-
1
-
-
84958838963
-
Novel technologies provide more engineering strategies for amino acid-producing microorganisms
-
Gu, P., Su, T. and Qi, Q. (2016) Novel technologies provide more engineering strategies for amino acid-producing microorganisms. Appl. Microbiol. Biotechnol. 100, 2097-2105 https://doi.org/10.1007/s00253-015-7276-8
-
(2016)
Appl. Microbiol. Biotechnol
, vol.100
, pp. 2097-2105
-
-
Gu, P.1
Su, T.2
Qi, Q.3
-
2
-
-
84942239426
-
Direct fermentation route for the production of acrylic acid
-
Chu, H.S., Ahn, J.-H., Yun, J., Choi, I.S., Nam, T.-W. and Cho, K.M. (2015) Direct fermentation route for the production of acrylic acid. Metab. Eng. 32, 23-29 https://doi.org/10.1016/j.ymben.2015.08.005
-
(2015)
Metab. Eng
, vol.32
, pp. 23-29
-
-
Chu, H.S.1
Ahn, J.-H.2
Yun, J.3
Choi, I.S.4
Nam, T.-W.5
Cho, K.M.6
-
3
-
-
84947586122
-
Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass
-
Lin, Z., Zhang, Y., Yuan, Q., Liu, Q., Li, Y., Wang, Z. et al. (2015) Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass. Microb. Cell Fact. 14, 185 https://doi.org/10.1186/s12934-015-0369-3
-
(2015)
Microb. Cell Fact
, vol.14
, pp. 185
-
-
Lin, Z.1
Zhang, Y.2
Yuan, Q.3
Liu, Q.4
Li, Y.5
Wang, Z.6
-
4
-
-
84919915096
-
Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars
-
Li, L., Li, K., Wang, Y., Chen, C., Xu, Y., Zhang, L. et al. (2015) Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Metab. Eng. 28, 19-27 https://doi.org/10.1016/j.ymben.2014.11.010
-
(2015)
Metab. Eng
, vol.28
, pp. 19-27
-
-
Li, L.1
Li, K.2
Wang, Y.3
Chen, C.4
Xu, Y.5
Zhang, L.6
-
5
-
-
84920161546
-
Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering
-
Zhao, S., Jones, J.A., Lachance, D.M., Bhan, N., Khalidi, O., Venkataraman, S. et al. (2015) Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering. Metab. Eng. 28, 43-53 https://doi.org/10.1016/j.ymben.2014.12.002
-
(2015)
Metab. Eng
, vol.28
, pp. 43-53
-
-
Zhao, S.1
Jones, J.A.2
Lachance, D.M.3
Bhan, N.4
Khalidi, O.5
Venkataraman, S.6
-
6
-
-
84941346066
-
Complete biosynthesis of opioids in yeast
-
Galanie, S., Thodey, K., Trenchard, I.J., Filsinger Interrante, M. and Smolke, C.D. (2015) Complete biosynthesis of opioids in yeast. Science 349, 1095-1100 https://doi.org/10.1126/science.aac9373
-
(2015)
Science
, vol.349
, pp. 1095-1100
-
-
Galanie, S.1
Thodey, K.2
Trenchard, I.J.3
Filsinger Interrante, M.4
Smolke, C.D.5
-
7
-
-
84925511388
-
Metabolic engineering of Escherichia coli to produce zeaxanthin
-
Li, X.-R., Tian, G.-Q., Shen, H.-J. and Liu, J.-Z. (2015) Metabolic engineering of Escherichia coli to produce zeaxanthin. J. Ind. Microbiol. Biotechnol. 42, 627-636 https://doi.org/10.1007/s10295-014-1565-6
-
(2015)
J. Ind. Microbiol. Biotechnol
, vol.42
, pp. 627-636
-
-
Li, X.-R.1
Tian, G.-Q.2
Shen, H.-J.3
Liu, J.-Z.4
-
8
-
-
84926669094
-
A microbial platform for renewable propane synthesis based on a fermentative butanol pathway
-
Menon, N., Pásztor, A., Menon, B.R.K., Kallio, P., Fisher, K., Akhtar, M.K. et al. (2015) A microbial platform for renewable propane synthesis based on a fermentative butanol pathway. Biotechnol. Biofuels 8, 61 https://doi.org/10.1186/s13068-015-0231-1
-
(2015)
Biotechnol. Biofuels
, vol.8
, pp. 61
-
-
Menon, N.1
Pásztor, A.2
Menon, B.R.K.3
Kallio, P.4
Fisher, K.5
Akhtar, M.K.6
-
9
-
-
84907546229
-
Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers
-
Generoso, W.C., Schadeweg, V., Oreb, M. and Boles, E. (2015) Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Curr. Opin. Biotechnol. 33, 1-7 https://doi.org/10.1016/j.copbio.2014.09.004
-
(2015)
Curr. Opin. Biotechnol
, vol.33
, pp. 1-7
-
-
Generoso, W.C.1
Schadeweg, V.2
Oreb, M.3
Boles, E.4
-
10
-
-
85016462601
-
Metabolic engineering strategies to bio-adipic acid production
-
Kruyer, N.S. and Peralta-Yahya, P. (2017) Metabolic engineering strategies to bio-adipic acid production. Curr. Opin. Biotechnol. 45, 136-143 https:// doi.org/10.1016/j.copbio.2017.03.006
-
(2017)
Curr. Opin. Biotechnol
, vol.45
, pp. 136-143
-
-
Kruyer, N.S.1
Peralta-Yahya, P.2
-
11
-
-
84937436324
-
Codon bias as a means to fine-tune gene expression
-
Quax, T.E.F., Claassens, N.J., Söll, D. and van der Oost, J. (2015) Codon bias as a means to fine-tune gene expression. Mol. Cell 59, 149-161 https:// doi.org/10.1016/j.molcel.2015.05.035
-
(2015)
Mol. Cell
, vol.59
, pp. 149-161
-
-
Quax, T.E.F.1
Claassens, N.J.2
Söll, D.3
Van Der Oost, J.4
-
12
-
-
0030861452
-
Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements
-
Lutz, R. and Bujard, H. (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203-1210 https://doi.org/10.1093/nar/25.6.1203
-
(1997)
Nucleic Acids Res
, vol.25
, pp. 1203-1210
-
-
Lutz, R.1
Bujard, H.2
-
13
-
-
54349084011
-
Escherichia coli strains with promoter libraries constructed by Red/ET recombination pave the way for transcriptional fine-tuning
-
Braatsch, S., Helmark, S., Kranz, H., Koebmann, B. and Jensen, P.R. (2008) Escherichia coli strains with promoter libraries constructed by Red/ET recombination pave the way for transcriptional fine-tuning. BioTechniques 45, 335-337 https://doi.org/10.2144/000112907
-
(2008)
BioTechniques
, vol.45
, pp. 335-337
-
-
Braatsch, S.1
Helmark, S.2
Kranz, H.3
Koebmann, B.4
Jensen, P.R.5
-
14
-
-
84877292750
-
Spanning high-dimensional expression space using ribosome-binding site combinatorics
-
Zelcbuch, L., Antonovsky, N., Bar-Even, A., Levin-Karp, A., Barenholz, U., Dayagi, M. et al. (2013) Spanning high-dimensional expression space using ribosome-binding site combinatorics. Nucleic Acids Res. 41, e98 https://doi.org/10.1093/nar/gkt151
-
(2013)
Nucleic Acids Res
, vol.41
, pp. e98
-
-
Zelcbuch, L.1
Antonovsky, N.2
Bar-Even, A.3
Levin-Karp, A.4
Barenholz, U.5
Dayagi, M.6
-
15
-
-
84947583295
-
Overflow metabolism in Escherichia coli results from efficient proteome allocation
-
Basan, M., Hui, S., Okano, H., Zhang, Z., Shen, Y., Williamson, J.R. et al. (2015) Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99-104 https://doi.org/10.1038/nature15765
-
(2015)
Nature
, vol.528
, pp. 99-104
-
-
Basan, M.1
Hui, S.2
Okano, H.3
Zhang, Z.4
Shen, Y.5
Williamson, J.R.6
-
16
-
-
33847785682
-
Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae
-
Vemuri, G.N., Eiteman, M.A., McEwen, J.E., Olsson, L. and Nielsen, J. (2007) Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. U.S.A. 104, 2402-2407 https://doi.org/10.1073/pnas.0607469104
-
(2007)
Proc. Natl Acad. Sci. U.S.A.
, vol.104
, pp. 2402-2407
-
-
Vemuri, G.N.1
Eiteman, M.A.2
McEwen, J.E.3
Olsson, L.4
Nielsen, J.5
-
17
-
-
84865972260
-
Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms
-
Paczia, N., Nilgen, A., Lehmann, T., Gätgens, J., Wiechert, W. and Noack, S. (2012) Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microb. Cell Fact. 11, 122 https://doi.org/10.1186/1475-2859-11-122
-
(2012)
Microb. Cell Fact
, vol.11
, pp. 122
-
-
Paczia, N.1
Nilgen, A.2
Lehmann, T.3
Gätgens, J.4
Wiechert, W.5
Noack, S.6
-
18
-
-
84959451365
-
The Warburg effect: How does it benefit cancer cells?
