-
2
-
-
34447605625
-
Uber die Nerven der menschlichen Haut
-
Langerhans P. Uber die Nerven der menschlichen Haut. Virchows Archpathol 1868; 44:325-337.
-
(1868)
Virchows Archpathol
, vol.44
, pp. 325-337
-
-
Langerhans, P.1
-
3
-
-
0017381151
-
Epidermal Langerhans cells bear Fc and C3 receptors
-
Stingl G, Wolff-Schreiner EC, Pichler WJ, et al. Epidermal Langerhans cells bear Fc and C3 receptors. Nature 1977; 268:245-246.
-
(1977)
Nature
, vol.268
, pp. 245-246
-
-
Stingl, G.1
Wolff-Schreiner, E.C.2
Pichler, W.J.3
-
5
-
-
0018580178
-
Epidermal Langerhans cells are derived from cells originating in bone marrow
-
Katz SI, Tamaki K, Sachs DH. Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature 1979; 282:324-336.
-
(1979)
Nature
, vol.282
, pp. 324-336
-
-
Katz, S.I.1
Tamaki, K.2
Sachs, D.H.3
-
6
-
-
0022384804
-
A comparison of murine epidermal Langerhans cells with spleen dendritic cells
-
Schuler G, Romani N, Steinman RM. A comparison of murine epidermal Langerhans cells with spleen dendritic cells. J Invest Dermatol 1985; 85:99s-106s.
-
(1985)
J Invest Dermatol
, vol.85
, pp. 99s-106s
-
-
Schuler, G.1
Romani, N.2
Steinman, R.M.3
-
7
-
-
0024422360
-
Cultured human Langerhans cells resemble lymphoid dendritic cells in phenotype and function
-
Romani N, Lenz A, Glassel H, et al. Cultured human Langerhans cells resemble lymphoid dendritic cells in phenotype and function. J Invest Dermatol 1989; 93:600-609.
-
(1989)
J Invest Dermatol
, vol.93
, pp. 600-609
-
-
Romani, N.1
Lenz, A.2
Glassel, H.3
-
8
-
-
0015276610
-
The mononuclear phagocyte system: A new classification of macrophages, monocytes, and their precursor cells
-
van Furth R, Cohn ZA, Hirsch JG, et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ 1972; 46:845-852.
-
(1972)
Bull World Health Organ
, vol.46
, pp. 845-852
-
-
Van Furth, R.1
Cohn, Z.A.2
Hirsch, J.G.3
-
9
-
-
84905107360
-
Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny
-
Guilliams M, Ginhoux F, Jakubzick C, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 2014; 14:571-578.
-
(2014)
Nat Rev Immunol
, vol.14
, pp. 571-578
-
-
Guilliams, M.1
Ginhoux, F.2
Jakubzick, C.3
-
10
-
-
0034284011
-
Langerhans cells develop from a lymphoid-committed precursor
-
Anjuere F, del HoyoGM, Martin P, Ardavin C. Langerhans cells develop from a lymphoid-committed precursor. Blood 2000; 96:1633-1637.
-
(2000)
Blood
, vol.96
, pp. 1633-1637
-
-
Anjuere, F.1
Del Hoyogm Martin, P.2
Ardavin, C.3
-
11
-
-
0036906526
-
Langerhans cells renew in the skin throughout life under steady-state conditions
-
Merad M, Manz MG, Karsunky H, et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol 2002; 31:135-141.
-
(2002)
Nat Immunol
, vol.31
, pp. 135-141
-
-
Merad, M.1
Manz, M.G.2
Karsunky, H.3
-
13
-
-
84901358607
-
Monocytes and macrophages: Developmental pathways and tissue homeostasis
-
Ginhoux F, Jung: S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 2014; 14:392-404.
-
(2014)
Nat Rev Immunol
, vol.14
, pp. 392-404
-
-
Ginhoux, F.1
Jung, S.2
-
14
-
-
84864152036
-
IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia
-
Wang Y, Szretter KJ, Vermi W, et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol 2012; 13:753-760.
-
(2012)
Nat Immunol
, vol.13
, pp. 753-760
-
-
Wang, Y.1
Szretter, K.J.2
Vermi, W.3
-
15
-
-
84870907320
-
Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia
-
Greter M, Lelios I, Pelczar P, et al. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity 2012; 37:1050-1060.
