메뉴 건너뛰기




Volumn 23, Issue 1, 2016, Pages 28-35

Langerhans cell origin and regulation

Author keywords

Dendritic cell; Langerhans cell; Transforming growth factor beta

Indexed keywords

MAMMALIAN TARGET OF RAPAMYCIN; MITOGEN ACTIVATED PROTEIN KINASE; TRANSFORMING GROWTH FACTOR BETA RECEPTOR;

EID: 84952632023     PISSN: 10656251     EISSN: 15317048     Source Type: Journal    
DOI: 10.1097/MOH.0000000000000202     Document Type: Review
Times cited : (81)

References (66)
  • 1
    • 84857048899 scopus 로고    scopus 로고
    • Changing views of the role of Langerhans cells
    • Romani N, Brunner PM, Stingl G. Changing views of the role of Langerhans cells. J Invest Dermatol 2012; 132:872-881.
    • (2012) J Invest Dermatol , vol.132 , pp. 872-881
    • Romani, N.1    Brunner, P.M.2    Stingl, G.3
  • 2
    • 34447605625 scopus 로고
    • Uber die Nerven der menschlichen Haut
    • Langerhans P. Uber die Nerven der menschlichen Haut. Virchows Archpathol 1868; 44:325-337.
    • (1868) Virchows Archpathol , vol.44 , pp. 325-337
    • Langerhans, P.1
  • 3
    • 0017381151 scopus 로고
    • Epidermal Langerhans cells bear Fc and C3 receptors
    • Stingl G, Wolff-Schreiner EC, Pichler WJ, et al. Epidermal Langerhans cells bear Fc and C3 receptors. Nature 1977; 268:245-246.
    • (1977) Nature , vol.268 , pp. 245-246
    • Stingl, G.1    Wolff-Schreiner, E.C.2    Pichler, W.J.3
  • 5
    • 0018580178 scopus 로고
    • Epidermal Langerhans cells are derived from cells originating in bone marrow
    • Katz SI, Tamaki K, Sachs DH. Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature 1979; 282:324-336.
    • (1979) Nature , vol.282 , pp. 324-336
    • Katz, S.I.1    Tamaki, K.2    Sachs, D.H.3
  • 6
    • 0022384804 scopus 로고
    • A comparison of murine epidermal Langerhans cells with spleen dendritic cells
    • Schuler G, Romani N, Steinman RM. A comparison of murine epidermal Langerhans cells with spleen dendritic cells. J Invest Dermatol 1985; 85:99s-106s.
    • (1985) J Invest Dermatol , vol.85 , pp. 99s-106s
    • Schuler, G.1    Romani, N.2    Steinman, R.M.3
  • 7
    • 0024422360 scopus 로고
    • Cultured human Langerhans cells resemble lymphoid dendritic cells in phenotype and function
    • Romani N, Lenz A, Glassel H, et al. Cultured human Langerhans cells resemble lymphoid dendritic cells in phenotype and function. J Invest Dermatol 1989; 93:600-609.
    • (1989) J Invest Dermatol , vol.93 , pp. 600-609
    • Romani, N.1    Lenz, A.2    Glassel, H.3
  • 8
    • 0015276610 scopus 로고
    • The mononuclear phagocyte system: A new classification of macrophages, monocytes, and their precursor cells
    • van Furth R, Cohn ZA, Hirsch JG, et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ 1972; 46:845-852.
    • (1972) Bull World Health Organ , vol.46 , pp. 845-852
    • Van Furth, R.1    Cohn, Z.A.2    Hirsch, J.G.3
  • 9
    • 84905107360 scopus 로고    scopus 로고
    • Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny
    • Guilliams M, Ginhoux F, Jakubzick C, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 2014; 14:571-578.
    • (2014) Nat Rev Immunol , vol.14 , pp. 571-578
    • Guilliams, M.1    Ginhoux, F.2    Jakubzick, C.3
  • 10
    • 0034284011 scopus 로고    scopus 로고
    • Langerhans cells develop from a lymphoid-committed precursor
    • Anjuere F, del HoyoGM, Martin P, Ardavin C. Langerhans cells develop from a lymphoid-committed precursor. Blood 2000; 96:1633-1637.
