-
1
-
-
77953522371
-
+ dendritic cells
-
+ dendritic cells. J. Exp. Med. 207:1273-1281. http://dx.doi.org/10.1084/jem.20100348
-
(2010)
J. Exp. Med.
, vol.207
, pp. 1273-1281
-
-
Bachem, A.1
Güttler, S.2
Hartung, E.3
Ebstein, F.4
Schaefer, M.5
Tannert, A.6
Salama, A.7
Movassaghi, K.8
Opitz, C.9
Mages, H.W.10
-
3
-
-
79959934449
-
ConTra v2: a tool to identify transcription factor binding sites across species, update 2011
-
Broos, S., P. Hulpiau, J. Galle, B. Hooghe, F. Van Roy, and P. De Bleser. 2011. ConTra v2: a tool to identify transcription factor binding sites across species, update 2011. Nucleic Acids Res. 39:W74-W78. http://dx.doi.org/10.1093/nar/gkr355
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. W74-W78
-
-
Broos, S.1
Hulpiau, P.2
Galle, J.3
Hooghe, B.4
Van Roy, F.5
De Bleser, P.6
-
4
-
-
84883588731
-
PhysBinder: Improving the prediction of transcription factor binding sites by flexible inclusion of biophysical properties
-
Broos, S., A. Soete, B. Hooghe, R. Moran, F. van Roy, and P. De Bleser. 2013. PhysBinder: Improving the prediction of transcription factor binding sites by flexible inclusion of biophysical properties. Nucleic Acids Res. 41:W531-W534. http://dx.doi.org/10.1093/nar/gkt288
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. W531-W534
-
-
Broos, S.1
Soete, A.2
Hooghe, B.3
Moran, R.4
van Roy, F.5
De Bleser, P.6
-
7
-
-
52949106528
-
Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development
-
Cisse, B., M.L. Caton, M. Lehner, T. Maeda, S. Scheu, R. Locksley, D. Holmberg, C. Zweier, N.S. den Hollander, S.G. Kant, et al. 2008. Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell. 135:37-48. http://dx.doi.org/10.1016/j.cell.2008.09.016
-
(2008)
Cell.
, vol.135
, pp. 37-48
-
-
Cisse, B.1
Caton, M.L.2
Lehner, M.3
Maeda, T.4
Scheu, S.5
Locksley, R.6
Holmberg, D.7
Zweier, C.8
den Hollander, N.S.9
Kant, S.G.10
-
8
-
-
84873050284
-
Regulatory networks defining EMT during cancer initiation and progression
-
De Craene, B., and G. Berx. 2013. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer. 13:97-110. http://dx.doi.org/10.1038/nrc3447
-
(2013)
Nat. Rev. Cancer.
, vol.13
, pp. 97-110
-
-
De Craene, B.1
Berx, G.2
-
9
-
-
84905028227
-
Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression
-
Denecker, G., N. Vandamme, O. Akay, D. Koludrovic, J. Taminau, K. Lemeire, A. Gheldof, B. De Craene, M. Van Gele, L. Brochez, et al. 2014. Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression. Cell Death Differ. 21:1250-1261. http://dx.doi.org/10.1038/cdd.2014.44
-
(2014)
Cell Death Differ.
, vol.21
, pp. 1250-1261
-
-
Denecker, G.1
Vandamme, N.2
Akay, O.3
Koludrovic, D.4
Taminau, J.5
Lemeire, K.6
Gheldof, A.7
De Craene, B.8
Van Gele, M.9
Brochez, L.10
-
10
-
-
84971523245
-
The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection
-
Dominguez, C.X., R.A. Amezquita, T. Guan, H.D. Marshall, N.S. Joshi, S.H. Kleinstein, and S.M. Kaech. 2015. The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection. J. Exp. Med. 212:2041-2056. http://dx.doi.org/10.1084/jem.20150186
-
(2015)
J. Exp. Med.
, vol.212
, pp. 2041-2056
-
-
Dominguez, C.X.1
Amezquita, R.A.2
Guan, T.3
Marshall, H.D.4
Joshi, N.S.5
Kleinstein, S.H.6
Kaech, S.M.7
-
11
-
-
80054754519
-
low/- peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization
-
low/- peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization. PLoS One. 6:e25660. http://dx.doi.org/10.1371/journal.pone.0025660
-
(2011)
PLoS One.