-
(2012)
Immunity
, vol.37
, pp. 1050-1060
-
-
Greter, M.1
Lelios, I.2
Pelczar, P.3
-
16
-
-
78149360132
-
Fate mapping analysis reveals that adult microglia derive from primitive macrophages
-
Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010; 330:841-845.
-
(2010)
Science
, vol.330
, pp. 841-845
-
-
Ginhoux, F.1
Greter, M.2
Leboeuf, M.3
-
17
-
-
84864298329
-
Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages
-
Hoeffel G, Wang Y, Greter M, et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med 2012; 209:1167-1181.
-
(2012)
J Exp Med
, vol.209
, pp. 1167-1181
-
-
Hoeffel, G.1
Wang, Y.2
Greter, M.3
-
18
-
-
84859508307
-
A lineage of myeloid cells independent of Myb and hematopoietic stem cells
-
Schulz C, Gomez Perdiguero E, Chorro L, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012; 336:86-90.
-
(2012)
Science
, vol.336
, pp. 86-90
-
-
Schulz, C.1
Gomez Perdiguero, E.2
Chorro, L.3
-
19
-
-
84925465211
-
Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors
-
Gomez Perdiguero E, Klapproth K, Schulz C, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015; 518:547-551.
-
(2015)
Nature
, vol.518
, pp. 547-551
-
-
Gomez Perdiguero, E.1
Klapproth, K.2
Schulz, C.3
-
20
-
-
84928189502
-
C-myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages
-
Hoeffel G, Chen J, Lavin Y, et al. C-myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 2015; 42:665-678.
-
(2015)
Immunity
, vol.42
, pp. 665-678
-
-
Hoeffel, G.1
Chen, J.2
Lavin, Y.3
-
21
-
-
84904875085
-
Myb-independent macrophages: A family of cells that develops with their tissue of residence and is involved in its homeostasis
-
Gomez Perdiguero E, Geissmann F. Myb-independent macrophages: a family of cells that develops with their tissue of residence and is involved in its homeostasis. Cold Spring Harb Symp Quant Biol 2013; 78:91-100.
-
(2013)
Cold Spring Harb Symp Quant Biol
, vol.78
, pp. 91-100
-
-
Gomez Perdiguero, E.1
Geissmann, F.2
-
22
-
-
84892450644
-
Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation
-
Epelman S, Lavine KJ, Beaudin AE, et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 2014; 40:91-104.
-
(2014)
Immunity
, vol.40
, pp. 91-104
-
-
Epelman, S.1
Lavine, K.J.2
Beaudin, A.E.3
-
23
-
-
60549103760
-
HLA-DR+ leukocytes acquire CD1 antigens in embryonic and fetal human skin and contain functional antigenpresenting cells
-
Schuster C, Vaculik C, Fiala C, et al. HLA-DR+ leukocytes acquire CD1 antigens in embryonic and fetal human skin and contain functional antigenpresenting cells. J Exp Med 2009; 206:169-181.
-
(2009)
J Exp Med
, vol.206
, pp. 169-181
-
-
Schuster, C.1
Vaculik, C.2
Fiala, C.3
-
24
-
-
84867873461
-
Phenotypic characterization of leukocytes in prenatal human dermis
-
Schuster C, Vaculik C, Prior M, et al. Phenotypic characterization of leukocytes in prenatal human dermis. J Invest Dermatol 2012; 132:2581-2592.
-
(2012)
J Invest Dermatol
, vol.132
, pp. 2581-2592
-
-
Schuster, C.1
Vaculik, C.2
Prior, M.3
-
25
-
-
0023266724
-
Further evidence for the self-reproducing capacity of Langerhans cells in human skin
-
Czernielewski JM, Demarchez M. Further evidence for the self-reproducing capacity of Langerhans cells in human skin. J Invest Dermatol 1987; 88:17-20.
-
(1987)
J Invest Dermatol
, vol.88
, pp. 17-20
-
-
Czernielewski, J.M.1
Demarchez, M.2
-
26
-
-
78751680917
-
Self-renewal capacity of human epidermal Langerhans cells: Observations made on a composite tissue allograft
-
Kanitakis J, Morelon E, Petruzzo P, et al. Self-renewal capacity of human epidermal Langerhans cells: observations made on a composite tissue allograft. Exp Dermatol 2011; 20:145-146.