    • (2000) Blood , vol.96 , pp. 1633-1637
    • Anjuere, F.1    Del Hoyogm Martin, P.2    Ardavin, C.3
  • 11
    • 0036906526 scopus 로고    scopus 로고
    • Langerhans cells renew in the skin throughout life under steady-state conditions
    • Merad M, Manz MG, Karsunky H, et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol 2002; 31:135-141.
    • (2002) Nat Immunol , vol.31 , pp. 135-141
    • Merad, M.1    Manz, M.G.2    Karsunky, H.3
  • 13
    • 84901358607 scopus 로고    scopus 로고
    • Monocytes and macrophages: Developmental pathways and tissue homeostasis
    • Ginhoux F, Jung: S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 2014; 14:392-404.
    • (2014) Nat Rev Immunol , vol.14 , pp. 392-404
    • Ginhoux, F.1    Jung, S.2
  • 14
    • 84864152036 scopus 로고    scopus 로고
    • IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia
    • Wang Y, Szretter KJ, Vermi W, et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol 2012; 13:753-760.
    • (2012) Nat Immunol , vol.13 , pp. 753-760
    • Wang, Y.1    Szretter, K.J.2    Vermi, W.3
  • 15
    • 84870907320 scopus 로고    scopus 로고
    • Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia
    • Greter M, Lelios I, Pelczar P, et al. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity 2012; 37:1050-1060.
    • (2012) Immunity , vol.37 , pp. 1050-1060
    • Greter, M.1    Lelios, I.2    Pelczar, P.3
  • 16
    • 78149360132 scopus 로고    scopus 로고
    • Fate mapping analysis reveals that adult microglia derive from primitive macrophages
    • Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010; 330:841-845.
    • (2010) Science , vol.330 , pp. 841-845
    • Ginhoux, F.1    Greter, M.2    Leboeuf, M.3
  • 17
    • 84864298329 scopus 로고    scopus 로고
    • Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages
    • Hoeffel G, Wang Y, Greter M, et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med 2012; 209:1167-1181.
    • (2012) J Exp Med , vol.209 , pp. 1167-1181
    • Hoeffel, G.1    Wang, Y.2    Greter, M.3
  • 18
    • 84859508307 scopus 로고    scopus 로고
    • A lineage of myeloid cells independent of Myb and hematopoietic stem cells
    • Schulz C, Gomez Perdiguero E, Chorro L, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012; 336:86-90.
    • (2012) Science , vol.336 , pp. 86-90
    • Schulz, C.1    Gomez Perdiguero, E.2    Chorro, L.3
  • 19
    • 84925465211 scopus 로고    scopus 로고
    • Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors
    • Gomez Perdiguero E, Klapproth K, Schulz C, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015; 518:547-551.
    • (2015) Nature , vol.518 , pp. 547-551
    • Gomez Perdiguero, E.1    Klapproth, K.2    Schulz, C.3
  • 20
    • 84928189502 scopus 로고    scopus 로고
    • C-myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages
    • Hoeffel G, Chen J, Lavin Y, et al. C-myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 2015; 42:665-678.
    • (2015) Immunity , vol.42 , pp. 665-678
    • Hoeffel, G.1    Chen, J.2    Lavin, Y.3
  • 21
    • 84904875085 scopus 로고    scopus 로고
    • Myb-independent macrophages: A family of cells that develops with their tissue of residence and is involved in its homeostasis
    • Gomez Perdiguero E, Geissmann F. Myb-independent macrophages: a family of cells that develops with their tissue of residence and is involved in its homeostasis. Cold Spring Harb Symp Quant Biol 2013; 78:91-100.
    • (2013) Cold Spring Harb Symp Quant Biol , vol.78 , pp. 91-100
    • Gomez Perdiguero, E.1    Geissmann, F.2
  • 22
    • 84892450644 scopus 로고    scopus 로고
    • Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation
    • Epelman S, Lavine KJ, Beaudin AE, et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 2014; 40:91-104.