, vol.6
-
-
Edelson, B.T.1
Bradstreet, T.R.2
KC, W.3
Hildner, K.4
Herzog, J.W.5
Sim, J.6
Russell, J.H.7
Murphy, T.L.8
Unanue, E.R.9
Murphy, K.M.10
-
12
-
-
78650178058
-
Continuous expression of the transcription factor E2-2 maintains the cell fate of mature plasmacytoid dendritic cells
-
Ghosh, H.S., B. Cisse, A. Bunin, K.L. Lewis, and B. Reizis. 2010. Continuous expression of the transcription factor E2-2 maintains the cell fate of mature plasmacytoid dendritic cells. Immunity. 33:905-916. http://dx.doi.org/10.1016/j.immuni.2010.11.023
-
(2010)
Immunity.
, vol.33
, pp. 905-916
-
-
Ghosh, H.S.1
Cisse, B.2
Bunin, A.3
Lewis, K.L.4
Reizis, B.5
-
13
-
-
79957610057
-
The EMT regulator Zeb2/Sip1 is essential for murine embryonic hematopoietic stem/progenitor cell differentiation and mobilization
-
Goossens, S., V. Janzen, S. Bartunkova, T. Yokomizo, B. Drogat, M. Crisan, K. Haigh, E. Seuntjens, L. Umans, T. Riedt, et al. 2011. The EMT regulator Zeb2/Sip1 is essential for murine embryonic hematopoietic stem/progenitor cell differentiation and mobilization. Blood. 117:5620-5630. http://dx.doi.org/10.1182/blood-2010-08-300236
-
(2011)
Blood.
, vol.117
, pp. 5620-5630
-
-
Goossens, S.1
Janzen, V.2
Bartunkova, S.3
Yokomizo, T.4
Drogat, B.5
Crisan, M.6
Haigh, K.7
Seuntjens, E.8
Umans, L.9
Riedt, T.10
-
14
-
-
84931406064
-
α+ conventional DC clonogenic progenitor
-
α+ conventional DC clonogenic progenitor. Nat. Immunol. 16:708-717. http://dx.doi.org/10.1038/ni.3197
-
(2015)
Nat. Immunol.
, vol.16
, pp. 708-717
-
-
Grajales-Reyes, G.E.1
Iwata, A.2
Albring, J.3
Wu, X.4
Tussiwand, R.5
Kc, W.6
Kretzer, N.M.7
Briseño, C.G.8
Durai, V.9
Bagadia, P.10
-
15
-
-
84863008117
-
GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells
-
Greter, M., J. Helft, A. Chow, D. Hashimoto, A. Mortha, J. Agudo-Cantero, M. Bogunovic, E.L. Gautier, J. Miller, M. Leboeuf, et al. 2012. GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity. 36:1031-1046. http://dx.doi.org/10.1016/j.immuni.2012.03.027
-
(2012)
Immunity.
, vol.36
, pp. 1031-1046
-
-
Greter, M.1
Helft, J.2
Chow, A.3
Hashimoto, D.4
Mortha, A.5
Agudo-Cantero, J.6
Bogunovic, M.7
Gautier, E.L.8
Miller, J.9
Leboeuf, M.10
-
16
-
-
84905107360
-
Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny
-
Guilliams, M., F. Ginhoux, C. Jakubzick, S.H. Naik, N. Onai, B.U. Schraml, E. Segura, R. Tussiwand, and S. Yona. 2014. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14:571-578. http://dx.doi.org/10.1038/nri3712
-
(2014)
Nat. Rev. Immunol.