-
(2011)
Exp Dermatol
, vol.20
, pp. 145-146
-
-
Kanitakis, J.1
Morelon, E.2
Petruzzo, P.3
-
27
-
-
84926408535
-
Haematopoietic and immune defects associated with GATA2 mutation
-
Collin M, Dickinson R, Bigley V. Haematopoietic and immune defects associated with GATA2 mutation. Br J Haematol 2015; 169:173-187.
-
(2015)
Br J Haematol
, vol.169
, pp. 173-187
-
-
Collin, M.1
Dickinson, R.2
Bigley, V.3
-
28
-
-
79960219807
-
IRF8 mutations and human dendritic-cell immunodeficiency
-
Hambleton S, Salem S, Bustamante J, et al. IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med 2011; 365:127-138.
-
(2011)
N Engl J Med
, vol.365
, pp. 127-138
-
-
Hambleton, S.1
Salem, S.2
Bustamante, J.3
-
29
-
-
84890809254
-
Langerhans cells are generated by two distinct PU. 1-dependent transcriptional networks
-
Chopin M, Seillet C, Chevrier S, et al. Langerhans cells are generated by two distinct PU. 1-dependent transcriptional networks. J Exp Med 2013; 210:2967-2980.
-
(2013)
J Exp Med
, vol.210
, pp. 2967-2980
-
-
Chopin, M.1
Seillet, C.2
Chevrier, S.3
-
30
-
-
31344469849
-
The fate of human Langerhans cells in hematopoietic stem cell transplantation
-
Collin MP, Hart DN, Jackson GH, et al. The fate of human Langerhans cells in hematopoietic stem cell transplantation. J Exp Med 2006; 203:27-33.
-
(2006)
J Exp Med
, vol.203
, pp. 27-33
-
-
Collin, M.P.1
Hart, D.N.2
Jackson, G.H.3
-
31
-
-
33645650873
-
Fast appearance of donor dendritic cells in human skin: Dynamics of skin and blood dendritic cells after allogeneic hematopoietic cell transplantation
-
Auffermann-Gretzinger S, Eger L, Bornhauser M, et al. Fast appearance of donor dendritic cells in human skin: dynamics of skin and blood dendritic cells after allogeneic hematopoietic cell transplantation. Transplantation 2006; 81:866-873.
-
(2006)
Transplantation
, vol.81
, pp. 866-873
-
-
Auffermann-Gretzinger, S.1
Eger, L.2
Bornhauser, M.3
-
32
-
-
84907598045
-
Langerhans cell homeostasis and turnover after nonmyeloablative and myeloablative allogeneic hematopoietic cell transplantation
-
Mielcarek M, Kirkorian AY, Hackman RC, et al. Langerhans cell homeostasis and turnover after nonmyeloablative and myeloablative allogeneic hematopoietic cell transplantation. Transplantation 2014; 98:563-568.
-
(2014)
Transplantation
, vol.98
, pp. 563-568
-
-
Mielcarek, M.1
Kirkorian, A.Y.2
Hackman, R.C.3
-
33
-
-
84891370588
-
Origin of Langerhans cells in normal skin and chronic GVHD after hematopoietic stem-cell transplantation
-
Andani R, Robertson I, Macdonald KP, et al. Origin of Langerhans cells in normal skin and chronic GVHD after hematopoietic stem-cell transplantation. Exp Dermatol 2014; 23:75-77.
-
(2014)
Exp Dermatol
, vol.23
, pp. 75-77
-
-
Andani, R.1
Robertson, I.2
Macdonald, K.P.3
-
34
-
-
2442658900
-
Depletion of host Langerhans cells before transplantation of donor alloreactive T cells prevents skin graft-versushost disease
-
Merad M, Hoffmann P, Ranheim E, et al. Depletion of host Langerhans cells before transplantation of donor alloreactive T cells prevents skin graft-versushost disease. Nat Med 2004; 10:510-517.
-
(2004)
Nat Med
, vol.10
, pp. 510-517
-
-
Merad, M.1
Hoffmann, P.2
Ranheim, E.3
-
35
-
-
73949147392
-
Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network
-
Chorro L, Sarde A, Li M, et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J Exp Med 2009; 206:3089-3100.
-
(2009)
J Exp Med
, vol.206
, pp. 3089-3100
-
-
Chorro, L.1
Sarde, A.2
Li, M.3
-
36
-
-
79951693243
-
The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency
-
Bigley V, Haniffa M, Doulatov S, et al. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J Exp Med 2011; 208:227-234.