-
Liberti, M.V. and Locasale, J.W. (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41, 211-218 https://doi.org/10. 1016/j.tibs.2015.12.001
-
(2016)
Trends Biochem. Sci
, vol.41
, pp. 211-218
-
-
Liberti, M.V.1
Locasale, J.W.2
-
19
-
-
85019419661
-
Engineering metabolic pathways in Escherichia coli for constructing a 'microbial chassis' for biochemical production
-
Matsumoto, T., Tanaka, T. and Kondo, A. (2017) Engineering metabolic pathways in Escherichia coli for constructing a 'microbial chassis' for biochemical production. Bioresour. Technol. 245(Pt B), 1362-1368 https://doi.org/10.1016/j.biortech.2017.05.008
-
(2017)
Bioresour. Technol
, vol.245
, pp. 1362-1368
-
-
Matsumoto, T.1
Tanaka, T.2
Kondo, A.3
-
20
-
-
33746913914
-
Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids
-
Wendisch, V.F., Bott, M. and Eikmanns, B.J. (2006) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr. Opin. Microbiol. 9, 268-274 https://doi.org/10.1016/j.mib.2006.03.001
-
(2006)
Curr. Opin. Microbiol
, vol.9
, pp. 268-274
-
-
Wendisch, V.F.1
Bott, M.2
Eikmanns, B.J.3
-
21
-
-
36348955587
-
Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli
-
Maeda, T., Sanchez-Torres, V. and Wood, T.K. (2007) Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 77, 879-890 https://doi.org/10.1007/s00253-007-1217-0
-
(2007)
Appl. Microbiol. Biotechnol
, vol.77
, pp. 879-890
-
-
Maeda, T.1
Sanchez-Torres, V.2
Wood, T.K.3
-
22
-
-
84991687649
-
Metabolic engineering of Escherichia coli W3110 to produce L-malate
-
Dong, X., Chen, X., Qian, Y., Wang, Y., Wang, L., Qiao, W. et al. (2017) Metabolic engineering of Escherichia coli W3110 to produce L-malate. Biotechnol. Bioeng. 114, 656-664 https://doi.org/10.1002/bit.26190
-
(2017)
Biotechnol. Bioeng
, vol.114
, pp. 656-664
-
-
Dong, X.1
Chen, X.2
Qian, Y.3
Wang, Y.4
Wang, L.5
Qiao, W.6
-
23
-
-
85014057909
-
Construction of pyruvate producing strain with intact pyruvate dehydrogenase and genome-wide transcription analysis
-
Yang, M. and Zhang, X. (2017) Construction of pyruvate producing strain with intact pyruvate dehydrogenase and genome-wide transcription analysis. World J. Microbiol. Biotechnol. 33, 59 https://doi.org/10.1007/s11274-016-2202-5
-
(2017)
World J. Microbiol. Biotechnol
, vol.33
, pp. 59
-
-
Yang, M.1
Zhang, X.2
-
24
-
-
1442326106
-
Process strategies to enhance pyruvate production with recombinant Escherichia coli: From repetitive fed-batch to in situ product recovery with fully integrated electrodialysis
-
Zelic, B., Gostovic, S., Vuorilehto, K., Vasic-Racki, D. and Takors, R. (2004) Process strategies to enhance pyruvate production with recombinant Escherichia coli: from repetitive fed-batch to in situ product recovery with fully integrated electrodialysis. Biotechnol. Bioeng. 85, 638-646 https://doi. org/10.1002/bit.10820
-
(2004)
Biotechnol. Bioeng
, vol.85
, pp. 638-646
-
-
Zelic, B.1
Gostovic, S.2
Vuorilehto, K.3
Vasic-Racki, D.4
Takors, R.5
-
25
-
-
33846448781
-
Homolactate fermentation by metabolically engineered Escherichia coli strains
-
Zhu, Y., Eiteman, M.A., DeWitt, K. and Altman, E. (2007) Homolactate fermentation by metabolically engineered Escherichia coli strains. Appl. Environ. Microbiol. 73, 456-464 https://doi.org/10.1128/AEM.02022-06
-
(2007)
Appl. Environ. Microbiol
, vol.73
, pp. 456-464
-
-
Zhu, Y.1
Eiteman, M.A.2
DeWitt, K.3
Altman, E.4
-
26
-
-
18944378749
-
Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity
-
Sánchez, A.M., Bennett, G.N. and San, K.-Y. (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab. Eng. 7, 229-239 https://doi.org/10.1016/j.ymben.2005.03.001
-
(2005)
Metab. Eng
, vol.7
, pp. 229-239
-
-
Sánchez, A.M.1
Bennett, G.N.2
San, K.-Y.3
-
27
-
-
33645029734
-
Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production
-
Lee, S.J., Song, H. and Lee, S.Y. (2006) Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl. Environ. Microbiol. 72, 1939-1948 https://doi.org/10.1128/AEM.72.3.1939-1948.2006
-
(2006)
Appl. Environ. Microbiol
, vol.72
, pp. 1939-1948
-
-
Lee, S.J.1
Song, H.2
Lee, S.Y.3
-
28
-
-
56449105588
-
Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C
-
Jantama, K., Zhang, X., Moore, J.C., Shanmugam, K.T., Svoronos, S.A. and Ingram, L.O. (2008) Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol. Bioeng. 101, 881-893 https://doi.org/10.1002/bit.22005
-
(2008)
Biotechnol. Bioeng
, vol.101
, pp. 881-893
-
-
Jantama, K.1
Zhang, X.2
Moore, J.C.3
Shanmugam, K.T.4
Svoronos, S.A.5
Ingram, L.O.6
-
29
-
-
79551490770
-
L-malate production by metabolically engineered Escherichia coli
-
Zhang, X., Wang, X., Shanmugam, K.T. and Ingram, L.O. (2011) L-malate production by metabolically engineered Escherichia coli. Appl. Environ. Microbiol. 77, 427-434 https://doi.org/10.1128/AEM.01971-10
-
(2011)
Appl. Environ. Microbiol
, vol.77
, pp. 427-434
-
-
Zhang, X.1
Wang, X.2
Shanmugam, K.T.3
Ingram, L.O.4
-
30
-
-
77955559433
-
Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition
-
Li, Z.-J., Jian, J., Wei, X.-X., Shen, X.-W. and Chen, G.-Q. (2010) Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition. Appl. Microbiol. Biotechnol. 87, 2001-2009 https://doi.org/10.1007/s00253-010-2676-2
-
(2010)
Appl. Microbiol. Biotechnol
, vol.87
, pp. 2001-2009
-
-
Li, Z.-J.1
Jian, J.2
Wei, X.-X.3
Shen, X.-W.4
Chen, G.-Q.5
-
31
-
-
77949448789
-
Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. Coli
-
Nielsen, D.R., Yoon, S.-H., Yuan, C.J. and Prather, K.L.J. (2010) Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli. Biotechnol. J. 5, 274-284 https://doi.org/10.1002/biot.200900279
-
(2010)
Biotechnol. J
, vol.5
, pp. 274-284
-
-
Nielsen, D.R.1
Yoon, S.-H.2
Yuan, C.J.3
Prather, K.L.J.4
-
32
-
-
84907029409
-
Improvement of 2,3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formate-lyase gene
-
Jung, M.-Y., Mazumdar, S., Shin, S.H., Yang, K.-S., Lee, J. and Oh, M.-K. (2014) Improvement of 2,3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formate-lyase gene. Appl. Environ. Microbiol. 80, 6195-6203 https://doi.org/10.1128/AEM.02069-14
-
(2014)
Appl. Environ. Microbiol
, vol.80
, pp. 6195-6203
-
-
Jung, M.-Y.1
Mazumdar, S.2
Shin, S.H.3
Yang, K.-S.4
Lee, J.5
Oh, M.-K.6
-
33
-
-
84920194778
-
Microbial acetyl-CoA metabolism and metabolic engineering
-
Krivoruchko, A., Zhang, Y., Siewers, V., Chen, Y. and Nielsen, J. (2015) Microbial acetyl-CoA metabolism and metabolic engineering. Metab. Eng. 28, 28-42 https://doi.org/10.1016/j.ymben.2014.11.009
-
(2015)
Metab. Eng
, vol.28
, pp. 28-42
-
-
Krivoruchko, A.1
Zhang, Y.2
Siewers, V.3
Chen, Y.4
Nielsen, J.5
-
34
-
-
84942612938
-
Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum
-
Papanek, B., Biswas, R., Rydzak, T. and Guss, A.M. (2015) Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Metab. Eng. 32, 49-54 https://doi.org/10.1016/j.ymben.2015.09.002
-
(2015)
Metab. Eng
, vol.32
, pp. 49-54
-
-
Papanek, B.1
Biswas, R.2
Rydzak, T.3
Guss, A.M.4
-
35
-
-
6944242467
-
Cloning of L-lactate dehydrogenase and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485
-
Desai, S.G., Guerinot, M.L. and Lynd, L.R. (2004) Cloning of L-lactate dehydrogenase and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl. Microbiol. Biotechnol. 65, 600-605 https://doi.org/10.1007/s00253-004-1575-9
-
(2004)
Appl. Microbiol. Biotechnol
, vol.65
, pp. 600-605
-
-
Desai, S.G.1
Guerinot, M.L.2
Lynd, L.R.3
-
36
-
-
53049097710
-
Metabolic engineering of Escherichia coli for 1-butanol production
-
Atsumi, S., Cann, A.F., Connor, M.R., Shen, C.R., Smith, K.M., Brynildsen, M.P. et al. (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10, 305-311 https://doi.org/10.1016/j.ymben.2007.08.003
-
(2008)
Metab. Eng
, vol.10
, pp. 305-311
-
-
Atsumi, S.1
Cann, A.F.2
Connor, M.R.3
Shen, C.R.4
Smith, K.M.5
Brynildsen, M.P.6
-
37
-
-
38049001166
-
Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
-