, vol.14
, pp. 571-578
-
-
Guilliams, M.1
Ginhoux, F.2
Jakubzick, C.3
Naik, S.H.4
Onai, N.5
Schraml, B.U.6
Segura, E.7
Tussiwand, R.8
Yona, S.9
-
17
-
-
0037386339
-
Transcriptional profiling identifies Id2 function in dendritic cell development
-
Hacker, C., R.D. Kirsch, X.-S. Ju, T. Hieronymus, T.C. Gust, C. Kuhl, T. Jorgas, S.M. Kurz, S. Rose-John, Y. Yokota, and M. Zenke. 2003. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat. Immunol. 4:380-386. http://dx.doi.org/10.1038/ni903
-
(2003)
Nat. Immunol.
, vol.4
, pp. 380-386
-
-
Hacker, C.1
Kirsch, R.D.2
Ju, X.-S.3
Hieronymus, T.4
Gust, T.C.5
Kuhl, C.6
Jorgas, T.7
Kurz, S.M.8
Rose-John, S.9
Yokota, Y.10
Zenke, M.11
-
18
-
-
84864293006
-
+ nonlymphoid dendritic cells
-
+ nonlymphoid dendritic cells. Immunity. 37:60-73. http://dx.doi.org/10.1016/j.immuni.2012.04.012
-
(2012)
Immunity.
, vol.37
, pp. 60-73
-
-
Haniffa, M.1
Shin, A.2
Bigley, V.3
McGovern, N.4
Teo, P.5
See, P.6
Wasan, P.S.7
Wang, X.-N.8
Malinarich, F.9
Malleret, B.10
-
19
-
-
84940436446
-
Zeb2: A multifunctional regulator of nervous system development
-
Hegarty, S.V., A.M. Sullivan, and G.W. O'Keeffe. 2015. Zeb2: A multifunctional regulator of nervous system development. Prog. Neurobiol. 132:81-95. http://dx.doi.org/10.1016/j.pneurobio.2015.07.001
-
(2015)
Prog. Neurobiol.
, vol.132
, pp. 81-95
-
-
Hegarty, S.V.1
Sullivan, A.M.2
O'Keeffe, G.W.3
-
20
-
-
84937542228
-
+ macrophages and dendritic cells
-
+ macrophages and dendritic cells. Immunity. 42:1197-1211. http://dx.doi.org/10.1016/j.immuni.2015.05.018
-
(2015)
Immunity.
, vol.42
, pp. 1197-1211
-
-
Helft, J.1
Böttcher, J.2
Chakravarty, P.3
Zelenay, S.4
Huotari, J.5
Schraml, B.U.6
Goubau, D.7
Reis e Sousa, C.8
-
21
-
-
0036200050
-
Generation of the floxed allele of the SIP1 (Smad-interacting protein 1) gene for Cremediated conditional knockout in the mouse
-
Higashi, Y., M. Maruhashi, L. Nelles, T. Van de Putte, K. Verschueren, T. Miyoshi, A. Yoshimoto, H. Kondoh, and D. Huylebroeck. 2002. Generation of the floxed allele of the SIP1 (Smad-interacting protein 1) gene for Cremediated conditional knockout in the mouse. Genesis. 32:82-84. http://dx.doi.org/10.1002/gene.10048
-
(2002)
Genesis.
, vol.32
, pp. 82-84
-
-
Higashi, Y.1
Maruhashi, M.2
Nelles, L.3
Van de Putte, T.4
Verschueren, K.5
Miyoshi, T.6
Yoshimoto, A.7
Kondoh, H.8
Huylebroeck, D.9
-
22
-
-
56449097442
-
α+ dendritic cells in cytotoxic T cell immunity
-
α+ dendritic cells in cytotoxic T cell immunity. Science. 322:1097-1100. http://dx.doi.org/10.1126/science.1164206
-
(2008)
Science.
, vol.322
, pp. 1097-1100
-
-
Hildner, K.1
Edelson, B.T.2
Purtha, W.E.3
Diamond, M.4
Matsushita, H.5
Kohyama, M.6
Calderon, B.7
Schraml, B.U.8
Unanue, E.R.9
Diamond, M.S.10
-
23
-
-
79960050089
-
+ dendritic cell lineages
-
+ dendritic cell lineages. EMBO J. 30:2690-2704. http://dx.doi.org/10.1038/emboj.2011.163
-
(2011)
EMBO J.