    • (2014) Immunity , vol.40 , pp. 91-104
    • Epelman, S.1    Lavine, K.J.2    Beaudin, A.E.3
  • 23
    • 60549103760 scopus 로고    scopus 로고
    • HLA-DR+ leukocytes acquire CD1 antigens in embryonic and fetal human skin and contain functional antigenpresenting cells
    • Schuster C, Vaculik C, Fiala C, et al. HLA-DR+ leukocytes acquire CD1 antigens in embryonic and fetal human skin and contain functional antigenpresenting cells. J Exp Med 2009; 206:169-181.
    • (2009) J Exp Med , vol.206 , pp. 169-181
    • Schuster, C.1    Vaculik, C.2    Fiala, C.3
  • 24
    • 84867873461 scopus 로고    scopus 로고
    • Phenotypic characterization of leukocytes in prenatal human dermis
    • Schuster C, Vaculik C, Prior M, et al. Phenotypic characterization of leukocytes in prenatal human dermis. J Invest Dermatol 2012; 132:2581-2592.
    • (2012) J Invest Dermatol , vol.132 , pp. 2581-2592
    • Schuster, C.1    Vaculik, C.2    Prior, M.3
  • 25
    • 0023266724 scopus 로고
    • Further evidence for the self-reproducing capacity of Langerhans cells in human skin
    • Czernielewski JM, Demarchez M. Further evidence for the self-reproducing capacity of Langerhans cells in human skin. J Invest Dermatol 1987; 88:17-20.
    • (1987) J Invest Dermatol , vol.88 , pp. 17-20
    • Czernielewski, J.M.1    Demarchez, M.2
  • 26
    • 78751680917 scopus 로고    scopus 로고
    • Self-renewal capacity of human epidermal Langerhans cells: Observations made on a composite tissue allograft
    • Kanitakis J, Morelon E, Petruzzo P, et al. Self-renewal capacity of human epidermal Langerhans cells: observations made on a composite tissue allograft. Exp Dermatol 2011; 20:145-146.
    • (2011) Exp Dermatol , vol.20 , pp. 145-146
    • Kanitakis, J.1    Morelon, E.2    Petruzzo, P.3
  • 27
    • 84926408535 scopus 로고    scopus 로고
    • Haematopoietic and immune defects associated with GATA2 mutation
    • Collin M, Dickinson R, Bigley V. Haematopoietic and immune defects associated with GATA2 mutation. Br J Haematol 2015; 169:173-187.
    • (2015) Br J Haematol , vol.169 , pp. 173-187
    • Collin, M.1    Dickinson, R.2    Bigley, V.3
  • 28
    • 79960219807 scopus 로고    scopus 로고
    • IRF8 mutations and human dendritic-cell immunodeficiency
    • Hambleton S, Salem S, Bustamante J, et al. IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med 2011; 365:127-138.
    • (2011) N Engl J Med , vol.365 , pp. 127-138
    • Hambleton, S.1    Salem, S.2    Bustamante, J.3
  • 29
    • 84890809254 scopus 로고    scopus 로고
    • Langerhans cells are generated by two distinct PU. 1-dependent transcriptional networks
    • Chopin M, Seillet C, Chevrier S, et al. Langerhans cells are generated by two distinct PU. 1-dependent transcriptional networks. J Exp Med 2013; 210:2967-2980.
    • (2013) J Exp Med , vol.210 , pp. 2967-2980
    • Chopin, M.1    Seillet, C.2    Chevrier, S.3
  • 30
    • 31344469849 scopus 로고    scopus 로고
    • The fate of human Langerhans cells in hematopoietic stem cell transplantation
    • Collin MP, Hart DN, Jackson GH, et al. The fate of human Langerhans cells in hematopoietic stem cell transplantation. J Exp Med 2006; 203:27-33.
    • (2006) J Exp Med , vol.203 , pp. 27-33
    • Collin, M.P.1    Hart, D.N.2    Jackson, G.H.3
  • 31
    • 33645650873 scopus 로고    scopus 로고
    • Fast appearance of donor dendritic cells in human skin: Dynamics of skin and blood dendritic cells after allogeneic hematopoietic cell transplantation
    • Auffermann-Gretzinger S, Eger L, Bornhauser M, et al. Fast appearance of donor dendritic cells in human skin: dynamics of skin and blood dendritic cells after allogeneic hematopoietic cell transplantation. Transplantation 2006; 81:866-873.
