메뉴 건너뛰기




Volumn 10, Issue 1, 2017, Pages

Co-production of hydrogen and ethanol from glucose in Escherichia coli by activation of pentose-phosphate pathway through deletion of phosphoglucose isomerase (pgi) and overexpression of glucose-6-phosphate dehydrogenase (zwf) and 6-phosphogluconate dehydrogenase (gnd)

Author keywords

Biohydrogen; Co production of hydrogen and ethanol; Escherichia coli; Pentose phosphate pathway; Phosphoglucose isomerase deletion

Indexed keywords

BIOFUELS; ESCHERICHIA COLI; ETHANOL; FERMENTATION; GLUCOSE;

EID: 85019015726     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-017-0768-2     Document Type: Article
Times cited : (44)

References (35)
  • 1
    • 84865337641 scopus 로고    scopus 로고
    • A comprehensive and quantitative review of dark fermentative biohydrogen production
    • 1:CAS:528:DC%2BC38XhvVSrsb7L
    • Rittmann S, Herwig C. A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Fact. 2012;11:115-33.
    • (2012) Microb Cell Fact , vol.11 , pp. 115-133
    • Rittmann, S.1    Herwig, C.2
  • 2
    • 67650740864 scopus 로고    scopus 로고
    • Fermentative hydrogen production: Principles, progress, and prognosis
    • 1:CAS:528:DC%2BD1MXpvFyks7k%3D
    • Hallenbeck PC. Fermentative hydrogen production: principles, progress, and prognosis. Int J Hydrogen Energy. 2009;34:7379-89.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 7379-7389
    • Hallenbeck, P.C.1
  • 3
    • 80051675508 scopus 로고    scopus 로고
    • Metabolic engineering in dark fermentative hydrogen production; Theory and practice
    • 1:CAS:528:DC%2BC3MXhtVKht7jF
    • Abo-Hashesh M, Wang R, Hallenbeck PC. Metabolic engineering in dark fermentative hydrogen production; theory and practice. Bioresour Technol. 2011;102:8414-22.
    • (2011) Bioresour Technol , vol.102 , pp. 8414-8422
    • Abo-Hashesh, M.1    Wang, R.2    Hallenbeck, P.C.3
  • 4
    • 80051687984 scopus 로고    scopus 로고
    • Current status of the metabolic engineering of microorganisms for biohydrogen production
    • 1:CAS:528:DC%2BC3MXhtVKht7vE
    • Oh YK, Raj SM, Jung GY, Park S. Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresour Technol. 2011;102:8357-67.
    • (2011) Bioresour Technol , vol.102 , pp. 8357-8367
    • Oh, Y.K.1    Raj, S.M.2    Jung, G.Y.3    Park, S.4
  • 5
    • 77957326597 scopus 로고    scopus 로고
    • + reduction with NADH are coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri
    • 1:CAS:528:DC%2BC3cXhsFCitbvP
    • + reduction with NADH are coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri. J Bacteriol. 2010;192:5115-23.
    • (2010) J Bacteriol , vol.192 , pp. 5115-5123
    • Wang, S.1    Huang, H.2    Moll, J.3    Thauer, R.K.4
  • 7
    • 4344700076 scopus 로고    scopus 로고
    • A multisusbunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis
    • 1:CAS:528:DC%2BD2cXmtFGru7s%3D
    • Soboh B, Linder D, Hedderich R. A multisusbunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. Microbiology. 2004;150:2451-63.
    • (2004) Microbiology , vol.150 , pp. 2451-2463
    • Soboh, B.1    Linder, D.2    Hedderich, R.3
  • 9
    • 77953714257 scopus 로고    scopus 로고
    • Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: Mechanisms for reductant disposal
    • 1:CAS:528:DC%2BC3cXntlGnsbc%3D
    • Verhaart MR, Bielen AA, van der Oost J, Stams AJ, Kengen SW. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal. Environ Technol. 2010;31:993-1003.