, vol.30
, pp. 2690-2704
-
-
Jackson, J.T.1
Hu, Y.2
Liu, R.3
Masson, F.4
D'Amico, A.5
Carotta, S.6
Xin, A.7
Camilleri, M.J.8
Mount, A.M.9
Kallies, A.10
-
25
-
-
81955164775
-
Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine
-
Lewis, K.L., M.L. Caton, M. Bogunovic, M. Greter, L.T. Grajkowska, D. Ng, A. Klinakis, I.F. Charo, S. Jung, J.L. Gommerman, et al. 2011. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity. 35:780-791. http://dx.doi.org/10.1016/j.immuni.2011.08.013
-
(2011)
Immunity.
, vol.35
, pp. 780-791
-
-
Lewis, K.L.1
Caton, M.L.2
Bogunovic, M.3
Greter, M.4
Grajkowska, L.T.5
Ng, D.6
Klinakis, A.7
Charo, I.F.8
Jung, S.9
Gommerman, J.L.10
-
26
-
-
84869802361
-
The signal transducers STAT5 and STAT3 control expression of Id2 and E2-2 during dendritic cell development
-
Li, H.S., C.Y. Yang, K.C. Nallaparaju, H. Zhang, Y.J. Liu, A.W. Goldrath, and S.S. Watowich. 2012. The signal transducers STAT5 and STAT3 control expression of Id2 and E2-2 during dendritic cell development. Blood. 120:4363-4373. http://dx.doi.org/10.1182/blood-2012-07-441311
-
(2012)
Blood.
, vol.120
, pp. 4363-4373
-
-
Li, H.S.1
Yang, C.Y.2
Nallaparaju, K.C.3
Zhang, H.4
Liu, Y.J.5
Goldrath, A.W.6
Watowich, S.S.7
-
27
-
-
65249089638
-
In vivo analysis of dendritic cell development and homeostasis
-
Liu, K., G.D. Victora, T.A. Schwickert, P. Guermonprez, M.M. Meredith, K. Yao, F.-F. Chu, G.J. Randolph, A.Y. Rudensky, and M. Nussenzweig. 2009. In vivo analysis of dendritic cell development and homeostasis. Science. 324:392-397.
-
(2009)
Science.
, vol.324
, pp. 392-397
-
-
Liu, K.1
Victora, G.D.2
Schwickert, T.A.3
Guermonprez, P.4
Meredith, M.M.5
Yao, K.6
Chu, F.-F.7
Randolph, G.J.8
Rudensky, A.Y.9
Nussenzweig, M.10
-
28
-
-
84875528275
-
The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting
-
Merad, M., P. Sathe, J. Helft, J. Miller, and A. Mortha. 2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31:563-604. http://dx.doi.org/10.1146/annurev-immunol-020711-074950
-
(2013)
Annu. Rev. Immunol.
, vol.31
, pp. 563-604
-
-
Merad, M.1
Sathe, P.2
Helft, J.3
Miller, J.4
Mortha, A.5
-
29
-
-
84865418665
-
Deciphering the transcriptional network of the dendritic cell lineage
-
Miller, J.C., B.D. Brown, T. Shay, E.L. Gautier, V. Jojic, A. Cohain, G. Pandey, M. Leboeuf, K.G. Elpek, J. Helft, et al. Immunological Genome Consortium. 2012. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13:888-899. http://dx.doi.org/10.1038/ni.2370
-
(2012)
Nat. Immunol.
, vol.13
, pp. 888-899
-
-
Miller, J.C.1
Brown, B.D.2
Shay, T.3
Gautier, E.L.4
Jojic, V.5
Cohain, A.6
Pandey, G.7
Leboeuf, M.8
Elpek, K.G.9
Helft, J.10
-
30
-
-
84884380781
-
Transcriptional control of dendritic cell development
-
Murphy, K.M. 2013. Transcriptional control of dendritic cell development. Adv. Immunol. 120:239-267. http://dx.doi.org/10.1016/B978-0-12-417028-5.00009-0
-
(2013)
Adv. Immunol.