    • (2006) Transplantation , vol.81 , pp. 866-873
    • Auffermann-Gretzinger, S.1    Eger, L.2    Bornhauser, M.3
  • 32
    • 84907598045 scopus 로고    scopus 로고
    • Langerhans cell homeostasis and turnover after nonmyeloablative and myeloablative allogeneic hematopoietic cell transplantation
    • Mielcarek M, Kirkorian AY, Hackman RC, et al. Langerhans cell homeostasis and turnover after nonmyeloablative and myeloablative allogeneic hematopoietic cell transplantation. Transplantation 2014; 98:563-568.
    • (2014) Transplantation , vol.98 , pp. 563-568
    • Mielcarek, M.1    Kirkorian, A.Y.2    Hackman, R.C.3
  • 33
    • 84891370588 scopus 로고    scopus 로고
    • Origin of Langerhans cells in normal skin and chronic GVHD after hematopoietic stem-cell transplantation
    • Andani R, Robertson I, Macdonald KP, et al. Origin of Langerhans cells in normal skin and chronic GVHD after hematopoietic stem-cell transplantation. Exp Dermatol 2014; 23:75-77.
    • (2014) Exp Dermatol , vol.23 , pp. 75-77
    • Andani, R.1    Robertson, I.2    Macdonald, K.P.3
  • 34
    • 2442658900 scopus 로고    scopus 로고
    • Depletion of host Langerhans cells before transplantation of donor alloreactive T cells prevents skin graft-versushost disease
    • Merad M, Hoffmann P, Ranheim E, et al. Depletion of host Langerhans cells before transplantation of donor alloreactive T cells prevents skin graft-versushost disease. Nat Med 2004; 10:510-517.
    • (2004) Nat Med , vol.10 , pp. 510-517
    • Merad, M.1    Hoffmann, P.2    Ranheim, E.3
  • 35
    • 73949147392 scopus 로고    scopus 로고
    • Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network
    • Chorro L, Sarde A, Li M, et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J Exp Med 2009; 206:3089-3100.
    • (2009) J Exp Med , vol.206 , pp. 3089-3100
    • Chorro, L.1    Sarde, A.2    Li, M.3
  • 36
    • 79951693243 scopus 로고    scopus 로고
    • The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency
    • Bigley V, Haniffa M, Doulatov S, et al. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J Exp Med 2011; 208:227-234.
    • (2011) J Exp Med , vol.208 , pp. 227-234
    • Bigley, V.1    Haniffa, M.2    Doulatov, S.3
  • 37
    • 84884214656 scopus 로고    scopus 로고
    • Multicolor fate mapping of Langerhans cell homeostasis
    • Ghigo C, Mondor I, Jorquera A, et al. Multicolor fate mapping of Langerhans cell homeostasis. J Exp Med 2013; 210:1657-1664.
    • (2013) J Exp Med , vol.210 , pp. 1657-1664
    • Ghigo, C.1    Mondor, I.2    Jorquera, A.3
  • 38
    • 84872300827 scopus 로고    scopus 로고
    • Langerhans cell homeostasis in mice is dependent on mTORC1 but not mTORC2 function
    • Kellersch B, Brocker T. Langerhans cell homeostasis in mice is dependent on mTORC1 but not mTORC2 function. Blood 2013; 121:298-307.
    • (2013) Blood , vol.121 , pp. 298-307
    • Kellersch, B.1    Brocker, T.2
  • 39
    • 84892655317 scopus 로고    scopus 로고
    • The late endosomal adaptor molecule p14 (LAMTOR2) represents a novel regulator of Langerhans cell homeostasis
    • Sparber F, Scheffler JM, Amberg N, et al. The late endosomal adaptor molecule p14 (LAMTOR2) represents a novel regulator of Langerhans cell homeostasis. Blood 2014; 123:217-227.