    • (2010) Environ Technol , vol.31 , pp. 993-1003
    • Verhaart, M.R.1    Bielen, A.A.2    Van Der Oost, J.3    Stams, A.J.4    Kengen, S.W.5
  • 10
    • 79956281139 scopus 로고    scopus 로고
    • Fermentative hydrogen production: Influence of application of mesophilic and thermophilic bacteria on mass and energy balances
    • Foglia D, Wukovits W, Friedl A, de Vrije T, Claassen P. Fermentative hydrogen production: influence of application of mesophilic and thermophilic bacteria on mass and energy balances. Chem Eng Trans. 2011;25:815-20.
    • (2011) Chem Eng Trans , vol.25 , pp. 815-820
    • Foglia, D.1    Wukovits, W.2    Friedl, A.3    De Vrije, T.4    Claassen, P.5
  • 11
    • 84887988214 scopus 로고    scopus 로고
    • Production of clean fuel from waste biomass using combined dark and photofermentation
    • Hema R, Agrawal P. Production of clean fuel from waste biomass using combined dark and photofermentation. IOSR J Comput Eng. 2012;1:39-47.
    • (2012) IOSR J Comput Eng. , vol.1 , pp. 39-47
    • Hema, R.1    Agrawal, P.2
  • 12
    • 84869098423 scopus 로고    scopus 로고
    • Hydrogen and methane production, energy recovery, and organic matter removal from effluents in a two-stage fermentative process
    • 1:CAS:528:DC%2BC38XhsFSgt7nE
    • Peixoto G, Pantoja-Filho JLR, Agnelli JAB, Barboza M, Zaiat M. Hydrogen and methane production, energy recovery, and organic matter removal from effluents in a two-stage fermentative process. Appl Biochem Biotechnol. 2012;168:651-71.
    • (2012) Appl Biochem Biotechnol. , vol.168 , pp. 651-671
    • Peixoto, G.1    Pantoja-Filho, J.L.R.2    Agnelli, J.A.B.3    Barboza, M.4    Zaiat, M.5
  • 13
    • 84929079346 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli strains for co-production of hydrogen and ethanol from glucose
    • 1:CAS:528:DC%2BC2cXhtFWnurvK
    • Seol E, Ainala SK, Sundara Sekar B, Park S. Metabolic engineering of Escherichia coli strains for co-production of hydrogen and ethanol from glucose. Int J Hydrogen Energy. 2014;39:19323-30.
    • (2014) Int J Hydrogen Energy , vol.39 , pp. 19323-19330
    • Seol, E.1    Ainala, S.K.2    Sundara Sekar, B.3    Park, S.4
  • 14
    • 84964658685 scopus 로고    scopus 로고
    • Co-production of hydrogen and ethanol by pfkA-deficient Escherichia coli with activated pentose-phosphate pathway: Reduction of pyruvate accumulation
    • Sundara Sekar B, Seol E, Raj SM, Park S. Co-production of hydrogen and ethanol by pfkA-deficient Escherichia coli with activated pentose-phosphate pathway: reduction of pyruvate accumulation. Biotechnol Biofuels. 2016;9:95-106.
    • (2016) Biotechnol Biofuels , vol.9 , pp. 95-106
    • Sundara Sekar, B.1    Seol, E.2    Raj, S.M.3    Park, S.4
  • 15
    • 57049188930 scopus 로고    scopus 로고
    • Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products
    • 1:CAS:528:DC%2BD1cXhsVKrt7jP
    • Yazdani SS, Gonzalez R. Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng. 2008;10:340-51.
    • (2008) Metab Eng , vol.10 , pp. 340-351
    • Yazdani, S.S.1    Gonzalez, R.2
  • 16
    • 84957727590 scopus 로고    scopus 로고
    • Co-production of hydrogen and ethanol from glucose by modification of glycolytic pathways in Escherichia coli - From Embden-Meyerhof-Parnas pathway to pentose phosphate pathway