-
(2011)
J Exp Med
, vol.208
, pp. 227-234
-
-
Bigley, V.1
Haniffa, M.2
Doulatov, S.3
-
37
-
-
84884214656
-
Multicolor fate mapping of Langerhans cell homeostasis
-
Ghigo C, Mondor I, Jorquera A, et al. Multicolor fate mapping of Langerhans cell homeostasis. J Exp Med 2013; 210:1657-1664.
-
(2013)
J Exp Med
, vol.210
, pp. 1657-1664
-
-
Ghigo, C.1
Mondor, I.2
Jorquera, A.3
-
38
-
-
84872300827
-
Langerhans cell homeostasis in mice is dependent on mTORC1 but not mTORC2 function
-
Kellersch B, Brocker T. Langerhans cell homeostasis in mice is dependent on mTORC1 but not mTORC2 function. Blood 2013; 121:298-307.
-
(2013)
Blood
, vol.121
, pp. 298-307
-
-
Kellersch, B.1
Brocker, T.2
-
39
-
-
84892655317
-
The late endosomal adaptor molecule p14 (LAMTOR2) represents a novel regulator of Langerhans cell homeostasis
-
Sparber F, Scheffler JM, Amberg N, et al. The late endosomal adaptor molecule p14 (LAMTOR2) represents a novel regulator of Langerhans cell homeostasis. Blood 2014; 123:217-227.
-
(2014)
Blood
, vol.123
, pp. 217-227
-
-
Sparber, F.1
Scheffler, J.M.2
Amberg, N.3
-
40
-
-
84925938012
-
The late endosomal adaptor molecule p14 (LAMTOR2) regulates TGFbeta1-mediated homeostasis of Langerhans cells
-
Sparber F, Tripp CH, Komenda K, et al. The late endosomal adaptor molecule p14 (LAMTOR2) regulates TGFbeta1-mediated homeostasis of Langerhans cells. J Invest Dermatol 2015; 135:119-129.
-
(2015)
J Invest Dermatol
, vol.135
, pp. 119-129
-
-
Sparber, F.1
Tripp, C.H.2
Komenda, K.3
-
41
-
-
0030586565
-
TGF-beta 1 promotes in vitro development of dendritic cells from CD34+ hemopoietic progenitors
-
Strobl H, Riedl E, Scheinecker C, et al. TGF-beta 1 promotes in vitro development of dendritic cells from CD34+ hemopoietic progenitors. J Immunol 1996; 157:1499-1507.
-
(1996)
J Immunol
, vol.157
, pp. 1499-1507
-
-
Strobl, H.1
Riedl, E.2
Scheinecker, C.3
-
42
-
-
0030456368
-
A role for endogenous transforming growth factor beta 1 in Langerhans cell biology: The skin of transforming growth factor beta 1 null mice is devoid of epidermal Langerhans cells
-
Borkowski TA, Letterio JJ, Farr AG, Udey MC. A role for endogenous transforming growth factor beta 1 in Langerhans cell biology: the skin of transforming growth factor beta 1 null mice is devoid of epidermal Langerhans cells. J Exp Med 1996; 184:2417-2422.
-
(1996)
J Exp Med
, vol.184
, pp. 2417-2422
-
-
Borkowski, T.A.1
Letterio, J.J.2
Farr, A.G.3
Udey, M.C.4
-
43
-
-
35748948090
-
Autocrine/paracrine TGFbeta1 is required for the development of epidermal Langerhans cells
-
Kaplan DH, Li MO, Jenison MC, et al. Autocrine/paracrine TGFbeta1 is required for the development of epidermal Langerhans cells. J Exp Med 2007; 204:2545-2552.
-
(2007)
J Exp Med
, vol.204
, pp. 2545-2552
-
-
Kaplan, D.H.1
Li, M.O.2
Jenison, M.C.3
-
44
-
-
78649629136
-
TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis
-
Kel JM, Girard-Madoux MJ, Reizis B, Clausen BE. TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis. J Immunol 2010; 185:3248-3255.
-
(2010)
J Immunol
, vol.185
, pp. 3248-3255
-
-
Kel, J.M.1
Girard-Madoux, M.J.2
Reizis, B.3
Clausen, B.E.4
-
45
-
-
81455154983
-
Conditional deletion of TGF-betaR1 using Langerin-Cre mice results in Langerhans cell deficiency and reduced contact hypersensitivity
-
Zahner SP, Kel JM, Martina CA, et al. Conditional deletion of TGF-betaR1 using Langerin-Cre mice results in Langerhans cell deficiency and reduced contact hypersensitivity. J Immunol 2011; 187:5069-5076.