Atsumi, S., Hanai, T. and Liao, J.C. (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86-89 https://doi.org/10.1038/nature06450
-
(2008)
Nature
, vol.451
, pp. 86-89
-
-
Atsumi, S.1
Hanai, T.2
Liao, J.C.3
-
38
-
-
85020923621
-
Gene modification of the acetate biosynthesis pathway in Escherichia coli and implementation of the cell recycling technology to increase L-tryptophan production
-
Xu, Q., Bai, F., Chen, N. and Bai, G. (2017) Gene modification of the acetate biosynthesis pathway in Escherichia coli and implementation of the cell recycling technology to increase L-tryptophan production. PLoS ONE 12, e0179240 https://doi.org/10.1371/journal.pone.0179240
-
(2017)
PLoS ONE
, vol.12
, pp. e0179240
-
-
Xu, Q.1
Bai, F.2
Chen, N.3
Bai, G.4
-
39
-
-
85021100473
-
Eliminating acetate formation improves citramalate production by metabolically engineered Escherichia coli
-
Parimi, N.S., Durie, I.A., Wu, X., Niyas, A.M.M. and Eiteman, M.A. (2017) Eliminating acetate formation improves citramalate production by metabolically engineered Escherichia coli. Microb. Cell Fact. 16, 114 https://doi.org/10.1186/s12934-017-0729-2
-
(2017)
Microb. Cell Fact
, vol.16
, pp. 114
-
-
Parimi, N.S.1
Durie, I.A.2
Wu, X.3
Niyas, A.M.M.4
Eiteman, M.A.5
-
40
-
-
44349173795
-
Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12
-
Kim, Y., Ingram, L.O. and Shanmugam, K.T. (2008) Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12. J. Bacteriol. 190, 3851-3858 https://doi.org/10.1128/JB.00104-08
-
(2008)
J. Bacteriol
, vol.190
, pp. 3851-3858
-
-
Kim, Y.1
Ingram, L.O.2
Shanmugam, K.T.3
-
41
-
-
84938946682
-
NADPH-generating systems in bacteria and archaea
-
Spaans, S.K., Weusthuis, R.A., van der Oost, J. and Kengen, S.W.M. (2015) NADPH-generating systems in bacteria and archaea. Front. Microbiol. 6, 742 https://doi.org/10.3389/fmicb.2015.00742
-
(2015)
Front. Microbiol
, vol.6
, pp. 742
-
-
Spaans, S.K.1
Weusthuis, R.A.2
Van Der Oost, J.3
Kengen, S.W.M.4
-
42
-
-
1342325419
-
The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli
-
Sauer, U., Canonaco, F., Heri, S., Perrenoud, A. and Fischer, E. (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J. Biol. Chem. 279, 6613-6619 https://doi.org/10.1074/jbc.M311657200
-
(2004)
J. Biol. Chem
, vol.279
, pp. 6613-6619
-
-
Sauer, U.1
Canonaco, F.2
Heri, S.3
Perrenoud, A.4
Fischer, E.5
-
43
-
-
84929079346
-
Metabolic engineering of Escherichia coli strains for co-production of hydrogen and ethanol from glucose
-
Seol, E., Ainala, S.K., Sekar, B.S. and Park, S. (2014) Metabolic engineering of Escherichia coli strains for co-production of hydrogen and ethanol from glucose. Int. J. Hydrogen Energy 39, 19323-19330 https://doi.org/10.1016/j.ijhydene.2014.06.054
-
(2014)
Int. J. Hydrogen Energy
, vol.39
, pp. 19323-19330
-
-
Seol, E.1
Ainala, S.K.2
Sekar, B.S.3
Park, S.4
-
44
-
-
85019015726
-
Co-production of hydrogen and ethanol from glucose in Escherichia coli by activation of pentose-phosphate pathway through deletion of phosphoglucose isomerase ( pgi) and overexpression of glucose-6-phosphate dehydrogenase (zwf ) and 6-phosphogluconate dehydrogenase (gnd)
-
Sundara Sekar, B., Seol, E. and Park, S. (2017) Co-production of hydrogen and ethanol from glucose in Escherichia coli by activation of pentose-phosphate pathway through deletion of phosphoglucose isomerase ( pgi) and overexpression of glucose-6-phosphate dehydrogenase (zwf ) and 6-phosphogluconate dehydrogenase (gnd). Biotechnol. Biofuels 10, 85 https://doi.org/10.1186/s13068-017-0768-2
-
(2017)
Biotechnol. Biofuels
, vol.10
, pp. 85
-
-
Sundara Sekar, B.1
Seol, E.2
Park, S.3
-
45
-
-
0041930987
-
Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum
-
PMID:12948638
-
Marx, A., Hans, S., Möckel, B., Bathe, B., de Graaf, A.A., McCormack, A.C. et al. (2003) Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J. Biotechnol. 104, 185-197 PMID:12948638
-
(2003)
J. Biotechnol
, vol.104
, pp. 185-197
-
-
Marx, A.1
Hans, S.2
Möckel, B.3
Bathe, B.4
De Graaf, A.A.5
McCormack, A.C.6
-
46
-
-
43949108572
-
Corynebacterium glutamicum tailored for high-yield L-valine production
-
Blombach, B., Schreiner, M.E., Bartek, T., Oldiges, M. and Eikmanns, B.J. (2008) Corynebacterium glutamicum tailored for high-yield L-valine production. Appl. Microbiol. Biotechnol. 79, 471-479 https://doi.org/10.1007/s00253-008-1444-z
-
(2008)
Appl. Microbiol. Biotechnol
, vol.79
, pp. 471-479
-
-
Blombach, B.1
Schreiner, M.E.2
Bartek, T.3
Oldiges, M.4
Eikmanns, B.J.5
-
47
-
-
84907362164
-
Metabolic engineering of Corynebacterium glutamicum for L-arginine production
-
Park, S.H., Kim, H.U., Kim, T.Y., Park, J.S., Kim, S.-S. and Lee, S.Y. (2014) Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat. Commun. 5, 4618 https://doi.org/10.1038/ncomms5618
-
(2014)
Nat. Commun
, vol.5
, pp. 4618
-
-
Park, S.H.1
Kim, H.U.2
Kim, T.Y.3
Park, J.S.4
Kim, S.-S.5
Lee, S.Y.6
-
48
-
-
84920074788
-
Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine
-
Kim, S.Y., Lee, J. and Lee, S.Y. (2015) Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine. Biotechnol. Bioeng. 112, 416-421 https://doi.org/10.1002/bit.25440
-
(2015)
Biotechnol. Bioeng
, vol.112
, pp. 416-421
-
-
Kim, S.Y.1
Lee, J.2
Lee, S.Y.3
-
49
-
-
84880510233
-
Improvement of NADPH bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains
-
Wang, Y., San, K.-Y. and Bennett, G.N. (2013) Improvement of NADPH bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains. Appl. Microbiol. Biotechnol. 97, 6883-6893 https://doi.org/10.1007/s00253-013-4859-0
-
(2013)
Appl. Microbiol. Biotechnol
, vol.97
, pp. 6883-6893
-
-
Wang, Y.1
San, K.-Y.2
Bennett, G.N.3
-
50
-
-
84925348793
-
Rational design of a synthetic Entner-Doudoroff pathway for improved and controllable NADPH regeneration
-
Ng, C.Y., Farasat, I., Maranas, C.D. and Salis, H.M. (2015) Rational design of a synthetic Entner-Doudoroff pathway for improved and controllable NADPH regeneration. Metab. Eng. 29, 86-96 https://doi.org/10.1016/j.ymben.2015.03.001
-
(2015)
Metab. Eng
, vol.29
, pp. 86-96
-
-
Ng, C.Y.1
Farasat, I.2
Maranas, C.D.3
Salis, H.M.4
-
51
-
-
84971577878
-
Increasing the production of (R)-3-hydroxybutyrate in recombinant Escherichia coli by improved cofactor supply
-
Perez-Zabaleta, M., Sjöberg, G., Guevara-Martínez, M., Jarmander, J., Gustavsson, M., Quillaguamán, J. et al. (2016) Increasing the production of (R)-3-hydroxybutyrate in recombinant Escherichia coli by improved cofactor supply. Microb. Cell Fact. 15, 91 https://doi.org/10.1186/ s12934-016-0490-y
-
(2016)
Microb. Cell Fact
, vol.15
, pp. 91
-
-
Perez-Zabaleta, M.1
Sjöberg, G.2
Guevara-Martínez, M.3
Jarmander, J.4
Gustavsson, M.5
Quillaguamán, J.6
-
52
-
-
84872783399
-
Enhancement of cytidine production by coexpression of gnd, zwf, and prs genes in recombinant Escherichia coli CYT15
-
Fang, H., Xie, X., Xu, Q., Zhang, C. and Chen, N. (2013) Enhancement of cytidine production by coexpression of gnd, zwf, and prs genes in recombinant Escherichia coli CYT15. Biotechnol. Lett. 35, 245-251 https://doi.org/10.1007/s10529-012-1068-3
-
(2013)
Biotechnol. Lett
, vol.35
, pp. 245-251
-
-
Fang, H.1
Xie, X.2
Xu, Q.3
Zhang, C.4
Chen, N.5
-
53
-
-
0036305048
-
Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. Coli transformant harboring a cloned phbCAB operon
-
Lim, S.-J., Jung, Y.-M., Shin, H.-D. and Lee, Y.-H. (2002) Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon. J. Biosci. Bioeng. 93, 543-549 https://doi.org/10.1016/S1389-1723(02)80235-3
-
(2002)
J. Biosci. Bioeng
, vol.93
, pp. 543-549
-
-
Lim, S.-J.1
Jung, Y.-M.2
Shin, H.-D.3
Lee, Y.-H.4
-
54
-
-
84872321627
-
Reductive whole-cell biotransformation with Corynebacterium glutamicum: Improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using pfkA and gapA deletion mutants
-
