메뉴 건너뛰기




Volumn 474, Issue 23, 2017, Pages 3935-3950

Holistic bioengineering: Rewiring central metabolism for enhanced bioproduction

Author keywords

[No Author keywords available]

Indexed keywords

ACETYL COENZYME A; ADENOSINE TRIPHOSPHATE; PHOSPHOGLUCONATE DEHYDROGENASE; PYRUVATE DEHYDROGENASE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; TRICARBOXYLIC ACID; NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE;

EID: 85035311783     PISSN: 02646021     EISSN: 14708728     Source Type: Journal    
DOI: 10.1042/BCJ20170377     Document Type: Review
Times cited : (44)

References (146)
  • 1
    • 84958838963 scopus 로고    scopus 로고
    • Novel technologies provide more engineering strategies for amino acid-producing microorganisms
    • Gu, P., Su, T. and Qi, Q. (2016) Novel technologies provide more engineering strategies for amino acid-producing microorganisms. Appl. Microbiol. Biotechnol. 100, 2097-2105 https://doi.org/10.1007/s00253-015-7276-8
    • (2016) Appl. Microbiol. Biotechnol , vol.100 , pp. 2097-2105
    • Gu, P.1    Su, T.2    Qi, Q.3
  • 2
    • 84942239426 scopus 로고    scopus 로고
    • Direct fermentation route for the production of acrylic acid
    • Chu, H.S., Ahn, J.-H., Yun, J., Choi, I.S., Nam, T.-W. and Cho, K.M. (2015) Direct fermentation route for the production of acrylic acid. Metab. Eng. 32, 23-29 https://doi.org/10.1016/j.ymben.2015.08.005
    • (2015) Metab. Eng , vol.32 , pp. 23-29
    • Chu, H.S.1    Ahn, J.-H.2    Yun, J.3    Choi, I.S.4    Nam, T.-W.5    Cho, K.M.6
  • 3
    • 84947586122 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass
    • Lin, Z., Zhang, Y., Yuan, Q., Liu, Q., Li, Y., Wang, Z. et al. (2015) Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass. Microb. Cell Fact. 14, 185 https://doi.org/10.1186/s12934-015-0369-3
    • (2015) Microb. Cell Fact , vol.14 , pp. 185
    • Lin, Z.1    Zhang, Y.2    Yuan, Q.3    Liu, Q.4    Li, Y.5    Wang, Z.6
  • 4
    • 84919915096 scopus 로고    scopus 로고
    • Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars
    • Li, L., Li, K., Wang, Y., Chen, C., Xu, Y., Zhang, L. et al. (2015) Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Metab. Eng. 28, 19-27 https://doi.org/10.1016/j.ymben.2014.11.010
    • (2015) Metab. Eng , vol.28 , pp. 19-27
    • Li, L.1    Li, K.2    Wang, Y.3    Chen, C.4    Xu, Y.5    Zhang, L.6
  • 5
    • 84920161546 scopus 로고    scopus 로고
    • Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering
    • Zhao, S., Jones, J.A., Lachance, D.M., Bhan, N., Khalidi, O., Venkataraman, S. et al. (2015) Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering. Metab. Eng. 28, 43-53 https://doi.org/10.1016/j.ymben.2014.12.002
    • (2015) Metab. Eng , vol.28 , pp. 43-53
    • Zhao, S.1    Jones, J.A.2    Lachance, D.M.3    Bhan, N.4    Khalidi, O.5    Venkataraman, S.6
  • 7
    • 84925511388 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli to produce zeaxanthin
    • Li, X.-R., Tian, G.-Q., Shen, H.-J. and Liu, J.-Z. (2015) Metabolic engineering of Escherichia coli to produce zeaxanthin. J. Ind. Microbiol. Biotechnol. 42, 627-636 https://doi.org/10.1007/s10295-014-1565-6
    • (2015) J. Ind. Microbiol. Biotechnol , vol.42 , pp. 627-636
    • Li, X.-R.1    Tian, G.-Q.2    Shen, H.-J.3    Liu, J.-Z.4
  • 8
    • 84926669094 scopus 로고    scopus 로고
    • A microbial platform for renewable propane synthesis based on a fermentative butanol pathway
    • Menon, N., Pásztor, A., Menon, B.R.K., Kallio, P., Fisher, K., Akhtar, M.K. et al. (2015) A microbial platform for renewable propane synthesis based on a fermentative butanol pathway. Biotechnol. Biofuels 8, 61 https://doi.org/10.1186/s13068-015-0231-1
    • (2015) Biotechnol. Biofuels , vol.8 , pp. 61
    • Menon, N.1    Pásztor, A.2    Menon, B.R.K.3    Kallio, P.4    Fisher, K.5    Akhtar, M.K.6
  • 9
    • 84907546229 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers
    • Generoso, W.C., Schadeweg, V., Oreb, M. and Boles, E. (2015) Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Curr. Opin. Biotechnol. 33, 1-7 https://doi.org/10.1016/j.copbio.2014.09.004
    • (2015) Curr. Opin. Biotechnol , vol.33 , pp. 1-7
    • Generoso, W.C.1    Schadeweg, V.2    Oreb, M.3    Boles, E.4
  • 10
    • 85016462601 scopus 로고    scopus 로고
    • Metabolic engineering strategies to bio-adipic acid production
    • Kruyer, N.S. and Peralta-Yahya, P. (2017) Metabolic engineering strategies to bio-adipic acid production. Curr. Opin. Biotechnol. 45, 136-143 https:// doi.org/10.1016/j.copbio.2017.03.006
    • (2017) Curr. Opin. Biotechnol , vol.45 , pp. 136-143
    • Kruyer, N.S.1    Peralta-Yahya, P.2
  • 11
    • 84937436324 scopus 로고    scopus 로고
    • Codon bias as a means to fine-tune gene expression
    • Quax, T.E.F., Claassens, N.J., Söll, D. and van der Oost, J. (2015) Codon bias as a means to fine-tune gene expression. Mol. Cell 59, 149-161 https:// doi.org/10.1016/j.molcel.2015.05.035
    • (2015) Mol. Cell , vol.59 , pp. 149-161
    • Quax, T.E.F.1    Claassens, N.J.2    Söll, D.3    Van Der Oost, J.4
  • 12
    • 0030861452 scopus 로고    scopus 로고
    • Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements
    • Lutz, R. and Bujard, H. (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203-1210 https://doi.org/10.1093/nar/25.6.1203
    • (1997) Nucleic Acids Res , vol.25 , pp. 1203-1210
    • Lutz, R.1    Bujard, H.2
  • 13
    • 54349084011 scopus 로고    scopus 로고
    • Escherichia coli strains with promoter libraries constructed by Red/ET recombination pave the way for transcriptional fine-tuning
    • Braatsch, S., Helmark, S., Kranz, H., Koebmann, B. and Jensen, P.R. (2008) Escherichia coli strains with promoter libraries constructed by Red/ET recombination pave the way for transcriptional fine-tuning. BioTechniques 45, 335-337 https://doi.org/10.2144/000112907
    • (2008) BioTechniques , vol.45 , pp. 335-337
    • Braatsch, S.1    Helmark, S.2    Kranz, H.3    Koebmann, B.4    Jensen, P.R.5
  • 14
    • 84877292750 scopus 로고    scopus 로고
    • Spanning high-dimensional expression space using ribosome-binding site combinatorics
    • Zelcbuch, L., Antonovsky, N., Bar-Even, A., Levin-Karp, A., Barenholz, U., Dayagi, M. et al. (2013) Spanning high-dimensional expression space using ribosome-binding site combinatorics. Nucleic Acids Res. 41, e98 https://doi.org/10.1093/nar/gkt151
    • (2013) Nucleic Acids Res , vol.41 , pp. e98
    • Zelcbuch, L.1    Antonovsky, N.2    Bar-Even, A.3    Levin-Karp, A.4    Barenholz, U.5    Dayagi, M.6
  • 15
    • 84947583295 scopus 로고    scopus 로고
    • Overflow metabolism in Escherichia coli results from efficient proteome allocation
    • Basan, M., Hui, S., Okano, H., Zhang, Z., Shen, Y., Williamson, J.R. et al. (2015) Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99-104 https://doi.org/10.1038/nature15765
    • (2015) Nature , vol.528 , pp. 99-104
    • Basan, M.1    Hui, S.2    Okano, H.3    Zhang, Z.4    Shen, Y.5    Williamson, J.R.6
  • 16
    • 33847785682 scopus 로고    scopus 로고
    • Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae
    • Vemuri, G.N., Eiteman, M.A., McEwen, J.E., Olsson, L. and Nielsen, J. (2007) Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. U.S.A. 104, 2402-2407 https://doi.org/10.1073/pnas.0607469104
    • (2007) Proc. Natl Acad. Sci. U.S.A. , vol.104 , pp. 2402-2407
    • Vemuri, G.N.1    Eiteman, M.A.2    McEwen, J.E.3    Olsson, L.4    Nielsen, J.5
  • 17
    • 84865972260 scopus 로고    scopus 로고
    • Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms
    • Paczia, N., Nilgen, A., Lehmann, T., Gätgens, J., Wiechert, W. and Noack, S. (2012) Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microb. Cell Fact. 11, 122 https://doi.org/10.1186/1475-2859-11-122
    • (2012) Microb. Cell Fact , vol.11 , pp. 122
    • Paczia, N.1    Nilgen, A.2    Lehmann, T.3    Gätgens, J.4    Wiechert, W.5    Noack, S.6
  • 18
    • 84959451365 scopus 로고    scopus 로고
    • The Warburg effect: How does it benefit cancer cells?