    • Seol E, Sundara Sekar B, Raj SM, Park S. Co-production of hydrogen and ethanol from glucose by modification of glycolytic pathways in Escherichia coli - from Embden-Meyerhof-Parnas pathway to pentose phosphate pathway. Biotechnol J. 2015;11:249-56.
    • (2015) Biotechnol J , vol.11 , pp. 249-256
    • Seol, E.1    Sundara Sekar, B.2    Raj, S.M.3    Park, S.4
  • 17
    • 76749151341 scopus 로고    scopus 로고
    • Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering
    • 1:CAS:528:DC%2BC3cXit1Omu74%3D
    • Chemler JA, Fowler ZL, McHugh KP, Koffas MA. Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab Eng. 2010;12:96-104.
    • (2010) Metab Eng , vol.12 , pp. 96-104
    • Chemler, J.A.1    Fowler, Z.L.2    McHugh, K.P.3    Koffas, M.A.4
  • 18
    • 84906786924 scopus 로고    scopus 로고
    • NADPH-dependent reductive biotransformation with Escherichia coli and its pfkA deletion mutant: Influence on global gene expression and role of oxygen supply
    • 1:CAS:528:DC%2BC2cXptFykur0%3D
    • Siedler S, Bringer S, Polen T, Bott M. NADPH-dependent reductive biotransformation with Escherichia coli and its pfkA deletion mutant: influence on global gene expression and role of oxygen supply. Biotechnol Bioeng. 2014;111:2067-75.
    • (2014) Biotechnol Bioeng , vol.111 , pp. 2067-2075
    • Siedler, S.1    Bringer, S.2    Polen, T.3    Bott, M.4
  • 19
    • 68349152801 scopus 로고    scopus 로고
    • Hydrogen production and metabolic flux analysis of metabolically engineered Escherichia coli strains
    • 1:CAS:528:DC%2BD1MXpvFyksL0%3D
    • Kim S, Seol E, Oh YK, Wang GY, Park S. Hydrogen production and metabolic flux analysis of metabolically engineered Escherichia coli strains. Int J Hydrogen Energy. 2009;34:7417-27.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 7417-7427
    • Kim, S.1    Seol, E.2    Oh, Y.K.3    Wang, G.Y.4    Park, S.5
  • 20
    • 84947906740 scopus 로고    scopus 로고
    • Deletion of putative oxidoreductases from Klebsiella pneumoniae J2B could reduce 1,3-propanediol during the production of 3-hydroxypropionic acid from glycerol
    • 1:CAS:528:DC%2BC2MXhvFamu7zJ
    • Ko Y, Ashok S, Seol E, Ainala SK, Park S. Deletion of putative oxidoreductases from Klebsiella pneumoniae J2B could reduce 1,3-propanediol during the production of 3-hydroxypropionic acid from glycerol. Biotechnol Bioprocess Eng. 2015;20:834-43.
    • (2015) Biotechnol Bioprocess Eng , vol.20 , pp. 834-843
    • Ko, Y.1    Ashok, S.2    Seol, E.3    Ainala, S.K.4    Park, S.5
  • 21
    • 0034612342 scopus 로고    scopus 로고
    • One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
    • 1:CAS:528:DC%2BD3cXktFais7c%3D
    • Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci. 2000;97:6640-5.
    • (2000) Proc Natl Acad Sci , vol.97 , pp. 6640-6645
    • Datsenko, K.A.1    Wanner, B.L.2
  • 22
    • 0023785910 scopus 로고
    • Construction of multicopy expression vectors for regulated over-production of proteins in Klebsiella pneumoniae and other enteric bacteria
    • 1:CAS:528:DyaL1cXlsVeru7s%3D
    • Kleiner D, Paul W, Merrick MJ. Construction of multicopy expression vectors for regulated over-production of proteins in Klebsiella pneumoniae and other enteric bacteria. J Gen Microbiol. 1988;134:1779-84.
    • (1988) J Gen Microbiol , vol.134 , pp. 1779-1784
    • Kleiner, D.1    Paul, W.2    Merrick, M.J.3
  • 24