Siedler, S., Lindner, S.N., Bringer, S., Wendisch, V.F. and Bott, M. (2013) Reductive whole-cell biotransformation with Corynebacterium glutamicum: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using pfkA and gapA deletion mutants. Appl. Microbiol. Biotechnol. 97, 143-152 https://doi.org/10.1007/s00253-012-4314-7
-
(2013)
Appl. Microbiol. Biotechnol
, vol.97
, pp. 143-152
-
-
Siedler, S.1
Lindner, S.N.2
Bringer, S.3
Wendisch, V.F.4
Bott, M.5
-
55
-
-
33646045867
-
Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli
-
Sanchez, A.M., Andrews, J., Hussein, I., Bennett, G.N. and San, K.-Y. (2006) Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli. Biotechnol. Prog. 22, 420-425 https://doi.org/10.1021/bp050375u
-
(2006)
Biotechnol. Prog
, vol.22
, pp. 420-425
-
-
Sanchez, A.M.1
Andrews, J.2
Hussein, I.3
Bennett, G.N.4
San, K.-Y.5
-
56
-
-
34247584154
-
Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation
-
Kabus, A., Georgi, T., Wendisch, V.F. and Bott, M. (2007) Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Appl. Microbiol. Biotechnol. 75, 47-53 https://doi.org/10.1007/ s00253-006-0804-9
-
(2007)
Appl. Microbiol. Biotechnol
, vol.75
, pp. 47-53
-
-
Kabus, A.1
Georgi, T.2
Wendisch, V.F.3
Bott, M.4
-
57
-
-
77953083412
-
Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: Biochemical properties and impact of ppnK overexpression on lysine production
-
Lindner, S.N., Niederholtmeyer, H., Schmitz, K., Schoberth, S.M. and Wendisch, V.F. (2010) Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production. Appl. Microbiol. Biotechnol. 87, 583-593 https://doi.org/10.1007/s00253-010-2481-y
-
(2010)
Appl. Microbiol. Biotechnol
, vol.87
, pp. 583-593
-
-
Lindner, S.N.1
Niederholtmeyer, H.2
Schmitz, K.3
Schoberth, S.M.4
Wendisch, V.F.5
-
58
-
-
84893649889
-
Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering
-
Cui, Y.-Y., Ling, C., Zhang, Y.-Y., Huang, J. and Liu, J.-Z. (2014) Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering. Microb. Cell Fact. 13, 21 https://doi.org/10.1186/1475-2859-13-21
-
(2014)
Microb. Cell Fact
, vol.13
, pp. 21
-
-
Cui, Y.-Y.1
Ling, C.2
Zhang, Y.-Y.3
Huang, J.4
Liu, J.-Z.5
-
59
-
-
84883757726
-
Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. Lactofermentum
-
Shi, F., Li, K., Huan, X. and Wang, X. (2013) Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Appl. Biochem. Biotechnol. 171, 504-521 https://doi.org/10.1007/ s12010-013-0389-6
-
(2013)
Appl. Biochem. Biotechnol
, vol.171
, pp. 504-521
-
-
Shi, F.1
Li, K.2
Huan, X.3
Wang, X.4
-
60
-
-
84924678364
-
Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: Growth restoration by an adaptive point mutation in NADH dehydrogenase
-
Komati Reddy, G., Lindner, S.N. and Wendisch, V.F. (2015) Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase. Appl. Environ. Microbiol. 81, 1996-2005 https://doi.org/10.1128/AEM.03116-14
-
(2015)
Appl. Environ. Microbiol
, vol.81
, pp. 1996-2005
-
-
Komati Reddy, G.1
Lindner, S.N.2
Wendisch, V.F.3
-
61
-
-
78149443330
-
Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production
-
Takeno, S., Murata, R., Kobayashi, R., Mitsuhashi, S. and Ikeda, M. (2010) Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production. Appl. Environ. Microbiol. 76, 7154-7160 https://doi.org/10.1128/AEM.01464-10
-
(2010)
Appl. Environ. Microbiol
, vol.76
, pp. 7154-7160
-
-
Takeno, S.1
Murata, R.2
Kobayashi, R.3
Mitsuhashi, S.4
Ikeda, M.5
-
62
-
-
84896489949
-
Improving poly-3-hydroxybutyrate production in Escherichia coli by combining the increase in the NADPH pool and acetyl-CoA availability
-
Centeno-Leija, S., Huerta-Beristain, G., Giles-Gómez, M., Bolivar, F., Gosset, G. and Martinez, A. (2014) Improving poly-3-hydroxybutyrate production in Escherichia coli by combining the increase in the NADPH pool and acetyl-CoA availability. Antonie Van Leeuwenhoek 105, 687-696 https://doi.org/10. 1007/s10482-014-0124-5
-
(2014)
Antonie Van Leeuwenhoek
, vol.105
, pp. 687-696
-
-
Centeno-Leija, S.1
Huerta-Beristain, G.2
Giles-Gómez, M.3
Bolivar, F.4
Gosset, G.5
Martinez, A.6
-
63
-
-
84881131151
-
Light driven CO2 fixation by using cyanobacterial photosystem i and NADPH-dependent formate dehydrogenase
-
Ihara, M., Kawano, Y., Urano, M. and Okabe, A. (2013) Light driven CO2 fixation by using cyanobacterial photosystem I and NADPH-dependent formate dehydrogenase. PLoS ONE 8, e71581 https://doi.org/10.1371/journal.pone.0071581
-
(2013)
PLoS ONE
, vol.8
, pp. e71581
-
-
Ihara, M.1
Kawano, Y.2
Urano, M.3
Okabe, A.4
-
64
-
-
26844523510
-
Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration
-
Johannes, T.W., Woodyer, R.D. and Zhao, H. (2005) Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration. Appl. Environ. Microbiol. 71, 5728-5734 https://doi.org/10.1128/AEM.71.10.5728-5734.2005
-
(2005)
Appl. Environ. Microbiol
, vol.71
, pp. 5728-5734
-
-
Johannes, T.W.1
Woodyer, R.D.2
Zhao, H.3
-
65
-
-
84941213572
-
Phosphoketolase pathway engineering for carbon-efficient biocatalysis
-
Henard, C.A., Freed, E.F. and Guarnieri, M.T. (2015) Phosphoketolase pathway engineering for carbon-efficient biocatalysis. Curr. Opin. Biotechnol. 36, 183-188 https://doi.org/10.1016/j.copbio.2015.08.018
-
(2015)
Curr. Opin. Biotechnol
, vol.36
, pp. 183-188
-
-
Henard, C.A.1
Freed, E.F.2
Guarnieri, M.T.3
-
66
-
-
84912055858
-
Sweet siblings with different faces: The mechanisms of FBP and F6P aldolase, transaldolase, transketolase and phosphoketolase revisited in light of recent structural data
-
Tittmann, K. (2014) Sweet siblings with different faces: the mechanisms of FBP and F6P aldolase, transaldolase, transketolase and phosphoketolase revisited in light of recent structural data. Bioorg. Chem. 57, 263-280 https://doi.org/10.1016/j.bioorg.2014.09.001
-
(2014)
Bioorg. Chem
, vol.57
, pp. 263-280
-
-
Tittmann, K.1
-
67
-
-
84886947479
-
Synthetic non-oxidative glycolysis enables complete carbon conservation
-
Bogorad, I.W., Lin, T.-S. and Liao, J.C. (2013) Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502, 693-697 https://doi.org/10.1038/nature12575
-
(2013)
Nature
, vol.502
, pp. 693-697
-
-
Bogorad, I.W.1
Lin, T.-S.2
Liao, J.C.3
-
68
-
-
2442684544
-
Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae
-
Sonderegger, M., Schumperli, M. and Sauer, U. (2004) Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 70, 2892-2897 https://doi.org/10.1128/AEM.70.5.2892-2897.2004
-
(2004)
Appl. Environ. Microbiol
, vol.70
, pp. 2892-2897
-
-
Sonderegger, M.1
Schumperli, M.2
Sauer, U.3
-
69
-
-
84944474444
-
Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production
-
Anfelt, J., Kaczmarzyk, D., Shabestary, K., Renberg, B., Rockberg, J., Nielsen, J. et al. (2015) Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production. Microb. Cell Fact. 14, 167 https://doi.org/10.1186/s12934-015-0355-9
-
(2015)
Microb. Cell Fact
, vol.14
, pp. 167
-
-
Anfelt, J.1
Kaczmarzyk, D.2
Shabestary, K.3
Renberg, B.4
Rockberg, J.5
Nielsen, J.6
-
70
-
-
85011349337
-
Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production
-
Jo, S., Yoon, J., Lee, S.-M., Um, Y., Han, S.O. and Woo, H.M. (2017) Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production. J. Biotechnol. 258, 69-78 https://doi.org/10.1016/j.jbiotec.2017.01.015
-
(2017)
J. Biotechnol
, vol.258
, pp. 69-78
-
-
Jo, S.1
Yoon, J.2
Lee, S.-M.3
Um, Y.4
Han, S.O.5
Woo, H.M.6
-
71
-
-
34047252012
-
Innovative metabolic pathway design for efficient l-glutamate production by suppressing CO2 emission
-
Chinen, A., Kozlov, Y.I., Hara, Y., Izui, H. and Yasueda, H. (2007) Innovative metabolic pathway design for efficient l-glutamate production by suppressing CO2 emission. J. Biosci. Bioeng. 103, 262-269 https://doi.org/10.1263/jbb.103.262
-
(2007)
J. Biosci. Bioeng
, vol.103
, pp. 262-269
-
-
Chinen, A.1
Kozlov, Y.I.2
Hara, Y.3
Izui, H.4
Yasueda, H.5
-
72
-
-
84989852376
-
Rewriting yeast central carbon metabolism for industrial isoprenoid production
-