-
(2011)
J Immunol
, vol.187
, pp. 5069-5076
-
-
Zahner, S.P.1
Kel, J.M.2
Martina, C.A.3
-
46
-
-
84888114656
-
Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation
-
Yasmin N, Bauer T, Modak M, et al. Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation. J Exp Med 2013; 201:2597-2610.
-
(2013)
J Exp Med
, vol.201
, pp. 2597-2610
-
-
Yasmin, N.1
Bauer, T.2
Modak, M.3
-
47
-
-
84876688421
-
Beta-catenin promotes the differentiation of epidermal Langerhans dendritic cells
-
Yasmin N, Konradi S, Eisenwort G, et al. Beta-catenin promotes the differentiation of epidermal Langerhans dendritic cells. J Invest Dermatol 2013; 133:1250-1259.
-
(2013)
J Invest Dermatol
, vol.133
, pp. 1250-1259
-
-
Yasmin, N.1
Konradi, S.2
Eisenwort, G.3
-
48
-
-
84870276714
-
Identification of Axl as a downstream effector of TGF-beta1 during Langerhans cell differentiation and epidermal homeostasis
-
Bauer T, Zagorska A, Jurkin J, et al. Identification of Axl as a downstream effector of TGF-beta1 during Langerhans cell differentiation and epidermal homeostasis. J Exp Med 2012; 209:2033-2047.
-
(2012)
J Exp Med
, vol.209
, pp. 2033-2047
-
-
Bauer, T.1
Zagorska, A.2
Jurkin, J.3
-
49
-
-
0037136302
-
Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin
-
Geissmann F, Dieu-Nosjean MC, Dezutter C, et al. Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin. J Exp Med 2002; 196:417-430.
-
(2002)
J Exp Med
, vol.196
, pp. 417-430
-
-
Geissmann, F.1
Dieu-Nosjean, M.C.2
Dezutter, C.3
-
50
-
-
33645953640
-
Langerhans cells arise from monocytes in vivo
-
Ginhoux F, Tacke F, Angeli V, et al. Langerhans cells arise from monocytes in vivo. Nat Immunol 2006; 5:265-273.
-
(2006)
Nat Immunol
, vol.5
, pp. 265-273
-
-
Ginhoux, F.1
Tacke, F.2
Angeli, V.3
-
51
-
-
84864124259
-
Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin
-
Nagao K, Kobayashi T, Moro K, et al. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat Immunol 2012; 13:744-752.
-
(2012)
Nat Immunol
, vol.13
, pp. 744-752
-
-
Nagao, K.1
Kobayashi, T.2
Moro, K.3
-
52
-
-
84869229157
-
Two distinct types of Langerhans cells populate the skin during steady state and inflammation
-
Sere K, Baek JH, Ober-Blobaum J, et al. Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity 2012; 37:905-916.
-
(2012)
Immunity
, vol.37
, pp. 905-916
-
-
Sere, K.1
Baek, J.H.2
Ober-Blobaum, J.3
-
53
-
-
32644447757
-
Flk2+ myeloid progenitors are the main source of Langerhans cells
-
Mende I, Karsunky H, Weissman IL, et al. Flk2+ myeloid progenitors are the main source of Langerhans cells. Blood 2005; 107:1383-1390.
-
(2005)
Blood
, vol.107
, pp. 1383-1390
-
-
Mende, I.1
Karsunky, H.2
Weissman, I.L.3
-
54
-
-
0032536795
-
Transforming growth factor beta1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells
-
Geissmann F, Prost C, Monnet JP, et al. Transforming growth factor beta1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J Exp Med 1998; 187:961-966.
-
(1998)
J Exp Med
, vol.187
, pp. 961-966
-
-
Geissmann, F.1
Prost, C.2
Monnet, J.P.3
-
55
-
-
84871583494
-
Notch is active in Langerhans cell histiocytosis and confers pathognomonic features on dendritic cells
-
Hutter C, Kauer M, Simonitsch-Klupp I, et al. Notch is active in Langerhans cell histiocytosis and confers pathognomonic features on dendritic cells. Blood 2012; 120:5199-5208.