    • Liberti, M.V. and Locasale, J.W. (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41, 211-218 https://doi.org/10. 1016/j.tibs.2015.12.001
    • (2016) Trends Biochem. Sci , vol.41 , pp. 211-218
    • Liberti, M.V.1    Locasale, J.W.2
  • 19
    • 85019419661 scopus 로고    scopus 로고
    • Engineering metabolic pathways in Escherichia coli for constructing a 'microbial chassis' for biochemical production
    • Matsumoto, T., Tanaka, T. and Kondo, A. (2017) Engineering metabolic pathways in Escherichia coli for constructing a 'microbial chassis' for biochemical production. Bioresour. Technol. 245(Pt B), 1362-1368 https://doi.org/10.1016/j.biortech.2017.05.008
    • (2017) Bioresour. Technol , vol.245 , pp. 1362-1368
    • Matsumoto, T.1    Tanaka, T.2    Kondo, A.3
  • 20
    • 33746913914 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids
    • Wendisch, V.F., Bott, M. and Eikmanns, B.J. (2006) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr. Opin. Microbiol. 9, 268-274 https://doi.org/10.1016/j.mib.2006.03.001
    • (2006) Curr. Opin. Microbiol , vol.9 , pp. 268-274
    • Wendisch, V.F.1    Bott, M.2    Eikmanns, B.J.3
  • 21
    • 36348955587 scopus 로고    scopus 로고
    • Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli
    • Maeda, T., Sanchez-Torres, V. and Wood, T.K. (2007) Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 77, 879-890 https://doi.org/10.1007/s00253-007-1217-0
    • (2007) Appl. Microbiol. Biotechnol , vol.77 , pp. 879-890
    • Maeda, T.1    Sanchez-Torres, V.2    Wood, T.K.3
  • 22
    • 84991687649 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli W3110 to produce L-malate
    • Dong, X., Chen, X., Qian, Y., Wang, Y., Wang, L., Qiao, W. et al. (2017) Metabolic engineering of Escherichia coli W3110 to produce L-malate. Biotechnol. Bioeng. 114, 656-664 https://doi.org/10.1002/bit.26190
    • (2017) Biotechnol. Bioeng , vol.114 , pp. 656-664
    • Dong, X.1    Chen, X.2    Qian, Y.3    Wang, Y.4    Wang, L.5    Qiao, W.6
  • 23
    • 85014057909 scopus 로고    scopus 로고
    • Construction of pyruvate producing strain with intact pyruvate dehydrogenase and genome-wide transcription analysis
    • Yang, M. and Zhang, X. (2017) Construction of pyruvate producing strain with intact pyruvate dehydrogenase and genome-wide transcription analysis. World J. Microbiol. Biotechnol. 33, 59 https://doi.org/10.1007/s11274-016-2202-5
    • (2017) World J. Microbiol. Biotechnol , vol.33 , pp. 59
    • Yang, M.1    Zhang, X.2
  • 24
    • 1442326106 scopus 로고    scopus 로고
    • Process strategies to enhance pyruvate production with recombinant Escherichia coli: From repetitive fed-batch to in situ product recovery with fully integrated electrodialysis
    • Zelic, B., Gostovic, S., Vuorilehto, K., Vasic-Racki, D. and Takors, R. (2004) Process strategies to enhance pyruvate production with recombinant Escherichia coli: from repetitive fed-batch to in situ product recovery with fully integrated electrodialysis. Biotechnol. Bioeng. 85, 638-646 https://doi. org/10.1002/bit.10820
    • (2004) Biotechnol. Bioeng , vol.85 , pp. 638-646
    • Zelic, B.1    Gostovic, S.2    Vuorilehto, K.3    Vasic-Racki, D.4    Takors, R.5
  • 25
    • 33846448781 scopus 로고    scopus 로고
    • Homolactate fermentation by metabolically engineered Escherichia coli strains
    • Zhu, Y., Eiteman, M.A., DeWitt, K. and Altman, E. (2007) Homolactate fermentation by metabolically engineered Escherichia coli strains. Appl. Environ. Microbiol. 73, 456-464 https://doi.org/10.1128/AEM.02022-06
    • (2007) Appl. Environ. Microbiol , vol.73 , pp. 456-464
    • Zhu, Y.1    Eiteman, M.A.2    DeWitt, K.3    Altman, E.4
  • 26
    • 18944378749 scopus 로고    scopus 로고
    • Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity
    • Sánchez, A.M., Bennett, G.N. and San, K.-Y. (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab. Eng. 7, 229-239 https://doi.org/10.1016/j.ymben.2005.03.001
    • (2005) Metab. Eng , vol.7 , pp. 229-239
    • Sánchez, A.M.1    Bennett, G.N.2    San, K.-Y.3
  • 27
    • 33645029734 scopus 로고    scopus 로고
    • Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production
    • Lee, S.J., Song, H. and Lee, S.Y. (2006) Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl. Environ. Microbiol. 72, 1939-1948 https://doi.org/10.1128/AEM.72.3.1939-1948.2006
    • (2006) Appl. Environ. Microbiol , vol.72 , pp. 1939-1948
    • Lee, S.J.1    Song, H.2    Lee, S.Y.3
  • 28
    • 56449105588 scopus 로고    scopus 로고
    • Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C
    • Jantama, K., Zhang, X., Moore, J.C., Shanmugam, K.T., Svoronos, S.A. and Ingram, L.O. (2008) Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol. Bioeng. 101, 881-893 https://doi.org/10.1002/bit.22005
    • (2008) Biotechnol. Bioeng , vol.101 , pp. 881-893
    • Jantama, K.1    Zhang, X.2    Moore, J.C.3    Shanmugam, K.T.4    Svoronos, S.A.5    Ingram, L.O.6
  • 29
    • 79551490770 scopus 로고    scopus 로고
    • L-malate production by metabolically engineered Escherichia coli
    • Zhang, X., Wang, X., Shanmugam, K.T. and Ingram, L.O. (2011) L-malate production by metabolically engineered Escherichia coli. Appl. Environ. Microbiol. 77, 427-434 https://doi.org/10.1128/AEM.01971-10
    • (2011) Appl. Environ. Microbiol , vol.77 , pp. 427-434
    • Zhang, X.1    Wang, X.2    Shanmugam, K.T.3    Ingram, L.O.4
  • 30
    • 77955559433 scopus 로고    scopus 로고
    • Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition
    • Li, Z.-J., Jian, J., Wei, X.-X., Shen, X.-W. and Chen, G.-Q. (2010) Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition. Appl. Microbiol. Biotechnol. 87, 2001-2009 https://doi.org/10.1007/s00253-010-2676-2
    • (2010) Appl. Microbiol. Biotechnol , vol.87 , pp. 2001-2009
    • Li, Z.-J.1    Jian, J.2    Wei, X.-X.3    Shen, X.-W.4    Chen, G.-Q.5
  • 31
    • 77949448789 scopus 로고    scopus 로고
    • Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. Coli
    • Nielsen, D.R., Yoon, S.-H., Yuan, C.J. and Prather, K.L.J. (2010) Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli. Biotechnol. J. 5, 274-284 https://doi.org/10.1002/biot.200900279
    • (2010) Biotechnol. J , vol.5 , pp. 274-284
    • Nielsen, D.R.1    Yoon, S.-H.2    Yuan, C.J.3    Prather, K.L.J.4
  • 32
    • 84907029409 scopus 로고    scopus 로고
    • Improvement of 2,3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formate-lyase gene
    • Jung, M.-Y., Mazumdar, S., Shin, S.H., Yang, K.-S., Lee, J. and Oh, M.-K. (2014) Improvement of 2,3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formate-lyase gene. Appl. Environ. Microbiol. 80, 6195-6203 https://doi.org/10.1128/AEM.02069-14
    • (2014) Appl. Environ. Microbiol , vol.80 , pp. 6195-6203
    • Jung, M.-Y.1    Mazumdar, S.2    Shin, S.H.3    Yang, K.-S.4    Lee, J.5    Oh, M.-K.6
  • 33
    • 84920194778 scopus 로고    scopus 로고
    • Microbial acetyl-CoA metabolism and metabolic engineering
    • Krivoruchko, A., Zhang, Y., Siewers, V., Chen, Y. and Nielsen, J. (2015) Microbial acetyl-CoA metabolism and metabolic engineering. Metab. Eng. 28, 28-42 https://doi.org/10.1016/j.ymben.2014.11.009
    • (2015) Metab. Eng , vol.28 , pp. 28-42
    • Krivoruchko, A.1    Zhang, Y.2    Siewers, V.3    Chen, Y.4    Nielsen, J.5
  • 34
    • 84942612938 scopus 로고    scopus 로고
    • Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum
    • Papanek, B., Biswas, R., Rydzak, T. and Guss, A.M. (2015) Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Metab. Eng. 32, 49-54 https://doi.org/10.1016/j.ymben.2015.09.002
    • (2015) Metab. Eng , vol.32 , pp. 49-54
    • Papanek, B.1    Biswas, R.2    Rydzak, T.3    Guss, A.M.4
  • 35
    • 6944242467 scopus 로고    scopus 로고
    • Cloning of L-lactate dehydrogenase and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485
    • Desai, S.G., Guerinot, M.L. and Lynd, L.R. (2004) Cloning of L-lactate dehydrogenase and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl. Microbiol. Biotechnol. 65, 600-605 https://doi.org/10.1007/s00253-004-1575-9
    • (2004) Appl. Microbiol. Biotechnol , vol.65 , pp. 600-605
    • Desai, S.G.1    Guerinot, M.L.2    Lynd, L.R.3
  • 36
    • 53049097710 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for 1-butanol production
    • Atsumi, S., Cann, A.F., Connor, M.R., Shen, C.R., Smith, K.M., Brynildsen, M.P. et al. (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10, 305-311 https://doi.org/10.1016/j.ymben.2007.08.003
