hemopoietic progenitors
-
Strobl H, Riedl E, Scheinecker C, et al. TGF-beta 1 promotes in vitro development of dendritic cells from CD34+ hemopoietic progenitors. J Immunol. 1996;157(4):1499-1507.
-
(1996)
J Immunol
, vol.157
, Issue.4
, pp. 1499-1507
-
-
Strobl, H.1
Riedl, E.2
Scheinecker, C.3
-
21
-
-
4043055798
-
Mature human Langerhans cells derived from CD34+ hematopoietic progenitors stimulate greater cytolytic T lymphocyte activity in the absence of bioactive IL-12p70, by either single peptide presentation or cross-priming, than do dermalinterstitial or monocyte-derived dendritic cells
-
Ratzinger G, Baggers J, de Cos MA, et al. Mature human Langerhans cells derived from CD34+ hematopoietic progenitors stimulate greater cytolytic T lymphocyte activity in the absence of bioactive IL-12p70, by either single peptide presentation or cross-priming, than do dermalinterstitial or monocyte-derived dendritic cells. J Immunol. 2004;173(4):2780-2791.
-
(2004)
J Immunol
, vol.173
, Issue.4
, pp. 2780-2791
-
-
Ratzinger, G.1
Baggers, J.2
De Cos, M.A.3
-
22
-
-
51349093240
-
Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells
-
Klechevsky E, Morita R, Liu M, et al. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity. 2008;29(3):497-510.
-
(2008)
Immunity
, vol.29
, Issue.3
, pp. 497-510
-
-
Klechevsky, E.1
Morita, R.2
Liu, M.3
-
23
-
-
84888114656
-
Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation
-
Yasmin N, Bauer T, Modak M, et al. Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation. J Exp Med. 2013;210(12):2597-2610.
-
(2013)
J Exp Med
, vol.210
, Issue.12
, pp. 2597-2610
-
-
Yasmin, N.1
Bauer, T.2
Modak, M.3
-
24
-
-
84907611125
-
Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-b
-
Martínez-Cingolani C, Grandclaudon M, Jeanmougin M, Jouve M, Zollinger R, Soumelis V. Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-b. Blood. 2014;124(15):2411-2420.
-
(2014)
Blood
, vol.124
, Issue.15
, pp. 2411-2420
-
-
Martínez-Cingolani, C.1
Grandclaudon, M.2
Jeanmougin, M.3
Jouve, M.4
Zollinger, R.5
Soumelis, V.6
-
25
-
-
84886900071
-
Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses
-
Nizzoli G, Krietsch J, Weick A, et al. Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses. Blood. 2013;122(6):932-942.
-
(2013)
Blood
, vol.122
, Issue.6
, pp. 932-942
-
-
Nizzoli, G.1
Krietsch, J.2
Weick, A.3
-
26
-
-
84905995910
-
Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells
-
Balan S, Ollion V, Colletti N, et al. Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells. J Immunol. 2014;193(4):1622-1635.
-
(2014)
J Immunol
, vol.193
, Issue.4
, pp. 1622-1635
-
-
Balan, S.1
Ollion, V.2
Colletti, N.3
-
27
-
-
0023177425
-
Distribution and turnover of Langerhans cells during delayed immune responses in human skin
-
Kaplan G, Nusrat A, Witmer MD, Nath I, Cohn ZA. Distribution and turnover of Langerhans cells during delayed immune responses in human skin. J Exp Med. 1987;165(3):763-776.
-
(1987)
J Exp Med
, vol.165
, Issue.3
, pp. 763-776
-
-
Kaplan, G.1
Nusrat, A.2
Witmer, M.D.3
Nath, I.4
Cohn, Z.A.5
|