, vol.120
, pp. 239-267
-
-
Murphy, K.M.1
-
31
-
-
35549000134
-
Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo
-
Naik, S.H., P. Sathe, H.-Y. Park, D. Metcalf, A.I. Proietto, A. Dakic, S. Carotta, M. O'Keeffe, M. Bahlo, A. Papenfuss, et al. 2007. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 8:1217-1226. http://dx.doi.org/10.1038/ni1522
-
(2007)
Nat. Immunol.
, vol.8
, pp. 1217-1226
-
-
Naik, S.H.1
Sathe, P.2
Park, H.-Y.3
Metcalf, D.4
Proietto, A.I.5
Dakic, A.6
Carotta, S.7
O'Keeffe, M.8
Bahlo, M.9
Papenfuss, A.10
-
32
-
-
84962658625
-
+ effector and memory T cell populations during infection
-
+ effector and memory T cell populations during infection. J. Exp. Med. 212:2027-2039. http://dx.doi.org/10.1084/jem.20150194
-
(2015)
J. Exp. Med.
, vol.212
, pp. 2027-2039
-
-
Omilusik, K.D.1
Best, J.A.2
Yu, B.3
Goossens, S.4
Weidemann, A.5
Nguyen, J.V.6
Seuntjens, E.7
Stryjewska, A.8
Zweier, C.9
Roychoudhuri, R.10
-
33
-
-
84878177936
-
A clonogenic progenitor with prominent plasmacytoid dendritic cell developmental potential
-
Onai, N., K. Kurabayashi, M. Hosoi-Amaike, N. Toyama-Sorimachi, K. Matsushima, K. Inaba, and T. Ohteki. 2013. A clonogenic progenitor with prominent plasmacytoid dendritic cell developmental potential. Immunity. 38:943-957. http://dx.doi.org/10.1016/j.immuni.2013.04.006
-
(2013)
Immunity.
, vol.38
, pp. 943-957
-
-
Onai, N.1
Kurabayashi, K.2
Hosoi-Amaike, M.3
Toyama-Sorimachi, N.4
Matsushima, K.5
Inaba, K.6
Ohteki, T.7
-
34
-
-
84893646173
-
Dendritic cell subsets in the intestinal lamina propria: ontogeny and function
-
Persson, E.K., C.L. Scott, A.M. Mowat, and W.W. Agace. 2013a. Dendritic cell subsets in the intestinal lamina propria: ontogeny and function. Eur. J. Immunol. 43:3098-3107. http://dx.doi.org/10.1002/eji.201343740
-
(2013)
Eur. J. Immunol.
, vol.43
, pp. 3098-3107
-
-
Persson, E.K.1
Scott, C.L.2
Mowat, A.M.3
Agace, W.W.4
-
35
-
-
84878167904
-
+ dendritic cells drive mucosal T helper 17 cell differentiation
-
+ dendritic cells drive mucosal T helper 17 cell differentiation. Immunity. 38:958-969. http://dx.doi.org/10.1016/j.immuni.2013.03.009
-
(2013)
Immunity.
, vol.38
, pp. 958-969
-
-
Persson, E.K.1
Uronen-Hansson, H.2
Semmrich, M.3
Rivollier, A.4
Hägerbrand, K.5
Marsal, J.6
Gudjonsson, S.7
Håkansson, U.8
Reizis, B.9
Kotarsky, K.10
Agace, W.W.11
-
36
-
-
0033568198
-
New mode of DNA binding of multi-zinc finger transcription factors: deltaEF1 family members bind with two hands to two target sites
-
Remacle, J.E., H. Kraft, W. Lerchner, G. Wuytens, C. Collart, K. Verschueren, J.C. Smith, and D. Huylebroeck. 1999. New mode of DNA binding of multi-zinc finger transcription factors: deltaEF1 family members bind with two hands to two target sites. EMBO J. 18:5073-5084. http://dx.doi.org/10.1093/emboj/18.18.5073
-
(1999)
EMBO J.