    • (2008) Metab. Eng , vol.10 , pp. 305-311
    • Atsumi, S.1    Cann, A.F.2    Connor, M.R.3    Shen, C.R.4    Smith, K.M.5    Brynildsen, M.P.6
  • 37
    • 38049001166 scopus 로고    scopus 로고
    • Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
    • Atsumi, S., Hanai, T. and Liao, J.C. (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86-89 https://doi.org/10.1038/nature06450
    • (2008) Nature , vol.451 , pp. 86-89
    • Atsumi, S.1    Hanai, T.2    Liao, J.C.3
  • 38
    • 85020923621 scopus 로고    scopus 로고
    • Gene modification of the acetate biosynthesis pathway in Escherichia coli and implementation of the cell recycling technology to increase L-tryptophan production
    • Xu, Q., Bai, F., Chen, N. and Bai, G. (2017) Gene modification of the acetate biosynthesis pathway in Escherichia coli and implementation of the cell recycling technology to increase L-tryptophan production. PLoS ONE 12, e0179240 https://doi.org/10.1371/journal.pone.0179240
    • (2017) PLoS ONE , vol.12 , pp. e0179240
    • Xu, Q.1    Bai, F.2    Chen, N.3    Bai, G.4
  • 39
    • 85021100473 scopus 로고    scopus 로고
    • Eliminating acetate formation improves citramalate production by metabolically engineered Escherichia coli
    • Parimi, N.S., Durie, I.A., Wu, X., Niyas, A.M.M. and Eiteman, M.A. (2017) Eliminating acetate formation improves citramalate production by metabolically engineered Escherichia coli. Microb. Cell Fact. 16, 114 https://doi.org/10.1186/s12934-017-0729-2
    • (2017) Microb. Cell Fact , vol.16 , pp. 114
    • Parimi, N.S.1    Durie, I.A.2    Wu, X.3    Niyas, A.M.M.4    Eiteman, M.A.5
  • 40
    • 44349173795 scopus 로고    scopus 로고
    • Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12
    • Kim, Y., Ingram, L.O. and Shanmugam, K.T. (2008) Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12. J. Bacteriol. 190, 3851-3858 https://doi.org/10.1128/JB.00104-08
    • (2008) J. Bacteriol , vol.190 , pp. 3851-3858
    • Kim, Y.1    Ingram, L.O.2    Shanmugam, K.T.3
  • 42
    • 1342325419 scopus 로고    scopus 로고
    • The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli
    • Sauer, U., Canonaco, F., Heri, S., Perrenoud, A. and Fischer, E. (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J. Biol. Chem. 279, 6613-6619 https://doi.org/10.1074/jbc.M311657200
    • (2004) J. Biol. Chem , vol.279 , pp. 6613-6619
    • Sauer, U.1    Canonaco, F.2    Heri, S.3    Perrenoud, A.4    Fischer, E.5
  • 43
    • 84929079346 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli strains for co-production of hydrogen and ethanol from glucose
    • Seol, E., Ainala, S.K., Sekar, B.S. and Park, S. (2014) Metabolic engineering of Escherichia coli strains for co-production of hydrogen and ethanol from glucose. Int. J. Hydrogen Energy 39, 19323-19330 https://doi.org/10.1016/j.ijhydene.2014.06.054
    • (2014) Int. J. Hydrogen Energy , vol.39 , pp. 19323-19330
    • Seol, E.1    Ainala, S.K.2    Sekar, B.S.3    Park, S.4
  • 44
    • 85019015726 scopus 로고    scopus 로고
    • Co-production of hydrogen and ethanol from glucose in Escherichia coli by activation of pentose-phosphate pathway through deletion of phosphoglucose isomerase ( pgi) and overexpression of glucose-6-phosphate dehydrogenase (zwf ) and 6-phosphogluconate dehydrogenase (gnd)
    • Sundara Sekar, B., Seol, E. and Park, S. (2017) Co-production of hydrogen and ethanol from glucose in Escherichia coli by activation of pentose-phosphate pathway through deletion of phosphoglucose isomerase ( pgi) and overexpression of glucose-6-phosphate dehydrogenase (zwf ) and 6-phosphogluconate dehydrogenase (gnd). Biotechnol. Biofuels 10, 85 https://doi.org/10.1186/s13068-017-0768-2
    • (2017) Biotechnol. Biofuels , vol.10 , pp. 85
    • Sundara Sekar, B.1    Seol, E.2    Park, S.3
  • 45
    • 0041930987 scopus 로고    scopus 로고
    • Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum
    • PMID:12948638
    • Marx, A., Hans, S., Möckel, B., Bathe, B., de Graaf, A.A., McCormack, A.C. et al. (2003) Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J. Biotechnol. 104, 185-197 PMID:12948638
    • (2003) J. Biotechnol , vol.104 , pp. 185-197
    • Marx, A.1    Hans, S.2    Möckel, B.3    Bathe, B.4    De Graaf, A.A.5    McCormack, A.C.6
  • 47
    • 84907362164 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for L-arginine production
    • Park, S.H., Kim, H.U., Kim, T.Y., Park, J.S., Kim, S.-S. and Lee, S.Y. (2014) Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat. Commun. 5, 4618 https://doi.org/10.1038/ncomms5618
    • (2014) Nat. Commun , vol.5 , pp. 4618
    • Park, S.H.1    Kim, H.U.2    Kim, T.Y.3    Park, J.S.4    Kim, S.-S.5    Lee, S.Y.6
  • 48
    • 84920074788 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine
    • Kim, S.Y., Lee, J. and Lee, S.Y. (2015) Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine. Biotechnol. Bioeng. 112, 416-421 https://doi.org/10.1002/bit.25440
    • (2015) Biotechnol. Bioeng , vol.112 , pp. 416-421
    • Kim, S.Y.1    Lee, J.2    Lee, S.Y.3
  • 49
    • 84880510233 scopus 로고    scopus 로고
    • Improvement of NADPH bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains
    • Wang, Y., San, K.-Y. and Bennett, G.N. (2013) Improvement of NADPH bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains. Appl. Microbiol. Biotechnol. 97, 6883-6893 https://doi.org/10.1007/s00253-013-4859-0
    • (2013) Appl. Microbiol. Biotechnol , vol.97 , pp. 6883-6893
    • Wang, Y.1    San, K.-Y.2    Bennett, G.N.3
  • 50
    • 84925348793 scopus 로고    scopus 로고
    • Rational design of a synthetic Entner-Doudoroff pathway for improved and controllable NADPH regeneration
    • Ng, C.Y., Farasat, I., Maranas, C.D. and Salis, H.M. (2015) Rational design of a synthetic Entner-Doudoroff pathway for improved and controllable NADPH regeneration. Metab. Eng. 29, 86-96 https://doi.org/10.1016/j.ymben.2015.03.001
    • (2015) Metab. Eng , vol.29 , pp. 86-96
    • Ng, C.Y.1    Farasat, I.2    Maranas, C.D.3    Salis, H.M.4
  • 51
    • 84971577878 scopus 로고    scopus 로고
    • Increasing the production of (R)-3-hydroxybutyrate in recombinant Escherichia coli by improved cofactor supply
    • Perez-Zabaleta, M., Sjöberg, G., Guevara-Martínez, M., Jarmander, J., Gustavsson, M., Quillaguamán, J. et al. (2016) Increasing the production of (R)-3-hydroxybutyrate in recombinant Escherichia coli by improved cofactor supply. Microb. Cell Fact. 15, 91 https://doi.org/10.1186/ s12934-016-0490-y
    • (2016) Microb. Cell Fact , vol.15 , pp. 91
    • Perez-Zabaleta, M.1    Sjöberg, G.2    Guevara-Martínez, M.3    Jarmander, J.4    Gustavsson, M.5    Quillaguamán, J.6
  • 52
    • 84872783399 scopus 로고    scopus 로고
    • Enhancement of cytidine production by coexpression of gnd, zwf, and prs genes in recombinant Escherichia coli CYT15
    • Fang, H., Xie, X., Xu, Q., Zhang, C. and Chen, N. (2013) Enhancement of cytidine production by coexpression of gnd, zwf, and prs genes in recombinant Escherichia coli CYT15. Biotechnol. Lett. 35, 245-251 https://doi.org/10.1007/s10529-012-1068-3
    • (2013) Biotechnol. Lett , vol.35 , pp. 245-251
    • Fang, H.1    Xie, X.2    Xu, Q.3    Zhang, C.4    Chen, N.5
  • 53
    • 0036305048 scopus 로고    scopus 로고
    • Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. Coli transformant harboring a cloned phbCAB operon
    • Lim, S.-J., Jung, Y.-M., Shin, H.-D. and Lee, Y.-H. (2002) Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon. J. Biosci. Bioeng. 93, 543-549 https://doi.org/10.1016/S1389-1723(02)80235-3
    • (2002) J. Biosci. Bioeng , vol.93 , pp. 543-549
    • Lim, S.-J.1    Jung, Y.-M.2    Shin, H.-D.3    Lee, Y.-H.4
  • 54
    • 84872321627 scopus 로고    scopus 로고
    • Reductive whole-cell biotransformation with Corynebacterium glutamicum: Improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using pfkA and gapA deletion mutants
    • Siedler, S., Lindner, S.N., Bringer, S., Wendisch, V.F. and Bott, M. (2013) Reductive whole-cell biotransformation with Corynebacterium glutamicum: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using pfkA and gapA deletion mutants. Appl. Microbiol. Biotechnol. 97, 143-152 https://doi.org/10.1007/s00253-012-4314-7
    • (2013) Appl. Microbiol. Biotechnol , vol.97 , pp. 143-152
    • Siedler, S.1    Lindner, S.N.2    Bringer, S.3    Wendisch, V.F.4    Bott, M.5
  • 55
    • 33646045867 scopus 로고    scopus 로고
    • Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli
    • Sanchez, A.M., Andrews, J., Hussein, I., Bennett, G.N. and San, K.-Y. (2006) Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli. Biotechnol. Prog. 22, 420-425 https://doi.org/10.1021/bp050375u
    • (2006) Biotechnol. Prog , vol.22 , pp. 420-425
    • Sanchez, A.M.1    Andrews, J.2    Hussein, I.3    Bennett, G.N.4    San, K.-Y.5
  • 56
    • 34247584154 scopus 로고    scopus 로고
    • Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation
    • Kabus, A., Georgi, T., Wendisch, V.F. and Bott, M. (2007) Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Appl. Microbiol. Biotechnol. 75, 47-53 https://doi.org/10.1007/ s00253-006-0804-9
    • (2007) Appl. Microbiol. Biotechnol , vol.75 , pp. 47-53
    • Kabus, A.1    Georgi, T.2    Wendisch, V.F.3    Bott, M.4
  • 57
    • 77953083412 scopus 로고    scopus 로고
    • Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: Biochemical properties and impact of ppnK overexpression on lysine production
    • Lindner, S.N., Niederholtmeyer, H., Schmitz, K., Schoberth, S.M. and Wendisch, V.F. (2010) Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production. Appl. Microbiol. Biotechnol. 87, 583-593 https://doi.org/10.1007/s00253-010-2481-y
    • (2010) Appl. Microbiol. Biotechnol , vol.87 , pp. 583-593
    • Lindner, S.N.1    Niederholtmeyer, H.2    Schmitz, K.3    Schoberth, S.M.4    Wendisch, V.F.5
  • 58
    • 84893649889 scopus 로고    scopus 로고
    • Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering
    • Cui, Y.-Y., Ling, C., Zhang, Y.-Y., Huang, J. and Liu, J.-Z. (2014) Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering. Microb. Cell Fact. 13, 21 https://doi.org/10.1186/1475-2859-13-21
    • (2014) Microb. Cell Fact , vol.13 , pp. 21
    • Cui, Y.-Y.1    Ling, C.2    Zhang, Y.-Y.3    Huang, J.4    Liu, J.-Z.5
  • 59
    • 84883757726 scopus 로고    scopus 로고
    • Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. Lactofermentum
    • Shi, F., Li, K., Huan, X. and Wang, X. (2013) Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Appl. Biochem. Biotechnol. 171, 504-521 https://doi.org/10.1007/ s12010-013-0389-6
    • (2013) Appl. Biochem. Biotechnol , vol.171 , pp. 504-521
    • Shi, F.1    Li, K.2    Huan, X.3    Wang, X.4
  • 60
    • 84924678364 scopus 로고    scopus 로고
    • Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: Growth restoration by an adaptive point mutation in NADH dehydrogenase
    • Komati Reddy, G., Lindner, S.N. and Wendisch, V.F. (2015) Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase. Appl. Environ. Microbiol. 81, 1996-2005 https://doi.org/10.1128/AEM.03116-14
    • (2015) Appl. Environ. Microbiol , vol.81 , pp. 1996-2005
    • Komati Reddy, G.1    Lindner, S.N.2    Wendisch, V.F.3
  • 61
    • 78149443330 scopus 로고    scopus 로고
    • Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production
    • Takeno, S., Murata, R., Kobayashi, R., Mitsuhashi, S. and Ikeda, M. (2010) Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production. Appl. Environ. Microbiol. 76, 7154-7160 https://doi.org/10.1128/AEM.01464-10
    • (2010) Appl. Environ. Microbiol , vol.76 , pp. 7154-7160
    • Takeno, S.1    Murata, R.2    Kobayashi, R.3    Mitsuhashi, S.4    Ikeda, M.5
  • 62
    • 84896489949 scopus 로고    scopus 로고
    • Improving poly-3-hydroxybutyrate production in Escherichia coli by combining the increase in the NADPH pool and acetyl-CoA availability
    • Centeno-Leija, S., Huerta-Beristain, G., Giles-Gómez, M., Bolivar, F., Gosset, G. and Martinez, A. (2014) Improving poly-3-hydroxybutyrate production in Escherichia coli by combining the increase in the NADPH pool and acetyl-CoA availability. Antonie Van Leeuwenhoek 105, 687-696 https://doi.org/10. 1007/s10482-014-0124-5
    • (2014) Antonie Van Leeuwenhoek , vol.105 , pp. 687-696
    • Centeno-Leija, S.1    Huerta-Beristain, G.2    Giles-Gómez, M.3    Bolivar, F.4    Gosset, G.5    Martinez, A.6
  • 63
    • 84881131151 scopus 로고    scopus 로고
    • Light driven CO2 fixation by using cyanobacterial photosystem i and NADPH-dependent formate dehydrogenase
    • Ihara, M., Kawano, Y., Urano, M. and Okabe, A. (2013) Light driven CO2 fixation by using cyanobacterial photosystem I and NADPH-dependent formate dehydrogenase. PLoS ONE 8, e71581 https://doi.org/10.1371/journal.pone.0071581
    • (2013) PLoS ONE , vol.8 , pp. e71581
    • Ihara, M.1    Kawano, Y.2    Urano, M.3    Okabe, A.4
  • 64
    • 26844523510 scopus 로고    scopus 로고
    • Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration
    • Johannes, T.W., Woodyer, R.D. and Zhao, H. (2005) Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration. Appl. Environ. Microbiol. 71, 5728-5734 https://doi.org/10.1128/AEM.71.10.5728-5734.2005
    • (2005) Appl. Environ. Microbiol , vol.71 , pp. 5728-5734
    • Johannes, T.W.1    Woodyer, R.D.2    Zhao, H.3
  • 65
    • 84941213572 scopus 로고    scopus 로고
    • Phosphoketolase pathway engineering for carbon-efficient biocatalysis
    • Henard, C.A., Freed, E.F. and Guarnieri, M.T. (2015) Phosphoketolase pathway engineering for carbon-efficient biocatalysis. Curr. Opin. Biotechnol. 36, 183-188 https://doi.org/10.1016/j.copbio.2015.08.018
    • (2015) Curr. Opin. Biotechnol , vol.36 , pp. 183-188
    • Henard, C.A.1    Freed, E.F.2    Guarnieri, M.T.3
  • 66
    • 84912055858 scopus 로고    scopus 로고
    • Sweet siblings with different faces: The mechanisms of FBP and F6P aldolase, transaldolase, transketolase and phosphoketolase revisited in light of recent structural data
    • Tittmann, K. (2014) Sweet siblings with different faces: the mechanisms of FBP and F6P aldolase, transaldolase, transketolase and phosphoketolase revisited in light of recent structural data. Bioorg. Chem. 57, 263-280 https://doi.org/10.1016/j.bioorg.2014.09.001
    • (2014) Bioorg. Chem , vol.57 , pp. 263-280
    • Tittmann, K.1
  • 67
    • 84886947479 scopus 로고    scopus 로고
    • Synthetic non-oxidative glycolysis enables complete carbon conservation
    • Bogorad, I.W., Lin, T.-S. and Liao, J.C. (2013) Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502, 693-697 https://doi.org/10.1038/nature12575
    • (2013) Nature , vol.502 , pp. 693-697
    • Bogorad, I.W.1    Lin, T.-S.2    Liao, J.C.3
  • 68
    • 2442684544 scopus 로고    scopus 로고
    • Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae
    • Sonderegger, M., Schumperli, M. and Sauer, U. (2004) Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 70, 2892-2897 https://doi.org/10.1128/AEM.70.5.2892-2897.2004
    • (2004) Appl. Environ. Microbiol , vol.70 , pp. 2892-2897
    • Sonderegger, M.1    Schumperli, M.2    Sauer, U.3
  • 69
    • 84944474444 scopus 로고    scopus 로고
    • Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production
    • Anfelt, J., Kaczmarzyk, D., Shabestary, K., Renberg, B., Rockberg, J., Nielsen, J. et al. (2015) Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production. Microb. Cell Fact. 14, 167 https://doi.org/10.1186/s12934-015-0355-9
    • (2015) Microb. Cell Fact , vol.14 , pp. 167
    • Anfelt, J.1    Kaczmarzyk, D.2    Shabestary, K.3    Renberg, B.4    Rockberg, J.5    Nielsen, J.6
  • 70
    • 85011349337 scopus 로고    scopus 로고
    • Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production
    • Jo, S., Yoon, J., Lee, S.-M., Um, Y., Han, S.O. and Woo, H.M. (2017) Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production. J. Biotechnol. 258, 69-78 https://doi.org/10.1016/j.jbiotec.2017.01.015
    • (2017) J. Biotechnol , vol.258 , pp. 69-78
    • Jo, S.1    Yoon, J.2    Lee, S.-M.3    Um, Y.4    Han, S.O.5    Woo, H.M.6
  • 71
    • 34047252012 scopus 로고    scopus 로고
    • Innovative metabolic pathway design for efficient l-glutamate production by suppressing CO2 emission
    • Chinen, A., Kozlov, Y.I., Hara, Y., Izui, H. and Yasueda, H. (2007) Innovative metabolic pathway design for efficient l-glutamate production by suppressing CO2 emission. J. Biosci. Bioeng. 103, 262-269 https://doi.org/10.1263/jbb.103.262
    • (2007) J. Biosci. Bioeng , vol.103 , pp. 262-269
    • Chinen, A.1    Kozlov, Y.I.2    Hara, Y.3    Izui, H.4    Yasueda, H.5
  • 72
    • 84989852376 scopus 로고    scopus 로고
    • Rewriting yeast central carbon metabolism for industrial isoprenoid production
    • Meadows, A.L., Hawkins, K.M., Tsegaye, Y., Antipov, E., Kim, Y., Raetz, L. et al. (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537, 694-697 https://doi.org/10.1038/nature19769