-
(2012)
Blood
, vol.120
, pp. 5199-5208
-
-
Hutter, C.1
Kauer, M.2
Simonitsch-Klupp, I.3
-
56
-
-
84907611125
-
Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-beta
-
Martinez-Cingolani C, Grandclaudon M, Jeanmougin M, et al. Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-beta. Blood 2014; 124:2411-2420.
-
(2014)
Blood
, vol.124
, pp. 2411-2420
-
-
Martinez-Cingolani, C.1
Grandclaudon, M.2
Jeanmougin, M.3
-
57
-
-
84922179711
-
CD1c+ blood dendritic cells have Langerhans cell potential
-
Milne P, Bigley V, Gunawan M, et al. CD1c+ blood dendritic cells have Langerhans cell potential. Blood 2015; 125:470-473.
-
(2015)
Blood
, vol.125
, pp. 470-473
-
-
Milne, P.1
Bigley, V.2
Gunawan, M.3
-
58
-
-
25644458587
-
A novel role for Notch ligand Delta-1 as a regulator of human Langerhans cell development from blood monocytes
-
Hoshino N, Katayama N, Shibasaki T, et al. A novel role for Notch ligand Delta-1 as a regulator of human Langerhans cell development from blood monocytes. J Leukoc Biol 2005; 78:921-929.
-
(2005)
J Leukoc Biol
, vol.78
, pp. 921-929
-
-
Hoshino, N.1
Katayama, N.2
Shibasaki, T.3
-
59
-
-
0033179148
-
A CD1a+/CD11c+ subset of human blood dendritic cells is a direct precursor of Langerhans cells
-
Ito T, Inaba M, Inaba K, et al. A CD1a+/CD11c+ subset of human blood dendritic cells is a direct precursor of Langerhans cells. J Immunol 1999; 163:1409-1419.
-
(1999)
J Immunol
, vol.163
, pp. 1409-1419
-
-
Ito, T.1
Inaba, M.2
Inaba, K.3
-
60
-
-
0011882760
-
Peripheral blood dendritic cell subset analysis
-
Mason D, editor. Oxford University Press
-
MacDonald KPA, Munster D, Clark G, et al. Peripheral blood dendritic cell subset analysis. In: Mason D, editor. Leucocyte Typing VII. Oxford University Press; 2002; pp. 315-319.
-
(2002)
Leucocyte Typing VII
, pp. 315-319
-
-
Kpa, M.1
Munster, D.2
Clark, G.3
-
61
-
-
0035202722
-
Dermal-resident CD14+ cells differentiate into Langerhans cells
-
Larregina AT, Morelli AE, Spencer LA, et al. Dermal-resident CD14+ cells differentiate into Langerhans cells. Nat Immunol 2001; 2:1151-1158.
-
(2001)
Nat Immunol
, vol.2
, pp. 1151-1158
-
-
Larregina, A.T.1
Morelli, A.E.2
Spencer, L.A.3
-
62
-
-
84907966318
-
Human dermal CD14(+) cells are a transient population of monocyte-derived macrophages
-
McGovern N, Schlitzer A, Gunawan M, et al. Human dermal CD14(+) cells are a transient population of monocyte-derived macrophages. Immunity 2014; 41:465-477.
-
(2014)
Immunity
, vol.41
, pp. 465-477
-
-
McGovern, N.1
Schlitzer, A.2
Gunawan, M.3
-
63
-
-
84929154141
-
Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells
-
Bigley V, McGovern N, Milne P, et al. Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells. J Leukoc Biol 2015; 97:627-634.
-
(2015)
J Leukoc Biol
, vol.97
, pp. 627-634
-
-
Bigley, V.1
McGovern, N.2
Milne, P.3
-
65
-
-
84909609809
-
Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis
-
Chakraborty R, Hampton OA, Shen X, et al. Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood 2014; 124:3007-3015.
-
(2014)
Blood
, vol.124
, pp. 3007-3015
-
-
Chakraborty, R.1
Hampton, O.A.2
Shen, X.3
-
66
-
-
84907009615
-
High prevalence of somatic MAP2K1 mutations in BRAF V600E-negative Langerhans cell histiocytosis
-
Brown NA, Furtado LV, Betz BL, et al. High prevalence of somatic MAP2K1 mutations in BRAF V600E-negative Langerhans cell histiocytosis. Blood 2014; 124:1655-1658.
-
(2014)
Blood
, vol.124
, pp. 1655-1658
-
-
Brown, N.A.1
Furtado, L.V.2
Betz, B.L.3
|