    • (2014) Blood , vol.123 , pp. 217-227
    • Sparber, F.1    Scheffler, J.M.2    Amberg, N.3
  • 40
    • 84925938012 scopus 로고    scopus 로고
    • The late endosomal adaptor molecule p14 (LAMTOR2) regulates TGFbeta1-mediated homeostasis of Langerhans cells
    • Sparber F, Tripp CH, Komenda K, et al. The late endosomal adaptor molecule p14 (LAMTOR2) regulates TGFbeta1-mediated homeostasis of Langerhans cells. J Invest Dermatol 2015; 135:119-129.
    • (2015) J Invest Dermatol , vol.135 , pp. 119-129
    • Sparber, F.1    Tripp, C.H.2    Komenda, K.3
  • 41
    • 0030586565 scopus 로고    scopus 로고
    • TGF-beta 1 promotes in vitro development of dendritic cells from CD34+ hemopoietic progenitors
    • Strobl H, Riedl E, Scheinecker C, et al. TGF-beta 1 promotes in vitro development of dendritic cells from CD34+ hemopoietic progenitors. J Immunol 1996; 157:1499-1507.
    • (1996) J Immunol , vol.157 , pp. 1499-1507
    • Strobl, H.1    Riedl, E.2    Scheinecker, C.3
  • 42
    • 0030456368 scopus 로고    scopus 로고
    • A role for endogenous transforming growth factor beta 1 in Langerhans cell biology: The skin of transforming growth factor beta 1 null mice is devoid of epidermal Langerhans cells
    • Borkowski TA, Letterio JJ, Farr AG, Udey MC. A role for endogenous transforming growth factor beta 1 in Langerhans cell biology: the skin of transforming growth factor beta 1 null mice is devoid of epidermal Langerhans cells. J Exp Med 1996; 184:2417-2422.
    • (1996) J Exp Med , vol.184 , pp. 2417-2422
    • Borkowski, T.A.1    Letterio, J.J.2    Farr, A.G.3    Udey, M.C.4
  • 43
    • 35748948090 scopus 로고    scopus 로고
    • Autocrine/paracrine TGFbeta1 is required for the development of epidermal Langerhans cells
    • Kaplan DH, Li MO, Jenison MC, et al. Autocrine/paracrine TGFbeta1 is required for the development of epidermal Langerhans cells. J Exp Med 2007; 204:2545-2552.
    • (2007) J Exp Med , vol.204 , pp. 2545-2552
    • Kaplan, D.H.1    Li, M.O.2    Jenison, M.C.3
  • 44
    • 78649629136 scopus 로고    scopus 로고
    • TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis
    • Kel JM, Girard-Madoux MJ, Reizis B, Clausen BE. TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis. J Immunol 2010; 185:3248-3255.
    • (2010) J Immunol , vol.185 , pp. 3248-3255
    • Kel, J.M.1    Girard-Madoux, M.J.2    Reizis, B.3    Clausen, B.E.4
  • 45
    • 81455154983 scopus 로고    scopus 로고
    • Conditional deletion of TGF-betaR1 using Langerin-Cre mice results in Langerhans cell deficiency and reduced contact hypersensitivity
    • Zahner SP, Kel JM, Martina CA, et al. Conditional deletion of TGF-betaR1 using Langerin-Cre mice results in Langerhans cell deficiency and reduced contact hypersensitivity. J Immunol 2011; 187:5069-5076.
    • (2011) J Immunol , vol.187 , pp. 5069-5076
    • Zahner, S.P.1    Kel, J.M.2    Martina, C.A.3
  • 46
    • 84888114656 scopus 로고    scopus 로고
    • Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation
    • Yasmin N, Bauer T, Modak M, et al. Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation. J Exp Med 2013; 201:2597-2610.
    • (2013) J Exp Med , vol.201 , pp. 2597-2610
    • Yasmin, N.1    Bauer, T.2    Modak, M.3
  • 47
    • 84876688421 scopus 로고    scopus 로고
    • Beta-catenin promotes the differentiation of epidermal Langerhans dendritic cells
    • Yasmin N, Konradi S, Eisenwort G, et al. Beta-catenin promotes the differentiation of epidermal Langerhans dendritic cells. J Invest Dermatol 2013; 133:1250-1259.