Meadows, A.L., Hawkins, K.M., Tsegaye, Y., Antipov, E., Kim, Y., Raetz, L. et al. (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537, 694-697 https://doi.org/10.1038/nature19769
-
(2016)
Nature
, vol.537
, pp. 694-697
-
-
Meadows, A.L.1
Hawkins, K.M.2
Tsegaye, Y.3
Antipov, E.4
Kim, Y.5
Raetz, L.6
-
73
-
-
84879603106
-
Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway
-
Kocharin, K., Siewers, V. and Nielsen, J. (2013) Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway. Biotechnol. Bioeng. 110, 2216-2224 https://doi.org/10.1002/bit.24888
-
(2013)
Biotechnol. Bioeng
, vol.110
, pp. 2216-2224
-
-
Kocharin, K.1
Siewers, V.2
Nielsen, J.3
-
74
-
-
84899154669
-
Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway
-
de Jong, B.W., Shi, S., Siewers, V. and Nielsen, J. (2014) Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microb. Cell Fact. 13, 39 https://doi.org/10.1186/1475-2859-13-39
-
(2014)
Microb. Cell Fact
, vol.13
, pp. 39
-
-
De Jong, B.W.1
Shi, S.2
Siewers, V.3
Nielsen, J.4
-
75
-
-
63849107219
-
Studies of the production of fungal polyketides in Aspergillus nidulans by using systems biology tools
-
Panagiotou, G., Andersen, M.R., Grotkjaer, T., Regueira, T.B., Nielsen, J. and Olsson, L. (2009) Studies of the production of fungal polyketides in Aspergillus nidulans by using systems biology tools. Appl. Environ. Microbiol. 75, 2212-2220 https://doi.org/10.1128/AEM.01461-08
-
(2009)
Appl. Environ. Microbiol
, vol.75
, pp. 2212-2220
-
-
Panagiotou, G.1
Andersen, M.R.2
Grotkjaer, T.3
Regueira, T.B.4
Nielsen, J.5
Olsson, L.6
-
76
-
-
84864580802
-
Physiological characterization of recombinant Saccharomyces cerevisiae expressing the Aspergillus nidulans phosphoketolase pathway: Validation of activity through 13C-based metabolic flux analysis
-
Papini, M., Nookaew, I., Siewers, V. and Nielsen, J. (2012) Physiological characterization of recombinant Saccharomyces cerevisiae expressing the Aspergillus nidulans phosphoketolase pathway: validation of activity through 13C-based metabolic flux analysis. Appl. Microbiol. Biotechnol. 95, 1001-1010 https://doi.org/10.1007/s00253-012-3936-0
-
(2012)
Appl. Microbiol. Biotechnol
, vol.95
, pp. 1001-1010
-
-
Papini, M.1
Nookaew, I.2
Siewers, V.3
Nielsen, J.4
-
77
-
-
85027932586
-
An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli
-
Yang, X., Yuan, Q., Zheng, Y., Ma, H., Chen, T. and Zhao, X. (2016) An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli. Biotechnol. Lett. 38, 1359-1365 https://doi.org/10.1007/s10529-016-2115-2
-
(2016)
Biotechnol. Lett
, vol.38
, pp. 1359-1365
-
-
Yang, X.1
Yuan, Q.2
Zheng, Y.3
Ma, H.4
Chen, T.5
Zhao, X.6
-
78
-
-
84959145501
-
Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition
-
Chwa, J.-W., Kim, W.J., Sim, S.J., Um, Y. and Woo, H.M. (2016) Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition. Plant Biotechnol. J. 14, 1768-1776 https://doi.org/10.1111/pbi.12536
-
(2016)
Plant Biotechnol. J
, vol.14
, pp. 1768-1776
-
-
Chwa, J.-W.1
Kim, W.J.2
Sim, S.J.3
Um, Y.4
Woo, H.M.5
-
79
-
-
33847378479
-
Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
-
Shiba, Y., Paradise, E.M., Kirby, J., Ro, D.-K. and Keasling, J.D. (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab. Eng. 9, 160-168 https://doi.org/10.1016/j.ymben.2006.10.005
-
(2007)
Metab. Eng
, vol.9
, pp. 160-168
-
-
Shiba, Y.1
Paradise, E.M.2
Kirby, J.3
Ro, D.-K.4
Keasling, J.D.5
-
80
-
-
84864758717
-
Enhanced α-ketoglutarate production in Yarrowia lipolytica WSH-Z06 by alteration of the acetyl-CoA metabolism
-
Zhou, J., Yin, X., Madzak, C., Du, G. and Chen, J. (2012) Enhanced α-ketoglutarate production in Yarrowia lipolytica WSH-Z06 by alteration of the acetyl-CoA metabolism. J. Biotechnol. 161, 257-264 https://doi.org/10.1016/j.jbiotec.2012.05.025
-
(2012)
J. Biotechnol
, vol.161
, pp. 257-264
-
-
Zhou, J.1
Yin, X.2
Madzak, C.3
Du, G.4
Chen, J.5
-
81
-
-
84924038713
-
Engineering of Serine-Deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex to improve poly(3-hydroxybutyrate) production in Escherichia coli
-
Zhang, Y., Lin, Z., Liu, Q., Li, Y., Wang, Z., Ma, H. et al. (2014) Engineering of Serine-Deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex to improve poly(3-hydroxybutyrate) production in Escherichia coli. Microb. Cell Fact. 13, 172 https://doi.org/10.1186/ s12934-014-0172-6
-
(2014)
Microb. Cell Fact
, vol.13
, pp. 172
-
-
Zhang, Y.1
Lin, Z.2
Liu, Q.3
Li, Y.4
Wang, Z.5
Ma, H.6
-
82
-
-
84878966835
-
Glycolytic strategy as a tradeoff between energy yield and protein cost
-
Flamholz, A., Noor, E., Bar-Even, A., Liebermeister, W. and Milo, R. (2013) Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc. Natl Acad. Sci. U.S.A. 110, 10039-10044 https://doi.org/10.1073/pnas.1215283110
-
(2013)
Proc. Natl Acad. Sci. U.S.A.
, vol.110
, pp. 10039-10044
-
-
Flamholz, A.1
Noor, E.2
Bar-Even, A.3
Liebermeister, W.4
Milo, R.5
-
83
-
-
84893388611
-
Combination of Entner-Doudoroff pathway with MEP increases isoprene production in engineered Escherichia coli
-
Liu, H., Sun, Y., Ramos, K.R.M., Nisola, G.M., Valdehuesa, K.N.G., Lee, W.-K. et al. (2013) Combination of Entner-Doudoroff pathway with MEP increases isoprene production in engineered Escherichia coli. PLoS ONE 8, e83290 https://doi.org/10.1371/journal.pone.0083290
-
(2013)
PLoS ONE
, vol.8
, pp. e83290
-
-
Liu, H.1
Sun, Y.2
Ramos, K.R.M.3
Nisola, G.M.4
Valdehuesa, K.N.G.5
Lee, W.-K.6
-
84
-
-
84938840714
-
Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-D-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli
-
Li, C., Ying, L.-Q., Zhang, S.-S., Chen, N., Liu, W.-F. and Tao, Y. (2015) Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-D-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli. Microb. Cell Fact. 14, 117 https://doi.org/10. 1186/s12934-015-0301-x
-
(2015)
Microb. Cell Fact
, vol.14
, pp. 117
-
-
Li, C.1
Ying, L.-Q.2
Zhang, S.-S.3
Chen, N.4
Liu, W.-F.5
Tao, Y.6
-
85
-
-
0028104094
-
The bacterial phosphotransferase system: New frontiers 30 years later
-
Saier, Jr, M.H. and Reizer, J. (1994) The bacterial phosphotransferase system: new frontiers 30 years later. Mol. Microbiol. 13, 755-764 https://doi. org/10.1111/j.1365-2958.1994.tb00468.x
-
(1994)
Mol. Microbiol
, vol.13
, pp. 755-764
-
-
Saier, M.H.1
Reizer, J.2
-
86
-
-
0035002616
-
Corynebacterium glutamicum: A dissection of the PTS
-
PMID:11361073
-
Parche, S., Burkovski, A., Sprenger, G.A., Weil, B., Krämer, R. and Titgemeyer, F. (2001) Corynebacterium glutamicum: a dissection of the PTS. J. Mol. Microbiol. Biotechnol. 3, 423-428 PMID:11361073
-
(2001)
J. Mol. Microbiol. Biotechnol
, vol.3
, pp. 423-428
-
-
Parche, S.1
Burkovski, A.2
Sprenger, G.A.3
Weil, B.4
Krämer, R.5
Titgemeyer, F.6
-
87
-
-
0043023507
-
Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products
-
Hernández-Montalvo, V., Martínez, A., Hernández-Chavez, G., Bolivar, F., Valle, F. and Gosset, G. (2003) Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol. Bioeng. 83, 687-694 https://doi.org/10.1002/bit.10702
-
(2003)
Biotechnol. Bioeng
, vol.83
, pp. 687-694
-
-
Hernández-Montalvo, V.1
Martínez, A.2
Hernández-Chavez, G.3
Bolivar, F.4
Valle, F.5
Gosset, G.6
-
88
-
-
14844334161
-
Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032
-
Moon, M.-W., Kim, H.-J., Oh, T.-K., Shin, C.-S., Lee, J.-S., Kim, S.-J. et al. (2005) Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol. Lett. 244, 259-266 https://doi.org/10.1016/j.femsle.2005.01.053
-
(2005)
FEMS Microbiol. Lett
, vol.244
, pp. 259-266
-
-
Moon, M.-W.1
Kim, H.-J.2
Oh, T.-K.3
Shin, C.-S.4
Lee, J.-S.5
Kim, S.-J.6
-
89
-
-
0038119755
-
Phosphoenolpyruvate availability and the biosynthesis of Shikimic acid
-
Chandran, S.S., Yi, J., Draths, K.M., von Daeniken, R., Weber, W. and Frost, J.W. (2003) Phosphoenolpyruvate availability and the biosynthesis of Shikimic acid. Biotechnol. Prog. 19, 808-814 https://doi.org/10.1021/bp025769p
-
(2003)
Biotechnol. Prog
, vol.19
, pp. 808-814
-
-
Chandran, S.S.1