    • (2016) Nature , vol.537 , pp. 694-697
    • Meadows, A.L.1    Hawkins, K.M.2    Tsegaye, Y.3    Antipov, E.4    Kim, Y.5    Raetz, L.6
  • 73
    • 84879603106 scopus 로고    scopus 로고
    • Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway
    • Kocharin, K., Siewers, V. and Nielsen, J. (2013) Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway. Biotechnol. Bioeng. 110, 2216-2224 https://doi.org/10.1002/bit.24888
    • (2013) Biotechnol. Bioeng , vol.110 , pp. 2216-2224
    • Kocharin, K.1    Siewers, V.2    Nielsen, J.3
  • 74
    • 84899154669 scopus 로고    scopus 로고
    • Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway
    • de Jong, B.W., Shi, S., Siewers, V. and Nielsen, J. (2014) Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microb. Cell Fact. 13, 39 https://doi.org/10.1186/1475-2859-13-39
    • (2014) Microb. Cell Fact , vol.13 , pp. 39
    • De Jong, B.W.1    Shi, S.2    Siewers, V.3    Nielsen, J.4
  • 75
    • 63849107219 scopus 로고    scopus 로고
    • Studies of the production of fungal polyketides in Aspergillus nidulans by using systems biology tools
    • Panagiotou, G., Andersen, M.R., Grotkjaer, T., Regueira, T.B., Nielsen, J. and Olsson, L. (2009) Studies of the production of fungal polyketides in Aspergillus nidulans by using systems biology tools. Appl. Environ. Microbiol. 75, 2212-2220 https://doi.org/10.1128/AEM.01461-08
    • (2009) Appl. Environ. Microbiol , vol.75 , pp. 2212-2220
    • Panagiotou, G.1    Andersen, M.R.2    Grotkjaer, T.3    Regueira, T.B.4    Nielsen, J.5    Olsson, L.6
  • 76
    • 84864580802 scopus 로고    scopus 로고
    • Physiological characterization of recombinant Saccharomyces cerevisiae expressing the Aspergillus nidulans phosphoketolase pathway: Validation of activity through 13C-based metabolic flux analysis
    • Papini, M., Nookaew, I., Siewers, V. and Nielsen, J. (2012) Physiological characterization of recombinant Saccharomyces cerevisiae expressing the Aspergillus nidulans phosphoketolase pathway: validation of activity through 13C-based metabolic flux analysis. Appl. Microbiol. Biotechnol. 95, 1001-1010 https://doi.org/10.1007/s00253-012-3936-0
    • (2012) Appl. Microbiol. Biotechnol , vol.95 , pp. 1001-1010
    • Papini, M.1    Nookaew, I.2    Siewers, V.3    Nielsen, J.4
  • 77
    • 85027932586 scopus 로고    scopus 로고
    • An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli
    • Yang, X., Yuan, Q., Zheng, Y., Ma, H., Chen, T. and Zhao, X. (2016) An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli. Biotechnol. Lett. 38, 1359-1365 https://doi.org/10.1007/s10529-016-2115-2
    • (2016) Biotechnol. Lett , vol.38 , pp. 1359-1365
    • Yang, X.1    Yuan, Q.2    Zheng, Y.3    Ma, H.4    Chen, T.5    Zhao, X.6
  • 78
    • 84959145501 scopus 로고    scopus 로고
    • Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition
    • Chwa, J.-W., Kim, W.J., Sim, S.J., Um, Y. and Woo, H.M. (2016) Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition. Plant Biotechnol. J. 14, 1768-1776 https://doi.org/10.1111/pbi.12536
    • (2016) Plant Biotechnol. J , vol.14 , pp. 1768-1776
    • Chwa, J.-W.1    Kim, W.J.2    Sim, S.J.3    Um, Y.4    Woo, H.M.5
  • 79
    • 33847378479 scopus 로고    scopus 로고
    • Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
    • Shiba, Y., Paradise, E.M., Kirby, J., Ro, D.-K. and Keasling, J.D. (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab. Eng. 9, 160-168 https://doi.org/10.1016/j.ymben.2006.10.005
    • (2007) Metab. Eng , vol.9 , pp. 160-168
    • Shiba, Y.1    Paradise, E.M.2    Kirby, J.3    Ro, D.-K.4    Keasling, J.D.5
  • 80
    • 84864758717 scopus 로고    scopus 로고
    • Enhanced α-ketoglutarate production in Yarrowia lipolytica WSH-Z06 by alteration of the acetyl-CoA metabolism
    • Zhou, J., Yin, X., Madzak, C., Du, G. and Chen, J. (2012) Enhanced α-ketoglutarate production in Yarrowia lipolytica WSH-Z06 by alteration of the acetyl-CoA metabolism. J. Biotechnol. 161, 257-264 https://doi.org/10.1016/j.jbiotec.2012.05.025
    • (2012) J. Biotechnol , vol.161 , pp. 257-264
    • Zhou, J.1    Yin, X.2    Madzak, C.3    Du, G.4    Chen, J.5
  • 81
    • 84924038713 scopus 로고    scopus 로고
    • Engineering of Serine-Deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex to improve poly(3-hydroxybutyrate) production in Escherichia coli
    • Zhang, Y., Lin, Z., Liu, Q., Li, Y., Wang, Z., Ma, H. et al. (2014) Engineering of Serine-Deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex to improve poly(3-hydroxybutyrate) production in Escherichia coli. Microb. Cell Fact. 13, 172 https://doi.org/10.1186/ s12934-014-0172-6
    • (2014) Microb. Cell Fact , vol.13 , pp. 172
    • Zhang, Y.1    Lin, Z.2    Liu, Q.3    Li, Y.4    Wang, Z.5    Ma, H.6
  • 82
    • 84878966835 scopus 로고    scopus 로고
    • Glycolytic strategy as a tradeoff between energy yield and protein cost
    • Flamholz, A., Noor, E., Bar-Even, A., Liebermeister, W. and Milo, R. (2013) Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc. Natl Acad. Sci. U.S.A. 110, 10039-10044 https://doi.org/10.1073/pnas.1215283110
    • (2013) Proc. Natl Acad. Sci. U.S.A. , vol.110 , pp. 10039-10044
    • Flamholz, A.1    Noor, E.2    Bar-Even, A.3    Liebermeister, W.4    Milo, R.5
  • 83
    • 84893388611 scopus 로고    scopus 로고
    • Combination of Entner-Doudoroff pathway with MEP increases isoprene production in engineered Escherichia coli
    • Liu, H., Sun, Y., Ramos, K.R.M., Nisola, G.M., Valdehuesa, K.N.G., Lee, W.-K. et al. (2013) Combination of Entner-Doudoroff pathway with MEP increases isoprene production in engineered Escherichia coli. PLoS ONE 8, e83290 https://doi.org/10.1371/journal.pone.0083290
    • (2013) PLoS ONE , vol.8 , pp. e83290
    • Liu, H.1    Sun, Y.2    Ramos, K.R.M.3    Nisola, G.M.4    Valdehuesa, K.N.G.5    Lee, W.-K.6
  • 84
    • 84938840714 scopus 로고    scopus 로고
    • Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-D-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli
    • Li, C., Ying, L.-Q., Zhang, S.-S., Chen, N., Liu, W.-F. and Tao, Y. (2015) Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-D-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli. Microb. Cell Fact. 14, 117 https://doi.org/10. 1186/s12934-015-0301-x
    • (2015) Microb. Cell Fact , vol.14 , pp. 117
    • Li, C.1    Ying, L.-Q.2    Zhang, S.-S.3    Chen, N.4    Liu, W.-F.5    Tao, Y.6
  • 85
    • 0028104094 scopus 로고
    • The bacterial phosphotransferase system: New frontiers 30 years later
    • Saier, Jr, M.H. and Reizer, J. (1994) The bacterial phosphotransferase system: new frontiers 30 years later. Mol. Microbiol. 13, 755-764 https://doi. org/10.1111/j.1365-2958.1994.tb00468.x
    • (1994) Mol. Microbiol , vol.13 , pp. 755-764
    • Saier, M.H.1    Reizer, J.2
  • 87
    • 0043023507 scopus 로고    scopus 로고
    • Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products
    • Hernández-Montalvo, V., Martínez, A., Hernández-Chavez, G., Bolivar, F., Valle, F. and Gosset, G. (2003) Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol. Bioeng. 83, 687-694 https://doi.org/10.1002/bit.10702
    • (2003) Biotechnol. Bioeng , vol.83 , pp. 687-694
    • Hernández-Montalvo, V.1    Martínez, A.2    Hernández-Chavez, G.3    Bolivar, F.4    Valle, F.5    Gosset, G.6
  • 88
    • 14844334161 scopus 로고    scopus 로고
    • Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032
    • Moon, M.-W., Kim, H.-J., Oh, T.-K., Shin, C.-S., Lee, J.-S., Kim, S.-J. et al. (2005) Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol. Lett. 244, 259-266 https://doi.org/10.1016/j.femsle.2005.01.053
    • (2005) FEMS Microbiol. Lett , vol.244 , pp. 259-266
    • Moon, M.-W.1    Kim, H.-J.2    Oh, T.-K.3    Shin, C.-S.4    Lee, J.-S.5    Kim, S.-J.6
  • 89
    • 0038119755 scopus 로고    scopus 로고
    • Phosphoenolpyruvate availability and the biosynthesis of Shikimic acid
    • Chandran, S.S., Yi, J., Draths, K.M., von Daeniken, R., Weber, W. and Frost, J.W. (2003) Phosphoenolpyruvate availability and the biosynthesis of Shikimic acid. Biotechnol. Prog. 19, 808-814 https://doi.org/10.1021/bp025769p
    • (2003) Biotechnol. Prog , vol.19 , pp. 808-814
    • Chandran, S.S.1    Yi, J.2    Draths, K.M.3    Von Daeniken, R.4    Weber, W.5    Frost, J.W.6
  • 90
    • 79958283261 scopus 로고    scopus 로고
    • Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases
    • Lindner, S.N., Seibold, G.M., Henrich, A., Kramer, R. and Wendisch, V.F. (2011) Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Appl. Environ. Microbiol. 77, 3571-3581 https://doi.org/10.1128/AEM.02713-10
    • (2011) Appl. Environ. Microbiol , vol.77 , pp. 3571-3581
    • Lindner, S.N.1    Seibold, G.M.2    Henrich, A.3    Kramer, R.4    Wendisch, V.F.5
  • 91
    • 79955065138 scopus 로고    scopus 로고
    • Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis
    • Bujara, M., Schümperli, M., Pellaux, R., Heinemann, M. and Panke, S. (2011) Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis. Nat. Chem. Biol. 7, 271-277 https://doi.org/10.1038/nchembio.541
    • (2011) Nat. Chem. Biol , vol.7 , pp. 271-277
    • Bujara, M.1    Schümperli, M.2    Pellaux, R.3    Heinemann, M.4    Panke, S.5
  • 92
    • 84934999495 scopus 로고    scopus 로고
    • Systematically engineering Escherichia coli for enhanced production of 1,2-propanediol and 1-propanol
    • Jain, R., Sun, X., Yuan, Q. and Yan, Y. (2015) Systematically engineering Escherichia coli for enhanced production of 1,2-propanediol and 1-propanol. ACS Synth. Biol. 4, 746-756 https://doi.org/10.1021/sb500345t
    • (2015) ACS Synth. Biol , vol.4 , pp. 746-756
    • Jain, R.1    Sun, X.2    Yuan, Q.3    Yan, Y.4
  • 93
    • 0142027026 scopus 로고    scopus 로고
    • Metabolic engineering for the microbial production of 1,3-propanediol
    • Nakamura, C.E. and Whited, G.M. (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14, 454-459 https://doi.org/10.1016/j.copbio.2003.08.005
    • (2003) Curr. Opin. Biotechnol , vol.14 , pp. 454-459
    • Nakamura, C.E.1    Whited, G.M.2
  • 94
    • 79952910616 scopus 로고    scopus 로고
    • Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
    • Bond-Watts, B.B., Bellerose, R.J. and Chang, M.C.Y. (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat. Chem. Biol. 7, 222-227 https://doi.org/10.1038/nchembio.537
    • (2011) Nat. Chem. Biol , vol.7 , pp. 222-227
    • Bond-Watts, B.B.1    Bellerose, R.J.2    Chang, M.C.Y.3
  • 95
    • 84949803963 scopus 로고    scopus 로고
    • Modular optimization of multi-gene pathways for fumarate production
    • Chen, X., Zhu, P. and Liu, L. (2016) Modular optimization of multi-gene pathways for fumarate production. Metab. Eng. 33, 76-85 https://doi.org/10. 1016/j.ymben.2015.07.007
    • (2016) Metab. Eng , vol.33 , pp. 76-85
    • Chen, X.1    Zhu, P.2    Liu, L.3
  • 96
    • 80052021573 scopus 로고    scopus 로고
    • Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA
    • Xu, P., Ranganathan, S., Fowler, Z.L., Maranas, C.D. and Koffas, M.A.G. (2011) Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab. Eng. 13, 578-587 https://doi.org/10.1016/j.ymben.2011.06.008
    • (2011) Metab. Eng , vol.13 , pp. 578-587
    • Xu, P.1    Ranganathan, S.2    Fowler, Z.L.3    Maranas, C.D.4    Koffas, M.A.G.5
  • 97
    • 84884820489 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for enhanced biosynthesis of poly(3-hydroxybutyrate) based on proteome analysis
    • Lee, S.H., Kang, K.-H., Kim, E.Y., Chae, T.U., Oh, Y.H., Hong, S.H. et al. (2013) Metabolic engineering of Escherichia coli for enhanced biosynthesis of poly(3-hydroxybutyrate) based on proteome analysis. Biotechnol. Lett. 35, 1631-1637 https://doi.org/10.1007/s10529-013-1246-y
    • (2013) Biotechnol. Lett , vol.35 , pp. 1631-1637
    • Lee, S.H.1    Kang, K.-H.2    Kim, E.Y.3    Chae, T.U.4    Oh, Y.H.5    Hong, S.H.6
  • 98
    • 5444248670 scopus 로고    scopus 로고
    • Applicability of CoA/acetyl-CoA manipulation system to enhance isoamyl acetate production in Escherichia coli
    • Vadali, R.V., Bennett, G.N. and San, K.-Y. (2004) Applicability of CoA/acetyl-CoA manipulation system to enhance isoamyl acetate production in Escherichia coli. Metab. Eng. 6, 294-299 https://doi.org/10.1016/j.ymben.2004.02.006
    • (2004) Metab. Eng , vol.6 , pp. 294-299
    • Vadali, R.V.1    Bennett, G.N.2    San, K.-Y.3
  • 99
    • 84944910018 scopus 로고    scopus 로고
    • Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways
    • Nikel, P.I., Chavarría, M., Fuhrer, T., Sauer, U. and de Lorenzo, V. (2015) Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways. J. Biol. Chem. 290, 25920-25932 https:// doi.org/10.1074/jbc.M115.687749
    • (2015) J. Biol. Chem , vol.290 , pp. 25920-25932
    • Nikel, P.I.1    Chavarría, M.2    Fuhrer, T.3    Sauer, U.4    De Lorenzo, V.5
  • 100
    • 85019581632 scopus 로고    scopus 로고
    • Refactoring the Embden-Meyerhof-Parnas pathway as a whole of portable GlucoBricks for implantation of glycolytic modules in gram-negative bacteria
    • Sánchez-Pascuala, A., de Lorenzo, V. and Nikel, P.I. (2017) Refactoring the Embden-Meyerhof-Parnas pathway as a whole of portable GlucoBricks for implantation of glycolytic modules in gram-negative bacteria. ACS Synth. Biol. 6, 793-805 https://doi.org/10.1021/acssynbio.6b00230
    • (2017) ACS Synth. Biol , vol.6 , pp. 793-805
    • Sánchez-Pascuala, A.1    De Lorenzo, V.2    Nikel, P.I.3
  • 102
    • 43549095454 scopus 로고    scopus 로고
    • A physiology study of Escherichia coli overexpressing phosphoenolpyruvate carboxykinase
    • Kwon, Y.-D., Lee, S.Y. and Kim, P. (2008) A physiology study of Escherichia coli overexpressing phosphoenolpyruvate carboxykinase. Biosci. Biotechnol. Biochem. 72, 1138-1141 https://doi.org/10.1271/bbb.70831
    • (2008) Biosci. Biotechnol. Biochem , vol.72 , pp. 1138-1141
    • Kwon, Y.-D.1    Lee, S.Y.2    Kim, P.3
  • 103
    • 84937765396 scopus 로고    scopus 로고
    • Growth retardation of Escherichia coli by artificial increase of intracellular ATP
    • Na, Y.-A., Lee, J.-Y., Bang, W.-J., Lee, H.J., Choi, S.-I., Kwon, S.-K. et al. (2015) Growth retardation of Escherichia coli by artificial increase of intracellular ATP. J. Ind. Microbiol. Biotechnol. 42, 915-924 https://doi.org/10.1007/s10295-015-1609-6
    • (2015) J. Ind. Microbiol. Biotechnol , vol.42 , pp. 915-924
    • Na, Y.-A.1    Lee, J.-Y.2    Bang, W.-J.3    Lee, H.J.4    Choi, S.-I.5    Kwon, S.-K.6
  • 104
    • 2342516028 scopus 로고    scopus 로고
    • Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli
    • Kim, P., Laivenieks, M., Vieille, C. and Zeikus, J.G. (2004) Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli. Appl. Environ. Microbiol. 70, 1238-1241 https://doi.org/10.1128/AEM.70.2.1238-1241.2004
    • (2004) Appl. Environ. Microbiol , vol.70 , pp. 1238-1241
    • Kim, P.1    Laivenieks, M.2    Vieille, C.3    Zeikus, J.G.4
  • 105
    • 33750196846 scopus 로고    scopus 로고
    • Influence of gluconeogenic phosphoenolpyruvate carboxykinase (PCK) expression on succinic acid fermentation in Escherichia coli under high bicarbonate condition
    • Kwon, Y.D., Lee, S.Y. and Kim, P. (2006) Influence of gluconeogenic phosphoenolpyruvate carboxykinase (PCK) expression on succinic acid fermentation in Escherichia coli under high bicarbonate condition. J. Microbiol. Biotechnol. 16, 1448
    • (2006) J. Microbiol. Biotechnol , vol.16 , pp. 1448
    • Kwon, Y.D.1    Lee, S.Y.2    Kim, P.3
  • 106
    • 77955933873 scopus 로고    scopus 로고
    • Phosphoenolpyruvate carboxykinase as the sole anaplerotic enzyme in Saccharomyces cerevisiae
    • Zelle, R.M., Trueheart, J., Harrison, J.C., Pronk, J.T. and van Maris, A.J. (2010) Phosphoenolpyruvate carboxykinase as the sole anaplerotic enzyme in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 76, 5383-5389 https://doi.org/10.1128/AEM.01077-10
    • (2010) Appl. Environ. Microbiol , vol.76 , pp. 5383-5389
    • Zelle, R.M.1    Trueheart, J.2    Harrison, J.C.3    Pronk, J.T.4    Van Maris, A.J.5
  • 107
    • 73949115238 scopus 로고    scopus 로고
    • Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli
    • Zhang, X., Jantama, K., Moore, J.C., Jarboe, L.R., Shanmugam, K.T. and Ingram, L.O. (2009) Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc. Natl Acad. Sci. U.S.A. 106, 20180-20185 https://doi.org/10.1073/pnas.0905396106
    • (2009) Proc. Natl Acad. Sci. U.S.A. , vol.106 , pp. 20180-20185
    • Zhang, X.1    Jantama, K.2    Moore, J.C.3    Jarboe, L.R.4    Shanmugam, K.T.5    Ingram, L.O.6
  • 108
    • 36549007021 scopus 로고    scopus 로고
    • The effect of NADP-dependent malic enzyme expression and anaerobic C4 metabolism in Escherichia coli compared with other anaplerotic enzymes