    • (2013) J Invest Dermatol , vol.133 , pp. 1250-1259
    • Yasmin, N.1    Konradi, S.2    Eisenwort, G.3
  • 48
    • 84870276714 scopus 로고    scopus 로고
    • Identification of Axl as a downstream effector of TGF-beta1 during Langerhans cell differentiation and epidermal homeostasis
    • Bauer T, Zagorska A, Jurkin J, et al. Identification of Axl as a downstream effector of TGF-beta1 during Langerhans cell differentiation and epidermal homeostasis. J Exp Med 2012; 209:2033-2047.
    • (2012) J Exp Med , vol.209 , pp. 2033-2047
    • Bauer, T.1    Zagorska, A.2    Jurkin, J.3
  • 49
    • 0037136302 scopus 로고    scopus 로고
    • Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin
    • Geissmann F, Dieu-Nosjean MC, Dezutter C, et al. Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin. J Exp Med 2002; 196:417-430.
    • (2002) J Exp Med , vol.196 , pp. 417-430
    • Geissmann, F.1    Dieu-Nosjean, M.C.2    Dezutter, C.3
  • 50
    • 33645953640 scopus 로고    scopus 로고
    • Langerhans cells arise from monocytes in vivo
    • Ginhoux F, Tacke F, Angeli V, et al. Langerhans cells arise from monocytes in vivo. Nat Immunol 2006; 5:265-273.
    • (2006) Nat Immunol , vol.5 , pp. 265-273
    • Ginhoux, F.1    Tacke, F.2    Angeli, V.3
  • 51
    • 84864124259 scopus 로고    scopus 로고
    • Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin
    • Nagao K, Kobayashi T, Moro K, et al. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat Immunol 2012; 13:744-752.
    • (2012) Nat Immunol , vol.13 , pp. 744-752
    • Nagao, K.1    Kobayashi, T.2    Moro, K.3
  • 52
    • 84869229157 scopus 로고    scopus 로고
    • Two distinct types of Langerhans cells populate the skin during steady state and inflammation
    • Sere K, Baek JH, Ober-Blobaum J, et al. Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity 2012; 37:905-916.
    • (2012) Immunity , vol.37 , pp. 905-916
    • Sere, K.1    Baek, J.H.2    Ober-Blobaum, J.3
  • 53
    • 32644447757 scopus 로고    scopus 로고
    • Flk2+ myeloid progenitors are the main source of Langerhans cells
    • Mende I, Karsunky H, Weissman IL, et al. Flk2+ myeloid progenitors are the main source of Langerhans cells. Blood 2005; 107:1383-1390.
    • (2005) Blood , vol.107 , pp. 1383-1390
    • Mende, I.1    Karsunky, H.2    Weissman, I.L.3
  • 54
    • 0032536795 scopus 로고    scopus 로고
    • Transforming growth factor beta1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells
    • Geissmann F, Prost C, Monnet JP, et al. Transforming growth factor beta1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J Exp Med 1998; 187:961-966.
    • (1998) J Exp Med , vol.187 , pp. 961-966
    • Geissmann, F.1    Prost, C.2    Monnet, J.P.3
  • 55
    • 84871583494 scopus 로고    scopus 로고
    • Notch is active in Langerhans cell histiocytosis and confers pathognomonic features on dendritic cells
    • Hutter C, Kauer M, Simonitsch-Klupp I, et al. Notch is active in Langerhans cell histiocytosis and confers pathognomonic features on dendritic cells. Blood 2012; 120:5199-5208.
    • (2012) Blood , vol.120 , pp. 5199-5208
    • Hutter, C.1    Kauer, M.2    Simonitsch-Klupp, I.3
  • 56
    • 84907611125 scopus 로고    scopus 로고
    • Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-beta
    • Martinez-Cingolani C, Grandclaudon M, Jeanmougin M, et al. Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-beta. Blood 2014; 124:2411-2420.
    • (2014) Blood , vol.124 , pp. 2411-2420
    • Martinez-Cingolani, C.1    Grandclaudon, M.2    Jeanmougin, M.3
  • 57
    • 84922179711 scopus 로고    scopus 로고
    • CD1c+ blood dendritic cells have Langerhans cell potential
    • Milne P, Bigley V, Gunawan M, et al. CD1c+ blood dendritic cells have Langerhans cell potential. Blood 2015; 125:470-473.