Yi, J.2
Draths, K.M.3
Von Daeniken, R.4
Weber, W.5
Frost, J.W.6
-
90
-
-
79958283261
-
Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases
-
Lindner, S.N., Seibold, G.M., Henrich, A., Kramer, R. and Wendisch, V.F. (2011) Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Appl. Environ. Microbiol. 77, 3571-3581 https://doi.org/10.1128/AEM.02713-10
-
(2011)
Appl. Environ. Microbiol
, vol.77
, pp. 3571-3581
-
-
Lindner, S.N.1
Seibold, G.M.2
Henrich, A.3
Kramer, R.4
Wendisch, V.F.5
-
91
-
-
79955065138
-
Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis
-
Bujara, M., Schümperli, M., Pellaux, R., Heinemann, M. and Panke, S. (2011) Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis. Nat. Chem. Biol. 7, 271-277 https://doi.org/10.1038/nchembio.541
-
(2011)
Nat. Chem. Biol
, vol.7
, pp. 271-277
-
-
Bujara, M.1
Schümperli, M.2
Pellaux, R.3
Heinemann, M.4
Panke, S.5
-
92
-
-
84934999495
-
Systematically engineering Escherichia coli for enhanced production of 1,2-propanediol and 1-propanol
-
Jain, R., Sun, X., Yuan, Q. and Yan, Y. (2015) Systematically engineering Escherichia coli for enhanced production of 1,2-propanediol and 1-propanol. ACS Synth. Biol. 4, 746-756 https://doi.org/10.1021/sb500345t
-
(2015)
ACS Synth. Biol
, vol.4
, pp. 746-756
-
-
Jain, R.1
Sun, X.2
Yuan, Q.3
Yan, Y.4
-
93
-
-
0142027026
-
Metabolic engineering for the microbial production of 1,3-propanediol
-
Nakamura, C.E. and Whited, G.M. (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14, 454-459 https://doi.org/10.1016/j.copbio.2003.08.005
-
(2003)
Curr. Opin. Biotechnol
, vol.14
, pp. 454-459
-
-
Nakamura, C.E.1
Whited, G.M.2
-
94
-
-
79952910616
-
Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
-
Bond-Watts, B.B., Bellerose, R.J. and Chang, M.C.Y. (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat. Chem. Biol. 7, 222-227 https://doi.org/10.1038/nchembio.537
-
(2011)
Nat. Chem. Biol
, vol.7
, pp. 222-227
-
-
Bond-Watts, B.B.1
Bellerose, R.J.2
Chang, M.C.Y.3
-
95
-
-
84949803963
-
Modular optimization of multi-gene pathways for fumarate production
-
Chen, X., Zhu, P. and Liu, L. (2016) Modular optimization of multi-gene pathways for fumarate production. Metab. Eng. 33, 76-85 https://doi.org/10. 1016/j.ymben.2015.07.007
-
(2016)
Metab. Eng
, vol.33
, pp. 76-85
-
-
Chen, X.1
Zhu, P.2
Liu, L.3
-
96
-
-
80052021573
-
Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA
-
Xu, P., Ranganathan, S., Fowler, Z.L., Maranas, C.D. and Koffas, M.A.G. (2011) Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab. Eng. 13, 578-587 https://doi.org/10.1016/j.ymben.2011.06.008
-
(2011)
Metab. Eng
, vol.13
, pp. 578-587
-
-
Xu, P.1
Ranganathan, S.2
Fowler, Z.L.3
Maranas, C.D.4
Koffas, M.A.G.5
-
97
-
-
84884820489
-
Metabolic engineering of Escherichia coli for enhanced biosynthesis of poly(3-hydroxybutyrate) based on proteome analysis
-
Lee, S.H., Kang, K.-H., Kim, E.Y., Chae, T.U., Oh, Y.H., Hong, S.H. et al. (2013) Metabolic engineering of Escherichia coli for enhanced biosynthesis of poly(3-hydroxybutyrate) based on proteome analysis. Biotechnol. Lett. 35, 1631-1637 https://doi.org/10.1007/s10529-013-1246-y
-
(2013)
Biotechnol. Lett
, vol.35
, pp. 1631-1637
-
-
Lee, S.H.1
Kang, K.-H.2
Kim, E.Y.3
Chae, T.U.4
Oh, Y.H.5
Hong, S.H.6
-
98
-
-
5444248670
-
Applicability of CoA/acetyl-CoA manipulation system to enhance isoamyl acetate production in Escherichia coli
-
Vadali, R.V., Bennett, G.N. and San, K.-Y. (2004) Applicability of CoA/acetyl-CoA manipulation system to enhance isoamyl acetate production in Escherichia coli. Metab. Eng. 6, 294-299 https://doi.org/10.1016/j.ymben.2004.02.006
-
(2004)
Metab. Eng
, vol.6
, pp. 294-299
-
-
Vadali, R.V.1
Bennett, G.N.2
San, K.-Y.3
-
99
-
-
84944910018
-
Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways
-
Nikel, P.I., Chavarría, M., Fuhrer, T., Sauer, U. and de Lorenzo, V. (2015) Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways. J. Biol. Chem. 290, 25920-25932 https:// doi.org/10.1074/jbc.M115.687749
-
(2015)
J. Biol. Chem
, vol.290
, pp. 25920-25932
-
-
Nikel, P.I.1
Chavarría, M.2
Fuhrer, T.3
Sauer, U.4
De Lorenzo, V.5
-
100
-
-
85019581632
-
Refactoring the Embden-Meyerhof-Parnas pathway as a whole of portable GlucoBricks for implantation of glycolytic modules in gram-negative bacteria
-
Sánchez-Pascuala, A., de Lorenzo, V. and Nikel, P.I. (2017) Refactoring the Embden-Meyerhof-Parnas pathway as a whole of portable GlucoBricks for implantation of glycolytic modules in gram-negative bacteria. ACS Synth. Biol. 6, 793-805 https://doi.org/10.1021/acssynbio.6b00230
-
(2017)
ACS Synth. Biol
, vol.6
, pp. 793-805
-
-
Sánchez-Pascuala, A.1
De Lorenzo, V.2
Nikel, P.I.3
-
101
-
-
13244288422
-
-
Department of Energy, Washington, DC
-
Werpy, T., Petersen, G., Aden, A., Bozell, J., Holladay, J., White, J. et al. (2004) Top Value Added Chemicals From Biomass. Volume 1-Results of Screening for Potential Candidates From Sugars and Synthesis Gas. Department of Energy, Washington, DC
-
(2004)
Top Value Added Chemicals from Biomass. Volume 1-Results of Screening for Potential Candidates from Sugars and Synthesis Gas
-
-
Werpy, T.1
Petersen, G.2
Aden, A.3
Bozell, J.4
Holladay, J.5
White, J.6
-
102
-
-
43549095454
-
A physiology study of Escherichia coli overexpressing phosphoenolpyruvate carboxykinase
-
Kwon, Y.-D., Lee, S.Y. and Kim, P. (2008) A physiology study of Escherichia coli overexpressing phosphoenolpyruvate carboxykinase. Biosci. Biotechnol. Biochem. 72, 1138-1141 https://doi.org/10.1271/bbb.70831
-
(2008)
Biosci. Biotechnol. Biochem
, vol.72
, pp. 1138-1141
-
-
Kwon, Y.-D.1
Lee, S.Y.2
Kim, P.3
-
103
-
-
84937765396
-
Growth retardation of Escherichia coli by artificial increase of intracellular ATP
-
Na, Y.-A., Lee, J.-Y., Bang, W.-J., Lee, H.J., Choi, S.-I., Kwon, S.-K. et al. (2015) Growth retardation of Escherichia coli by artificial increase of intracellular ATP. J. Ind. Microbiol. Biotechnol. 42, 915-924 https://doi.org/10.1007/s10295-015-1609-6
-
(2015)
J. Ind. Microbiol. Biotechnol
, vol.42
, pp. 915-924
-
-
Na, Y.-A.1
Lee, J.-Y.2
Bang, W.-J.3
Lee, H.J.4
Choi, S.-I.5
Kwon, S.-K.6
-
104
-
-
2342516028
-
Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli
-
Kim, P., Laivenieks, M., Vieille, C. and Zeikus, J.G. (2004) Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli. Appl. Environ. Microbiol. 70, 1238-1241 https://doi.org/10.1128/AEM.70.2.1238-1241.2004
-
(2004)
Appl. Environ. Microbiol
, vol.70
, pp. 1238-1241
-
-
Kim, P.1
Laivenieks, M.2
Vieille, C.3
Zeikus, J.G.4
-
105
-
-
33750196846
-
Influence of gluconeogenic phosphoenolpyruvate carboxykinase (PCK) expression on succinic acid fermentation in Escherichia coli under high bicarbonate condition
-
Kwon, Y.D., Lee, S.Y. and Kim, P. (2006) Influence of gluconeogenic phosphoenolpyruvate carboxykinase (PCK) expression on succinic acid fermentation in Escherichia coli under high bicarbonate condition. J. Microbiol. Biotechnol. 16, 1448
-
(2006)
J. Microbiol. Biotechnol
, vol.16
, pp. 1448
-
-
Kwon, Y.D.1
Lee, S.Y.2
Kim, P.3
-
106
-
-
77955933873
-
Phosphoenolpyruvate carboxykinase as the sole anaplerotic enzyme in Saccharomyces cerevisiae
-
Zelle, R.M., Trueheart, J., Harrison, J.C., Pronk, J.T. and van Maris, A.J. (2010) Phosphoenolpyruvate carboxykinase as the sole anaplerotic enzyme in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 76, 5383-5389 https://doi.org/10.1128/AEM.01077-10
-
(2010)
Appl. Environ. Microbiol
, vol.76
, pp. 5383-5389
-
-
Zelle, R.M.1
Trueheart, J.2
Harrison, J.C.3
Pronk, J.T.4
Van Maris, A.J.5
-
107
-
-
73949115238
-
Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli
-
Zhang, X., Jantama, K., Moore, J.C., Jarboe, L.R., Shanmugam, K.T. and Ingram, L.O. (2009) Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc. Natl Acad. Sci. U.S.A. 106, 20180-20185 https://doi.org/10.1073/pnas.0905396106
-
(2009)
Proc. Natl Acad. Sci. U.S.A.