, vol.18
, pp. 5073-5084
-
-
Remacle, J.E.1
Kraft, H.2
Lerchner, W.3
Wuytens, G.4
Collart, C.5
Verschueren, K.6
Smith, J.C.7
Huylebroeck, D.8
-
37
-
-
84883172356
-
Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens
-
Satpathy, A.T., C.G. Briseño, J.S. Lee, D. Ng, N.A. Manieri, W. KC, X. Wu, S.R. Thomas, W.-L. Lee, M. Turkoz, et al. 2013. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat. Immunol. 14:937-948. http://dx.doi.org/10.1038/ni.2679
-
(2013)
Nat. Immunol.
, vol.14
, pp. 937-948
-
-
Satpathy, A.T.1
Briseño, C.G.2
Lee, J.S.3
Ng, D.4
Manieri, N.A.5
KC, W.6
Wu, X.7
Thomas, S.R.8
Lee, W.-L.9
Turkoz, M.10
-
38
-
-
84878191150
-
+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses
-
+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity. 38:970-983. http://dx.doi.org/10.1016/j.immuni.2013.04.011
-
(2013)
Immunity.
, vol.38
, pp. 970-983
-
-
Schlitzer, A.1
McGovern, N.2
Teo, P.3
Zelante, T.4
Atarashi, K.5
Low, D.6
Ho, A.W.S.7
See, P.8
Shin, A.9
Wasan, P.S.10
-
39
-
-
84931394611
-
Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow
-
Schlitzer, A., V. Sivakamasundari, J. Chen, H.R.B. Sumatoh, J. Schreuder, J. Lum, B. Malleret, S. Zhang, A. Larbi, F. Zolezzi, et al. 2015. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 16:718-728. http://dx.doi.org/10.1038/ni.3200
-
(2015)
Nat. Immunol.
, vol.16
, pp. 718-728
-
-
Schlitzer, A.1
Sivakamasundari, V.2
Chen, J.3
Sumatoh, H.R.B.4
Schreuder, J.5
Lum, J.6
Malleret, B.7
Zhang, S.8
Larbi, A.9
Zolezzi, F.10
-
41
-
-
84922714497
-
- intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells
-
- intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells. Mucosal Immunol. 8:327-339. http://dx.doi.org/10.1038/mi.2014.70
-
(2015)
Mucosal Immunol.
, vol.8
, pp. 327-339
-
-
Scott, C.L.1
Bain, C.C.2
Wright, P.B.3
Sichien, D.4
Kotarsky, K.5
Persson, E.K.6
Luda, K.7
Guilliams, M.8
Lambrecht, B.N.9
Agace, W.W.10
-
42
-
-
0034684654
-
+ stem cells into predendritic cell (pre-DC)2 but not into pre-DC1: Evidence for a lymphoid origin of pre-DC2
-
+ stem cells into predendritic cell (pre-DC)2 but not into pre-DC1: Evidence for a lymphoid origin of pre-DC2. J. Exp. Med. 192:1775-1784. http://dx.doi.org/10.1084/jem.192.12.1775
-
(2000)
J. Exp. Med.
, vol.192
, pp. 1775-1784
-
-
Spits, H.1
Couwenberg, F.2
Bakker, A.Q.3
Weijer, K.4
Uittenbogaart, C.H.5
-
43
-
-
84937967684
-
The multifaceted biology of plasmacytoid dendritic cells
-
Swiecki, M., and M. Colonna. 2015. The multifaceted biology of plasmacytoid dendritic cells. Nat. Rev. Immunol. 15:471-485. http://dx.doi.org/10.1038/nri3865
-
(2015)
Nat. Rev. Immunol.
, vol.15
, pp. 471-485
-
-
Swiecki, M.1
Colonna, M.2
-
44
-
-
41349119601
-
The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse
-
Tailor, P., T. Tamura, H.C. Morse III, and K. Ozato. 2008. The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse. Blood. 111:1942-1945. http://dx.doi.org/10.1182/blood-2007-07-100750
-
(2008)
Blood.