    • (2015) Blood , vol.125 , pp. 470-473
    • Milne, P.1    Bigley, V.2    Gunawan, M.3
  • 58
    • 25644458587 scopus 로고    scopus 로고
    • A novel role for Notch ligand Delta-1 as a regulator of human Langerhans cell development from blood monocytes
    • Hoshino N, Katayama N, Shibasaki T, et al. A novel role for Notch ligand Delta-1 as a regulator of human Langerhans cell development from blood monocytes. J Leukoc Biol 2005; 78:921-929.
    • (2005) J Leukoc Biol , vol.78 , pp. 921-929
    • Hoshino, N.1    Katayama, N.2    Shibasaki, T.3
  • 59
    • 0033179148 scopus 로고    scopus 로고
    • A CD1a+/CD11c+ subset of human blood dendritic cells is a direct precursor of Langerhans cells
    • Ito T, Inaba M, Inaba K, et al. A CD1a+/CD11c+ subset of human blood dendritic cells is a direct precursor of Langerhans cells. J Immunol 1999; 163:1409-1419.
    • (1999) J Immunol , vol.163 , pp. 1409-1419
    • Ito, T.1    Inaba, M.2    Inaba, K.3
  • 60
    • 0011882760 scopus 로고    scopus 로고
    • Peripheral blood dendritic cell subset analysis
    • Mason D, editor. Oxford University Press
    • MacDonald KPA, Munster D, Clark G, et al. Peripheral blood dendritic cell subset analysis. In: Mason D, editor. Leucocyte Typing VII. Oxford University Press; 2002; pp. 315-319.
    • (2002) Leucocyte Typing VII , pp. 315-319
    • Kpa, M.1    Munster, D.2    Clark, G.3
  • 61
    • 0035202722 scopus 로고    scopus 로고
    • Dermal-resident CD14+ cells differentiate into Langerhans cells
    • Larregina AT, Morelli AE, Spencer LA, et al. Dermal-resident CD14+ cells differentiate into Langerhans cells. Nat Immunol 2001; 2:1151-1158.
    • (2001) Nat Immunol , vol.2 , pp. 1151-1158
    • Larregina, A.T.1    Morelli, A.E.2    Spencer, L.A.3
  • 62
    • 84907966318 scopus 로고    scopus 로고
    • Human dermal CD14(+) cells are a transient population of monocyte-derived macrophages
    • McGovern N, Schlitzer A, Gunawan M, et al. Human dermal CD14(+) cells are a transient population of monocyte-derived macrophages. Immunity 2014; 41:465-477.
    • (2014) Immunity , vol.41 , pp. 465-477
    • McGovern, N.1    Schlitzer, A.2    Gunawan, M.3
  • 63
    • 84929154141 scopus 로고    scopus 로고
    • Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells
    • Bigley V, McGovern N, Milne P, et al. Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells. J Leukoc Biol 2015; 97:627-634.
    • (2015) J Leukoc Biol , vol.97 , pp. 627-634
    • Bigley, V.1    McGovern, N.2    Milne, P.3
  • 65
    • 84909609809 scopus 로고    scopus 로고
    • Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis
    • Chakraborty R, Hampton OA, Shen X, et al. Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood 2014; 124:3007-3015.
    • (2014) Blood , vol.124 , pp. 3007-3015
    • Chakraborty, R.1    Hampton, O.A.2    Shen, X.3
  • 66
    • 84907009615 scopus 로고    scopus 로고
    • High prevalence of somatic MAP2K1 mutations in BRAF V600E-negative Langerhans cell histiocytosis
    • Brown NA, Furtado LV, Betz BL, et al. High prevalence of somatic MAP2K1 mutations in BRAF V600E-negative Langerhans cell histiocytosis. Blood 2014; 124:1655-1658.
    • (2014) Blood , vol.124 , pp. 1655-1658
    • Brown, N.A.1    Furtado, L.V.2    Betz, B.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.