, vol.106
, pp. 20180-20185
-
-
Zhang, X.1
Jantama, K.2
Moore, J.C.3
Jarboe, L.R.4
Shanmugam, K.T.5
Ingram, L.O.6
-
108
-
-
36549007021
-
The effect of NADP-dependent malic enzyme expression and anaerobic C4 metabolism in Escherichia coli compared with other anaplerotic enzymes
-
Kwon, Y.-D., Kwon, O.-H., Lee, H.-S. and Kim, P. (2007) The effect of NADP-dependent malic enzyme expression and anaerobic C4 metabolism in Escherichia coli compared with other anaplerotic enzymes. J. Appl. Microbiol. 103, 2340-2345 https://doi.org/10.1111/j.1365-2672.2007.03485.x
-
(2007)
J. Appl. Microbiol
, vol.103
, pp. 2340-2345
-
-
Kwon, Y.-D.1
Kwon, O.-H.2
Lee, H.-S.3
Kim, P.4
-
109
-
-
0030752053
-
Production of succinic acid through overexpression of NAD+-dependent malic enzyme in an Escherichia coli mutant
-
PMID:9212416
-
Stols, L. and Donnelly, M.I. (1997) Production of succinic acid through overexpression of NAD+-dependent malic enzyme in an Escherichia coli mutant. Appl. Environ. Microbiol. 63, 2695-2701 PMID:9212416
-
(1997)
Appl. Environ. Microbiol
, vol.63
, pp. 2695-2701
-
-
Stols, L.1
Donnelly, M.I.2
-
110
-
-
79551491773
-
Anaplerotic role for cytosolic malic enzyme in engineered Saccharomyces cerevisiae strains
-
Zelle, R.M., Harrison, J.C., Pronk, J.T. and van Maris, A.J.A. (2011) Anaplerotic role for cytosolic malic enzyme in engineered Saccharomyces cerevisiae strains. Appl. Environ. Microbiol. 77, 732-738 https://doi.org/10.1128/AEM.02132-10
-
(2011)
Appl. Environ. Microbiol
, vol.77
, pp. 732-738
-
-
Zelle, R.M.1
Harrison, J.C.2
Pronk, J.T.3
Van Maris, A.J.A.4
-
111
-
-
79955374298
-
Recommendations for terminology and databases for biochemical thermodynamics
-
Alberty, R.A., Cornish-Bowden, A., Goldberg, R.N., Hammes, G.G., Tipton, K. and Westerhoff, H.V. (2011) Recommendations for terminology and databases for biochemical thermodynamics. Biophys. Chem. 155, 89-103 https://doi.org/10.1016/j.bpc.2011.03.007
-
(2011)
Biophys. Chem
, vol.155
, pp. 89-103
-
-
Alberty, R.A.1
Cornish-Bowden, A.2
Goldberg, R.N.3
Hammes, G.G.4
Tipton, K.5
Westerhoff, H.V.6
-
112
-
-
84861429699
-
EQuilibrator-the biochemical thermodynamics calculator
-
Flamholz, A., Noor, E., Bar-Even, A. and Milo, R. (2012) eQuilibrator-the biochemical thermodynamics calculator. Nucleic Acids Res. 40, D770-D775 https://doi.org/10.1093/nar/gkr874
-
(2012)
Nucleic Acids Res
, vol.40
, pp. D770-D775
-
-
Flamholz, A.1
Noor, E.2
Bar-Even, A.3
Milo, R.4
-
113
-
-
68049100110
-
Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli
-
Bennett, B.D., Kimball, E.H., Gao, M., Osterhout, R., Van Dien, S.J. and Rabinowitz, J.D. (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593-599 https://doi.org/10.1038/nchembio.186
-
(2009)
Nat. Chem. Biol
, vol.5
, pp. 593-599
-
-
Bennett, B.D.1
Kimball, E.H.2
Gao, M.3
Osterhout, R.4
Van Dien, S.J.5
Rabinowitz, J.D.6
-
114
-
-
84895727036
-
Pathway thermodynamics highlights kinetic obstacles in central metabolism
-
Noor, E., Bar-Even, A., Flamholz, A., Reznik, E., Liebermeister, W. and Milo, R. (2014) Pathway thermodynamics highlights kinetic obstacles in central metabolism. PLoS Comput. Biol. 10, e1003483 https://doi.org/10.1371/journal.pcbi.1003483
-
(2014)
PLoS Comput. Biol
, vol.10
, pp. e1003483
-
-
Noor, E.1
Bar-Even, A.2
Flamholz, A.3
Reznik, E.4
Liebermeister, W.5
Milo, R.6
-
115
-
-
84883054015
-
A note on the kinetics of enzyme action: A decomposition that highlights thermodynamic effects
-
Noor, E., Flamholz, A., Liebermeister, W., Bar-Even, A. and Milo, R. (2013) A note on the kinetics of enzyme action: a decomposition that highlights thermodynamic effects. FEBS Lett. 587, 2772-2777 https://doi.org/10.1016/j.febslet.2013.07.028
-
(2013)
FEBS Lett
, vol.587
, pp. 2772-2777
-
-
Noor, E.1
Flamholz, A.2
Liebermeister, W.3
Bar-Even, A.4
Milo, R.5
-
116
-
-
84875722445
-
Defining a direction: Electron transfer and catalysis in Escherichia coli complex II enzymes
-
Maklashina, E., Cecchini, G. and Dikanov, S.A. (2013) Defining a direction: electron transfer and catalysis in Escherichia coli complex II enzymes. Biochim. Biophys. Acta, Bioenerg. 1827, 668-678 https://doi.org/10.1016/j.bbabio.2013.01.010
-
(2013)
Biochim. Biophys. Acta, Bioenerg
, vol.1827
, pp. 668-678
-
-
Maklashina, E.1
Cecchini, G.2
Dikanov, S.A.3
-
117
-
-
0037417864
-
Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: Homoacetate production
-
Causey, T.B., Zhou, S., Shanmugam, K.T. and Ingram, L.O. (2003) Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc. Natl Acad. Sci. U.S.A. 100, 825-832 https://doi.org/10.1073/pnas.0337684100
-
(2003)
Proc. Natl Acad. Sci. U.S.A.
, vol.100
, pp. 825-832
-
-
Causey, T.B.1
Zhou, S.2
Shanmugam, K.T.3
Ingram, L.O.4
-
118
-
-
84997173327
-
Engineering of a highly efficient Escherichia coli strain for mevalonate fermentation through chromosomal integration
-
Wang, J., Niyompanich, S., Tai, Y.-S., Wang, J., Bai, W., Mahida, P. et al. (2016) Engineering of a highly efficient Escherichia coli strain for mevalonate fermentation through chromosomal integration. Appl. Environ. Microbiol. 82, 7176-7184 https://doi.org/10.1128/AEM.02178-16
-
(2016)
Appl. Environ. Microbiol
, vol.82
, pp. 7176-7184
-
-
Wang, J.1
Niyompanich, S.2
Tai, Y.-S.3
Wang, J.4
Bai, W.5
Mahida, P.6
-
119
-
-
0020509454
-
Improved conversion of fumarate to succinate by Escherichia coli strains amplified for fumarate reductase
-
PMID:6349526
-
Goldberg, I., Lonberg-Holm, K., Bagley, E.A. and Stieglitz, B. (1983) Improved conversion of fumarate to succinate by Escherichia coli strains amplified for fumarate reductase. Appl. Environ. Microbiol. 45, 1838-1847 PMID:6349526
-
(1983)
Appl. Environ. Microbiol
, vol.45
, pp. 1838-1847
-
-
Goldberg, I.1
Lonberg-Holm, K.2
Bagley, E.A.3
Stieglitz, B.4
-
120
-
-
0031858736
-
Bioconversion of fumaric acid to succinic acid by recombinant E. Coli
-
Wang, X., Gong, C.S. and Tsao, G.T. (1998) Bioconversion of fumaric acid to succinic acid by recombinant E. coli. Appl. Biochem. Biotechnol. 70-72, 919-928 https://doi.org/10.1007/BF02920202
-
(1998)
Appl. Biochem. Biotechnol
, vol.70-72
, pp. 919-928
-
-
Wang, X.1
Gong, C.S.2
Tsao, G.T.3
-
121
-
-
79251596379
-
Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols
-
Yu, C., Cao, Y., Zou, H. and Xian, M. (2011) Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl. Microbiol. Biotechnol. 89, 573-583 https://doi.org/10.1007/s00253-010-2970-z
-
(2011)
Appl. Microbiol. Biotechnol
, vol.89
, pp. 573-583
-
-
Yu, C.1
Cao, Y.2
Zou, H.3
Xian, M.4
-
122
-
-
78049430020
-
Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid
-
Raab, A.M., Gebhardt, G., Bolotina, N., Weuster-Botz, D. and Lang, C. (2010) Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab. Eng. 12, 518-525 https://doi.org/10.1016/j.ymben.2010.08.005
-
(2010)
Metab. Eng
, vol.12
, pp. 518-525
-
-
Raab, A.M.1
Gebhardt, G.2
Bolotina, N.3
Weuster-Botz, D.4
Lang, C.5
-
123
-
-
19744367895
-
Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions
-
Lin, H., Bennett, G.N. and San, K.-Y. (2005) Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions. Biotechnol. Bioeng. 90, 775-779 https://doi.org/10.1002/bit.20458
-
(2005)
Biotechnol. Bioeng
, vol.90
, pp. 775-779
-
-
Lin, H.1
Bennett, G.N.2
San, K.-Y.3
-
124
-
-
12744254193
-
Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate
-
Lin, H., Bennett, G.N. and San, K.-Y. (2005) Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate. Biotechnol. Bioeng. 89, 148-156 https://doi.org/10.1002/bit.20298
-
(2005)
Biotechnol. Bioeng
, vol.89
, pp. 148-156
-
-
Lin, H.1
Bennett, G.N.2
San, K.-Y.3
-
125
-
-
15344340751
-
Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield
-
Lin, H., Bennett, G.N. and San, K.-Y. (2005) Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab. Eng. 7, 116-127 https://doi.org/10.1016/j.ymben.2004.10.003
-
(2005)
Metab. Eng
, vol.7
, pp. 116-127
-
-
Lin, H.1
Bennett, G.N.2
San, K.-Y.3
-
126
-
-
29644446809
-
Development of a metabolic network design and optimization framework incorporating implementation constraints: A succinate production case study
-
Cox, S.J., Shalel Levanon, S., Sanchez, A., Lin, H., Peercy, B., Bennett, G.N. et al. (2006) Development of a metabolic network design and optimization framework incorporating implementation constraints: a succinate production case study. Metab. Eng. 8, 46-57 https://doi.org/10.1016/j.ymben.2005. 09.006