    • Kwon, Y.-D., Kwon, O.-H., Lee, H.-S. and Kim, P. (2007) The effect of NADP-dependent malic enzyme expression and anaerobic C4 metabolism in Escherichia coli compared with other anaplerotic enzymes. J. Appl. Microbiol. 103, 2340-2345 https://doi.org/10.1111/j.1365-2672.2007.03485.x
    • (2007) J. Appl. Microbiol , vol.103 , pp. 2340-2345
    • Kwon, Y.-D.1    Kwon, O.-H.2    Lee, H.-S.3    Kim, P.4
  • 109
    • 0030752053 scopus 로고    scopus 로고
    • Production of succinic acid through overexpression of NAD+-dependent malic enzyme in an Escherichia coli mutant
    • PMID:9212416
    • Stols, L. and Donnelly, M.I. (1997) Production of succinic acid through overexpression of NAD+-dependent malic enzyme in an Escherichia coli mutant. Appl. Environ. Microbiol. 63, 2695-2701 PMID:9212416
    • (1997) Appl. Environ. Microbiol , vol.63 , pp. 2695-2701
    • Stols, L.1    Donnelly, M.I.2
  • 110
    • 79551491773 scopus 로고    scopus 로고
    • Anaplerotic role for cytosolic malic enzyme in engineered Saccharomyces cerevisiae strains
    • Zelle, R.M., Harrison, J.C., Pronk, J.T. and van Maris, A.J.A. (2011) Anaplerotic role for cytosolic malic enzyme in engineered Saccharomyces cerevisiae strains. Appl. Environ. Microbiol. 77, 732-738 https://doi.org/10.1128/AEM.02132-10
    • (2011) Appl. Environ. Microbiol , vol.77 , pp. 732-738
    • Zelle, R.M.1    Harrison, J.C.2    Pronk, J.T.3    Van Maris, A.J.A.4
  • 112
    • 84861429699 scopus 로고    scopus 로고
    • EQuilibrator-the biochemical thermodynamics calculator
    • Flamholz, A., Noor, E., Bar-Even, A. and Milo, R. (2012) eQuilibrator-the biochemical thermodynamics calculator. Nucleic Acids Res. 40, D770-D775 https://doi.org/10.1093/nar/gkr874
    • (2012) Nucleic Acids Res , vol.40 , pp. D770-D775
    • Flamholz, A.1    Noor, E.2    Bar-Even, A.3    Milo, R.4
  • 113
    • 68049100110 scopus 로고    scopus 로고
    • Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli
    • Bennett, B.D., Kimball, E.H., Gao, M., Osterhout, R., Van Dien, S.J. and Rabinowitz, J.D. (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593-599 https://doi.org/10.1038/nchembio.186
    • (2009) Nat. Chem. Biol , vol.5 , pp. 593-599
    • Bennett, B.D.1    Kimball, E.H.2    Gao, M.3    Osterhout, R.4    Van Dien, S.J.5    Rabinowitz, J.D.6
  • 114
    • 84895727036 scopus 로고    scopus 로고
    • Pathway thermodynamics highlights kinetic obstacles in central metabolism
    • Noor, E., Bar-Even, A., Flamholz, A., Reznik, E., Liebermeister, W. and Milo, R. (2014) Pathway thermodynamics highlights kinetic obstacles in central metabolism. PLoS Comput. Biol. 10, e1003483 https://doi.org/10.1371/journal.pcbi.1003483
    • (2014) PLoS Comput. Biol , vol.10 , pp. e1003483
    • Noor, E.1    Bar-Even, A.2    Flamholz, A.3    Reznik, E.4    Liebermeister, W.5    Milo, R.6
  • 115
    • 84883054015 scopus 로고    scopus 로고
    • A note on the kinetics of enzyme action: A decomposition that highlights thermodynamic effects
    • Noor, E., Flamholz, A., Liebermeister, W., Bar-Even, A. and Milo, R. (2013) A note on the kinetics of enzyme action: a decomposition that highlights thermodynamic effects. FEBS Lett. 587, 2772-2777 https://doi.org/10.1016/j.febslet.2013.07.028
    • (2013) FEBS Lett , vol.587 , pp. 2772-2777
    • Noor, E.1    Flamholz, A.2    Liebermeister, W.3    Bar-Even, A.4    Milo, R.5
  • 116
    • 84875722445 scopus 로고    scopus 로고
    • Defining a direction: Electron transfer and catalysis in Escherichia coli complex II enzymes
    • Maklashina, E., Cecchini, G. and Dikanov, S.A. (2013) Defining a direction: electron transfer and catalysis in Escherichia coli complex II enzymes. Biochim. Biophys. Acta, Bioenerg. 1827, 668-678 https://doi.org/10.1016/j.bbabio.2013.01.010
    • (2013) Biochim. Biophys. Acta, Bioenerg , vol.1827 , pp. 668-678
    • Maklashina, E.1    Cecchini, G.2    Dikanov, S.A.3
  • 117
    • 0037417864 scopus 로고    scopus 로고
    • Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: Homoacetate production
    • Causey, T.B., Zhou, S., Shanmugam, K.T. and Ingram, L.O. (2003) Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc. Natl Acad. Sci. U.S.A. 100, 825-832 https://doi.org/10.1073/pnas.0337684100
    • (2003) Proc. Natl Acad. Sci. U.S.A. , vol.100 , pp. 825-832
    • Causey, T.B.1    Zhou, S.2    Shanmugam, K.T.3    Ingram, L.O.4
  • 118
    • 84997173327 scopus 로고    scopus 로고
    • Engineering of a highly efficient Escherichia coli strain for mevalonate fermentation through chromosomal integration
    • Wang, J., Niyompanich, S., Tai, Y.-S., Wang, J., Bai, W., Mahida, P. et al. (2016) Engineering of a highly efficient Escherichia coli strain for mevalonate fermentation through chromosomal integration. Appl. Environ. Microbiol. 82, 7176-7184 https://doi.org/10.1128/AEM.02178-16
    • (2016) Appl. Environ. Microbiol , vol.82 , pp. 7176-7184
    • Wang, J.1    Niyompanich, S.2    Tai, Y.-S.3    Wang, J.4    Bai, W.5    Mahida, P.6
  • 119
    • 0020509454 scopus 로고
    • Improved conversion of fumarate to succinate by Escherichia coli strains amplified for fumarate reductase
    • PMID:6349526
    • Goldberg, I., Lonberg-Holm, K., Bagley, E.A. and Stieglitz, B. (1983) Improved conversion of fumarate to succinate by Escherichia coli strains amplified for fumarate reductase. Appl. Environ. Microbiol. 45, 1838-1847 PMID:6349526
    • (1983) Appl. Environ. Microbiol , vol.45 , pp. 1838-1847
    • Goldberg, I.1    Lonberg-Holm, K.2    Bagley, E.A.3    Stieglitz, B.4
  • 120
    • 0031858736 scopus 로고    scopus 로고
    • Bioconversion of fumaric acid to succinic acid by recombinant E. Coli
    • Wang, X., Gong, C.S. and Tsao, G.T. (1998) Bioconversion of fumaric acid to succinic acid by recombinant E. coli. Appl. Biochem. Biotechnol. 70-72, 919-928 https://doi.org/10.1007/BF02920202
    • (1998) Appl. Biochem. Biotechnol , vol.70-72 , pp. 919-928
    • Wang, X.1    Gong, C.S.2    Tsao, G.T.3
  • 121
    • 79251596379 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols
    • Yu, C., Cao, Y., Zou, H. and Xian, M. (2011) Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl. Microbiol. Biotechnol. 89, 573-583 https://doi.org/10.1007/s00253-010-2970-z
    • (2011) Appl. Microbiol. Biotechnol , vol.89 , pp. 573-583
    • Yu, C.1    Cao, Y.2    Zou, H.3    Xian, M.4
  • 122
    • 78049430020 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid
    • Raab, A.M., Gebhardt, G., Bolotina, N., Weuster-Botz, D. and Lang, C. (2010) Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab. Eng. 12, 518-525 https://doi.org/10.1016/j.ymben.2010.08.005
    • (2010) Metab. Eng , vol.12 , pp. 518-525
    • Raab, A.M.1    Gebhardt, G.2    Bolotina, N.3    Weuster-Botz, D.4    Lang, C.5
  • 123
    • 19744367895 scopus 로고    scopus 로고
    • Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions
    • Lin, H., Bennett, G.N. and San, K.-Y. (2005) Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions. Biotechnol. Bioeng. 90, 775-779 https://doi.org/10.1002/bit.20458
    • (2005) Biotechnol. Bioeng , vol.90 , pp. 775-779
    • Lin, H.1    Bennett, G.N.2    San, K.-Y.3
  • 124
    • 12744254193 scopus 로고    scopus 로고
    • Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate
    • Lin, H., Bennett, G.N. and San, K.-Y. (2005) Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate. Biotechnol. Bioeng. 89, 148-156 https://doi.org/10.1002/bit.20298
    • (2005) Biotechnol. Bioeng , vol.89 , pp. 148-156
    • Lin, H.1    Bennett, G.N.2    San, K.-Y.3
  • 125
    • 15344340751 scopus 로고    scopus 로고
    • Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield
    • Lin, H., Bennett, G.N. and San, K.-Y. (2005) Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab. Eng. 7, 116-127 https://doi.org/10.1016/j.ymben.2004.10.003
    • (2005) Metab. Eng , vol.7 , pp. 116-127
    • Lin, H.1    Bennett, G.N.2    San, K.-Y.3
  • 126
    • 29644446809 scopus 로고    scopus 로고
    • Development of a metabolic network design and optimization framework incorporating implementation constraints: A succinate production case study
    • Cox, S.J., Shalel Levanon, S., Sanchez, A., Lin, H., Peercy, B., Bennett, G.N. et al. (2006) Development of a metabolic network design and optimization framework incorporating implementation constraints: a succinate production case study. Metab. Eng. 8, 46-57 https://doi.org/10.1016/j.ymben.2005. 09.006
    • (2006) Metab. Eng , vol.8 , pp. 46-57
    • Cox, S.J.1    Shalel Levanon, S.2    Sanchez, A.3    Lin, H.4    Peercy, B.5    Bennett, G.N.6
  • 127