, vol.111
, pp. 1942-1945
-
-
Tailor, P.1
Tamura, T.2
Morse, H.C.3
Ozato, K.4
-
45
-
-
14044270784
-
IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity
-
Tamura, T., P. Tailor, K. Yamaoka, H.J. Kong, H. Tsujimura, J.J. O'Shea, H. Singh, and K. Ozato. 2005. IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity. J. Immunol. 174:2573-2581. http://dx.doi.org/10.4049/jimmunol.174.5.2573
-
(2005)
J. Immunol.
, vol.174
, pp. 2573-2581
-
-
Tamura, T.1
Tailor, P.2
Yamaoka, K.3
Kong, H.J.4
Tsujimura, H.5
O'Shea, J.J.6
Singh, H.7
Ozato, K.8
-
46
-
-
84906937391
-
ZEB2-transgene expression in the epidermis compromises the integrity of the epidermal barrier through the repression of different tight junction proteins
-
Tatari, M.N., B. De Craene, B. Soen, J. Taminau, P. Vermassen, S. Goossens, K. Haigh, S. Cazzola, J. Lambert, D. Huylebroeck, et al. 2014. ZEB2-transgene expression in the epidermis compromises the integrity of the epidermal barrier through the repression of different tight junction proteins. Cell. Mol. Life Sci. 71:3599-3609.
-
(2014)
Cell. Mol. Life Sci.
, vol.71
, pp. 3599-3609
-
-
Tatari, M.N.1
De Craene, B.2
Soen, B.3
Taminau, J.4
Vermassen, P.5
Goossens, S.6
Haigh, K.7
Cazzola, S.8
Lambert, J.9
Huylebroeck, D.10
-
47
-
-
84929661740
-
Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses
-
Tussiwand, R., B. Everts, G.E. Grajales-Reyes, N.M. Kretzer, A. Iwata, J. Bagaitkar, X. Wu, R. Wong, D.A. Anderson, T.L. Murphy, et al. 2015. Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses. Immunity. 42:916-928. http://dx.doi.org/10.1016/j.immuni.2015.04.017
-
(2015)
Immunity.
, vol.42
, pp. 916-928
-
-
Tussiwand, R.1
Everts, B.2
Grajales-Reyes, G.E.3
Kretzer, N.M.4
Iwata, A.5
Bagaitkar, J.6
Wu, X.7
Wong, R.8
Anderson, D.A.9
Murphy, T.L.10
-
48
-
-
84962635492
-
Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection
-
van Helden, M.J., S. Goossens, C. Daussy, A.-L. Mathieu, F. Faure, A. Marçais, N. Vandamme, N. Farla, K. Mayol, S. Viel, et al. 2015. Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. J. Exp. Med. 212:2015-2025. http://dx.doi.org/10.1084/jem.20150809
-
(2015)
J. Exp. Med.
, vol.212
, pp. 2015-2025
-
-
van Helden, M.J.1
Goossens, S.2
Daussy, C.3
Mathieu, A.-L.4
Faure, F.5
Marçais, A.6
Vandamme, N.7
Farla, N.8
Mayol, K.9
Viel, S.10
-
49
-
-
84885447087
-
Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism
-
Welty, N.E., C. Staley, N. Ghilardi, M.J. Sadowsky, B.Z. Igyártó, and D.H. Kaplan. 2013. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism. J. Exp. Med. 210:2011-2024. http://dx.doi.org/10.1084/jem.20130728
-
(2013)
J. Exp. Med.
, vol.210
, pp. 2011-2024
-
-
Welty, N.E.1
Staley, C.2
Ghilardi, N.3
Sadowsky, M.J.4
Igyártó, B.Z.5
Kaplan, D.H.6
-
50
-
-
84890918547
-
Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation
-
Williams, J.W., M.Y. Tjota, B.S. Clay, B. Vander Lugt, H.S. Bandukwala, C.L. Hrusch, D.C. Decker, K.M. Blaine, B.R. Fixsen, H. Singh, et al. 2013. Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation. Nat. Commun. 4:2990. http://dx.doi.org/10.1038/ncomms3990
-
(2013)
Nat. Commun.
, vol.4
, pp. 2990
-
-
Williams, J.W.1
Tjota, M.Y.2
Clay, B.S.3
Vander Lugt, B.4
Bandukwala, H.S.5
Hrusch, C.L.6
Decker, D.C.7
Blaine, K.M.8
Fixsen, B.R.9
Singh, H.10
|