-
(2006)
Metab. Eng
, vol.8
, pp. 46-57
-
-
Cox, S.J.1
Shalel Levanon, S.2
Sanchez, A.3
Lin, H.4
Peercy, B.5
Bennett, G.N.6
-
127
-
-
84878409603
-
Metabolic engineering of Escherichia coli for the production of fumaric acid
-
Song, C.W., Kim, D.I., Choi, S., Jang, J.W. and Lee, S.Y. (2013) Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnol. Bioeng. 110, 2025-2034 https://doi.org/10.1002/bit.24868
-
(2013)
Biotechnol. Bioeng
, vol.110
, pp. 2025-2034
-
-
Song, C.W.1
Kim, D.I.2
Choi, S.3
Jang, J.W.4
Lee, S.Y.5
-
128
-
-
84883554005
-
A reverse glyoxylate shunt to build a non-native route from C4 to C2 in Escherichia coli
-
Mainguet, S.E., Gronenberg, L.S., Wong, S.S. and Liao, J.C. (2013) A reverse glyoxylate shunt to build a non-native route from C4 to C2 in Escherichia coli. Metab. Eng. 19, 116-127 https://doi.org/10.1016/j.ymben.2013.06.004
-
(2013)
Metab. Eng
, vol.19
, pp. 116-127
-
-
Mainguet, S.E.1
Gronenberg, L.S.2
Wong, S.S.3
Liao, J.C.4
-
129
-
-
84859369657
-
A survey of carbon fixation pathways through a quantitative lens
-
Bar-Even, A., Noor, E. and Milo, R. (2012) A survey of carbon fixation pathways through a quantitative lens. J. Exp. Bot. 63, 2325-2342 https://doi.org/10.1093/jxb/err417
-
(2012)
J. Exp. Bot
, vol.63
, pp. 2325-2342
-
-
Bar-Even, A.1
Noor, E.2
Milo, R.3
-
130
-
-
78149357549
-
Metabolic engineering of Escherichia coli to produce (2S, 3R, 4S)-4-hydroxyisoleucine
-
Smirnov, S.V., Kodera, T., Samsonova, N.N., Kotlyarova, V.A., Rushkevich, N.Y., Kivero, A.D. et al. (2010) Metabolic engineering of Escherichia coli to produce (2S, 3R, 4S)-4-hydroxyisoleucine. Appl. Microbiol. Biotechnol. 88, 719-726 https://doi.org/10.1007/s00253-010-2772-3
-
(2010)
Appl. Microbiol. Biotechnol
, vol.88
, pp. 719-726
-
-
Smirnov, S.V.1
Kodera, T.2
Samsonova, N.N.3
Kotlyarova, V.A.4
Rushkevich, N.Y.5
Kivero, A.D.6
-
131
-
-
84958729317
-
Ferrous iron and α-ketoglutarate-dependent dioxygenases in the biosynthesis of microbial natural products
-
Wu, L.-F., Meng, S. and Tang, G.-L. (2016) Ferrous iron and α-ketoglutarate-dependent dioxygenases in the biosynthesis of microbial natural products. Biochim. Biophys. Acta, Proteins Proteomics 1864, 453-470 https://doi.org/10.1016/j.bbapap.2016.01.012
-
(2016)
Biochim. Biophys. Acta, Proteins Proteomics
, vol.1864
, pp. 453-470
-
-
Wu, L.-F.1
Meng, S.2
Tang, G.-L.3
-
132
-
-
85015370385
-
An artificial TCA cycle selects for efficient α-ketoglutarate dependent hydroxylase catalysis in engineered Escherichia coli
-
Theodosiou, E., Breisch, M., Julsing, M.K., Falcioni, F., Bühler, B. and Schmid, A. (2017) An artificial TCA cycle selects for efficient α-ketoglutarate dependent hydroxylase catalysis in engineered Escherichia coli. Biotechnol. Bioeng. 114, 1511-1520 https://doi.org/10.1002/bit.26281
-
(2017)
Biotechnol. Bioeng
, vol.114
, pp. 1511-1520
-
-
Theodosiou, E.1
Breisch, M.2
Julsing, M.K.3
Falcioni, F.4
Bühler, B.5
Schmid, A.6
-
133
-
-
0942288120
-
Bacteria engineered for fuel ethanol production: Current status
-
Dien, B.S., Cotta, M.A. and Jeffries, T.W. (2003) Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol. 63, 258-266 https://doi.org/10.1007/s00253-003-1444-y
-
(2003)
Appl. Microbiol. Biotechnol
, vol.63
, pp. 258-266
-
-
Dien, B.S.1
Cotta, M.A.2
Jeffries, T.W.3
-
134
-
-
33747666218
-
Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems
-
Terpe, K. (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 72, 211-222 https://doi.org/10.1007/s00253-006-0465-8
-
(2006)
Appl. Microbiol. Biotechnol
, vol.72
, pp. 211-222
-
-
Terpe, K.1
-
135
-
-
77954590959
-
OptForce: An optimization procedure for identifying all genetic manipulations leading to targeted overproductions
-
Ranganathan, S., Suthers, P.F. and Maranas, C.D. (2010) OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput. Biol. 6, e1000744 https://doi.org/10.1371/journal.pcbi.1000744
-
(2010)
PLoS Comput. Biol
, vol.6
, pp. e1000744
-
-
Ranganathan, S.1
Suthers, P.F.2
Maranas, C.D.3
-
136
-
-
84897093985
-
Systems metabolic engineering design: Fatty acid production as an emerging case study
-
Tee, T.W., Chowdhury, A., Maranas, C.D. and Shanks, J.V. (2014) Systems metabolic engineering design: fatty acid production as an emerging case study. Biotechnol. Bioeng. 111, 849-857 https://doi.org/10.1002/bit.25205
-
(2014)
Biotechnol. Bioeng
, vol.111
, pp. 849-857
-
-
Tee, T.W.1
Chowdhury, A.2
Maranas, C.D.3
Shanks, J.V.4
-
137
-
-
8744224466
-
Optstrain: A computational framework for redesign of microbial production systems
-
Pharkya, P., Burgard, A.P. and Maranas, C.D. (2004) Optstrain: a computational framework for redesign of microbial production systems. Genome Res. 14, 2367-2376 https://doi.org/10.1101/gr.2872004
-
(2004)
Genome Res
, vol.14
, pp. 2367-2376
-
-
Pharkya, P.1
Burgard, A.P.2
Maranas, C.D.3
-
138
-
-
0242487787
-
Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
-
Burgard, A.P., Pharkya, P. and Maranas, C.D. (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647-657 https://doi.org/10.1002/bit.10803
-
(2003)
Biotechnol. Bioeng
, vol.84
, pp. 647-657
-
-
Burgard, A.P.1
Pharkya, P.2
Maranas, C.D.3
-
139
-
-
84946594571
-
Designing overall stoichiometric conversions and intervening metabolic reactions
-
Chowdhury, A. and Maranas, C.D. (2015) Designing overall stoichiometric conversions and intervening metabolic reactions. Sci. Rep. 5, 16009 https:// doi.org/10.1038/srep16009
-
(2015)
Sci. Rep
, vol.5
, pp. 16009
-
-
Chowdhury, A.1
Maranas, C.D.2
-
140
-
-
84921479351
-
Engineering metabolism through dynamic control
-
Venayak, N., Anesiadis, N., Cluett, W.R. and Mahadevan, R. (2015) Engineering metabolism through dynamic control. Curr. Opin. Biotechnol. 34, 142-152 https://doi.org/10.1016/j.copbio.2014.12.022
-
(2015)
Curr. Opin. Biotechnol
, vol.34
, pp. 142-152
-
-
Venayak, N.1
Anesiadis, N.2
Cluett, W.R.3
Mahadevan, R.4
-
141
-
-
85021308127
-
Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors
-
Suástegui, M., Yu Ng, C., Chowdhury, A., Sun, W., Cao, M., House, E. et al. (2017) Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors. Metab. Eng. 42, 134-144 https://doi.org/10.1016/j. ymben.2017.06.008
-
(2017)
Metab. Eng
, vol.42
, pp. 134-144
-
-
Suástegui, M.1
Yu Ng, C.2
Chowdhury, A.3
Sun, W.4
Cao, M.5
House, E.6
-
142
-
-
77952717854
-
Design and analysis of synthetic carbon fixation pathways
-
Bar-Even, A., Noor, E., Lewis, N.E. and Milo, R. (2010) Design and analysis of synthetic carbon fixation pathways. Proc. Natl Acad. Sci. U.S.A. 107, 8889-8894 https://doi.org/10.1073/pnas.0907176107
-
(2010)
Proc. Natl Acad. Sci. U.S.A.
, vol.107
, pp. 8889-8894
-
-
Bar-Even, A.1
Noor, E.2
Lewis, N.E.3
Milo, R.4
-
143
-
-
84861422324
-
Rethinking glycolysis: On the biochemical logic of metabolic pathways
-
Bar-Even, A., Flamholz, A., Noor, E. and Milo, R. (2012) Rethinking glycolysis: on the biochemical logic of metabolic pathways. Nat. Chem. Biol. 8, 509-517 https://doi.org/10.1038/nchembio.971
-
(2012)
Nat. Chem. Biol
, vol.8
, pp. 509-517
-
-
Bar-Even, A.1
Flamholz, A.2
Noor, E.3
Milo, R.4
-
144
-
-
84884301231
-
Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes
-
Bar-Even, A., Noor, E., Flamholz, A. and Milo, R. (2013) Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes. Biochim. Biophys. Acta, Bioenerg. 1827, 1039-1047 https://doi.org/10.1016/j.bbabio.2012.10.013
-
(2013)
Biochim. Biophys. Acta, Bioenerg
, vol.1827
, pp. 1039-1047
-
-
Bar-Even, A.1
Noor, E.2
Flamholz, A.3
Milo, R.4
-
145
-
-
84859950774
-
ATP drives direct photosynthetic production of 1-butanol in cyanobacteria
-
Lan, E.I. and Liao, J.C. (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc. Natl Acad. Sci. U.S.A. 109, 6018-6023 https://doi.org/10.1073/pnas.1200074109
-
(2012)
Proc. Natl Acad. Sci. U.S.A.
, vol.109
, pp. 6018-6023
-
-
Lan, E.I.1
Liao, J.C.2
-
146
-
-
84976892364
-
Sugar synthesis from CO2 in Escherichia coli
-
Antonovsky, N., Gleizer, S., Noor, E., Zohar, Y., Herz, E., Barenholz, U. et al. (2016) Sugar synthesis from CO2 in Escherichia coli. Cell 166, 115-125 https://doi.org/10.1016/j.cell.2016.05.064
-
(2016)
Cell
, vol.166
, pp. 115-125
-
-
Antonovsky, N.1
Gleizer, S.2
Noor, E.3
Zohar, Y.4
Herz, E.5
Barenholz, U.6
|