    • 84878409603 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of fumaric acid
    • Song, C.W., Kim, D.I., Choi, S., Jang, J.W. and Lee, S.Y. (2013) Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnol. Bioeng. 110, 2025-2034 https://doi.org/10.1002/bit.24868
    • (2013) Biotechnol. Bioeng , vol.110 , pp. 2025-2034
    • Song, C.W.1    Kim, D.I.2    Choi, S.3    Jang, J.W.4    Lee, S.Y.5
  • 128
    • 84883554005 scopus 로고    scopus 로고
    • A reverse glyoxylate shunt to build a non-native route from C4 to C2 in Escherichia coli
    • Mainguet, S.E., Gronenberg, L.S., Wong, S.S. and Liao, J.C. (2013) A reverse glyoxylate shunt to build a non-native route from C4 to C2 in Escherichia coli. Metab. Eng. 19, 116-127 https://doi.org/10.1016/j.ymben.2013.06.004
    • (2013) Metab. Eng , vol.19 , pp. 116-127
    • Mainguet, S.E.1    Gronenberg, L.S.2    Wong, S.S.3    Liao, J.C.4
  • 129
    • 84859369657 scopus 로고    scopus 로고
    • A survey of carbon fixation pathways through a quantitative lens
    • Bar-Even, A., Noor, E. and Milo, R. (2012) A survey of carbon fixation pathways through a quantitative lens. J. Exp. Bot. 63, 2325-2342 https://doi.org/10.1093/jxb/err417
    • (2012) J. Exp. Bot , vol.63 , pp. 2325-2342
    • Bar-Even, A.1    Noor, E.2    Milo, R.3
  • 131
    • 84958729317 scopus 로고    scopus 로고
    • Ferrous iron and α-ketoglutarate-dependent dioxygenases in the biosynthesis of microbial natural products
    • Wu, L.-F., Meng, S. and Tang, G.-L. (2016) Ferrous iron and α-ketoglutarate-dependent dioxygenases in the biosynthesis of microbial natural products. Biochim. Biophys. Acta, Proteins Proteomics 1864, 453-470 https://doi.org/10.1016/j.bbapap.2016.01.012
    • (2016) Biochim. Biophys. Acta, Proteins Proteomics , vol.1864 , pp. 453-470
    • Wu, L.-F.1    Meng, S.2    Tang, G.-L.3
  • 132
    • 85015370385 scopus 로고    scopus 로고
    • An artificial TCA cycle selects for efficient α-ketoglutarate dependent hydroxylase catalysis in engineered Escherichia coli
    • Theodosiou, E., Breisch, M., Julsing, M.K., Falcioni, F., Bühler, B. and Schmid, A. (2017) An artificial TCA cycle selects for efficient α-ketoglutarate dependent hydroxylase catalysis in engineered Escherichia coli. Biotechnol. Bioeng. 114, 1511-1520 https://doi.org/10.1002/bit.26281
    • (2017) Biotechnol. Bioeng , vol.114 , pp. 1511-1520
    • Theodosiou, E.1    Breisch, M.2    Julsing, M.K.3    Falcioni, F.4    Bühler, B.5    Schmid, A.6
  • 133
    • 0942288120 scopus 로고    scopus 로고
    • Bacteria engineered for fuel ethanol production: Current status
    • Dien, B.S., Cotta, M.A. and Jeffries, T.W. (2003) Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol. 63, 258-266 https://doi.org/10.1007/s00253-003-1444-y
    • (2003) Appl. Microbiol. Biotechnol , vol.63 , pp. 258-266
    • Dien, B.S.1    Cotta, M.A.2    Jeffries, T.W.3
  • 134
    • 33747666218 scopus 로고    scopus 로고
    • Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems
    • Terpe, K. (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 72, 211-222 https://doi.org/10.1007/s00253-006-0465-8
    • (2006) Appl. Microbiol. Biotechnol , vol.72 , pp. 211-222
    • Terpe, K.1
  • 135
    • 77954590959 scopus 로고    scopus 로고
    • OptForce: An optimization procedure for identifying all genetic manipulations leading to targeted overproductions
    • Ranganathan, S., Suthers, P.F. and Maranas, C.D. (2010) OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput. Biol. 6, e1000744 https://doi.org/10.1371/journal.pcbi.1000744
    • (2010) PLoS Comput. Biol , vol.6 , pp. e1000744
    • Ranganathan, S.1    Suthers, P.F.2    Maranas, C.D.3
  • 136
    • 84897093985 scopus 로고    scopus 로고
    • Systems metabolic engineering design: Fatty acid production as an emerging case study
    • Tee, T.W., Chowdhury, A., Maranas, C.D. and Shanks, J.V. (2014) Systems metabolic engineering design: fatty acid production as an emerging case study. Biotechnol. Bioeng. 111, 849-857 https://doi.org/10.1002/bit.25205
    • (2014) Biotechnol. Bioeng , vol.111 , pp. 849-857
    • Tee, T.W.1    Chowdhury, A.2    Maranas, C.D.3    Shanks, J.V.4
  • 137
    • 8744224466 scopus 로고    scopus 로고
    • Optstrain: A computational framework for redesign of microbial production systems
    • Pharkya, P., Burgard, A.P. and Maranas, C.D. (2004) Optstrain: a computational framework for redesign of microbial production systems. Genome Res. 14, 2367-2376 https://doi.org/10.1101/gr.2872004
    • (2004) Genome Res , vol.14 , pp. 2367-2376
    • Pharkya, P.1    Burgard, A.P.2    Maranas, C.D.3
  • 138
    • 0242487787 scopus 로고    scopus 로고
    • Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    • Burgard, A.P., Pharkya, P. and Maranas, C.D. (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647-657 https://doi.org/10.1002/bit.10803
    • (2003) Biotechnol. Bioeng , vol.84 , pp. 647-657
    • Burgard, A.P.1    Pharkya, P.2    Maranas, C.D.3
  • 139
    • 84946594571 scopus 로고    scopus 로고
    • Designing overall stoichiometric conversions and intervening metabolic reactions
    • Chowdhury, A. and Maranas, C.D. (2015) Designing overall stoichiometric conversions and intervening metabolic reactions. Sci. Rep. 5, 16009 https:// doi.org/10.1038/srep16009
    • (2015) Sci. Rep , vol.5 , pp. 16009
    • Chowdhury, A.1    Maranas, C.D.2
  • 140
    • 84921479351 scopus 로고    scopus 로고
    • Engineering metabolism through dynamic control
    • Venayak, N., Anesiadis, N., Cluett, W.R. and Mahadevan, R. (2015) Engineering metabolism through dynamic control. Curr. Opin. Biotechnol. 34, 142-152 https://doi.org/10.1016/j.copbio.2014.12.022
    • (2015) Curr. Opin. Biotechnol , vol.34 , pp. 142-152
    • Venayak, N.1    Anesiadis, N.2    Cluett, W.R.3    Mahadevan, R.4
  • 141
    • 85021308127 scopus 로고    scopus 로고
    • Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors
    • Suástegui, M., Yu Ng, C., Chowdhury, A., Sun, W., Cao, M., House, E. et al. (2017) Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors. Metab. Eng. 42, 134-144 https://doi.org/10.1016/j. ymben.2017.06.008
    • (2017) Metab. Eng , vol.42 , pp. 134-144
    • Suástegui, M.1    Yu Ng, C.2    Chowdhury, A.3    Sun, W.4    Cao, M.5    House, E.6
  • 142
    • 77952717854 scopus 로고    scopus 로고
    • Design and analysis of synthetic carbon fixation pathways
    • Bar-Even, A., Noor, E., Lewis, N.E. and Milo, R. (2010) Design and analysis of synthetic carbon fixation pathways. Proc. Natl Acad. Sci. U.S.A. 107, 8889-8894 https://doi.org/10.1073/pnas.0907176107
    • (2010) Proc. Natl Acad. Sci. U.S.A. , vol.107 , pp. 8889-8894
    • Bar-Even, A.1    Noor, E.2    Lewis, N.E.3    Milo, R.4
  • 143
    • 84861422324 scopus 로고    scopus 로고
    • Rethinking glycolysis: On the biochemical logic of metabolic pathways
    • Bar-Even, A., Flamholz, A., Noor, E. and Milo, R. (2012) Rethinking glycolysis: on the biochemical logic of metabolic pathways. Nat. Chem. Biol. 8, 509-517 https://doi.org/10.1038/nchembio.971
    • (2012) Nat. Chem. Biol , vol.8 , pp. 509-517
    • Bar-Even, A.1    Flamholz, A.2    Noor, E.3    Milo, R.4
  • 144
    • 84884301231 scopus 로고    scopus 로고
    • Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes
    • Bar-Even, A., Noor, E., Flamholz, A. and Milo, R. (2013) Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes. Biochim. Biophys. Acta, Bioenerg. 1827, 1039-1047 https://doi.org/10.1016/j.bbabio.2012.10.013
    • (2013) Biochim. Biophys. Acta, Bioenerg , vol.1827 , pp. 1039-1047
    • Bar-Even, A.1    Noor, E.2    Flamholz, A.3    Milo, R.4
  • 145
    • 84859950774 scopus 로고    scopus 로고
    • ATP drives direct photosynthetic production of 1-butanol in cyanobacteria
    • Lan, E.I. and Liao, J.C. (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc. Natl Acad. Sci. U.S.A. 109, 6018-6023 https://doi.org/10.1073/pnas.1200074109
    • (2012) Proc. Natl Acad. Sci. U.S.A. , vol.109 , pp. 6018-6023
    • Lan, E.I.1    Liao, J.C.2
  • 146
    • 84976892364 scopus 로고    scopus 로고
    • Sugar synthesis from CO2 in Escherichia coli
    • Antonovsky, N., Gleizer, S., Noor, E., Zohar, Y., Herz, E., Barenholz, U. et al. (2016) Sugar synthesis from CO2 in Escherichia coli. Cell 166, 115-125 https://doi.org/10.1016/j.cell.2016.05.064
    • (2016) Cell , vol.166 , pp. 115-125
    • Antonovsky, N.1    Gleizer, S.2    Noor, E.3    Zohar, Y.4    Herz, E.5    Barenholz, U.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.