    • 0033946341 scopus 로고    scopus 로고
    • Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo
    • 1:CAS:528:DC%2BD3cXksVKgtr8%3D
    • Moritz B, Striegel K, de Graaf AA, Sahm H. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur J Biochem. 2000;267:3442-52.
    • (2000) Eur J Biochem , vol.267 , pp. 3442-3452
    • Moritz, B.1    Striegel, K.2    De Graaf, A.A.3    Sahm, H.4
  • 25
    • 84867612177 scopus 로고    scopus 로고
    • The Bradford method for protein quantitation
    • Walker JM, editor. Chapter 4. Totowa, NJ: Humana Press Inc.
    • Kruger NJ. The Bradford method for protein quantitation. In: Walker JM, editor. The protein protocols handbook, Chapter 4. Totowa, NJ: Humana Press Inc.; 2009. p. 17-24.
    • (2009) The Protein Protocols Handbook , pp. 17-24
    • Kruger, N.J.1
  • 26
    • 0034623222 scopus 로고    scopus 로고
    • Molecular characterization of the first two enzymes of the pentose-phosphate pathway of Trypanosoma brucei. Glucose-6-phosphate dehydrogenase and 6-phosphogluconolactonase
    • 1:CAS:528:DC%2BD3cXmsVKltb0%3D
    • Duffieux F, Van Roy J, Michels PA, Opperdoes FR. Molecular characterization of the first two enzymes of the pentose-phosphate pathway of Trypanosoma brucei. Glucose-6-phosphate dehydrogenase and 6-phosphogluconolactonase. J Biol Chem. 2000;275:27559-65.
    • (2000) J Biol Chem , vol.275 , pp. 27559-27565
    • Duffieux, F.1    Van, R.J.2    Michels, P.A.3    Opperdoes, F.R.4
  • 27
    • 85019020649 scopus 로고
    • The calvin cycle and pentose phosphate pathway
    • Chapter 20, 7th edn. W. H. Freeman and Company New York
    • Stryer L, Berg JM, Tymoczko JL. The calvin cycle and pentose phosphate pathway. In: Biochemistry, Chapter 20, 7th edn. W. H. Freeman and Company New York; 1995. p. 589-614.
    • (1995) Biochemistry , pp. 589-614
    • Stryer, L.1    Berg, J.M.2    Tymoczko, J.L.3
  • 28
    • 0029814919 scopus 로고    scopus 로고
    • + in regulating the adhE gene of Escherichia coli
    • 1:CAS:528:DyaK28XmtFOksLk%3D
    • + in regulating the adhE gene of Escherichia coli. J Bacteriol. 1996;178:6013-8.
    • (1996) J Bacteriol , vol.178 , pp. 6013-6018
    • Leonardo, M.R.1    Dailly, Y.2    Clark, D.P.3
  • 29
    • 84870716533 scopus 로고    scopus 로고
    • Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ΔglpKΔdhaT
    • 1:CAS:528:DC%2BC3sXnvFWqtA%3D%3D
    • Ashok S, Raj SM, Ko Y, Sankaranarayanan M, Zhou S, Kumar V, et al. Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ΔglpKΔdhaT. Metab Eng. 2013;15:10-24.
    • (2013) Metab Eng , vol.15 , pp. 10-24
    • Ashok, S.1    Raj, S.M.2    Ko, Y.3    Sankaranarayanan, M.4    Zhou, S.5    Kumar, V.6
  • 30
    • 84862528617 scopus 로고    scopus 로고
    • The cofactor preference of glucose-6-phosphate dehydrogenase from Escherichia coli-modeling the physiological production of reduced cofactors
    • Olavarría K, Valdés D, Cabrera R. The cofactor preference of glucose-6-phosphate dehydrogenase from Escherichia coli-modeling the physiological production of reduced cofactors. FEBS J. 2012;279:2296-309.
    • (2012) FEBS J , vol.279 , pp. 2296-2309
    • Olavarría, K.1    Valdés, D.2    Cabrera, R.3
  • 31
    • 1342325419 scopus 로고    scopus 로고
    • The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli
    • 1:CAS:528:DC%2BD2cXht1CltLo%3D
    • Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem. 2004;279:6613-9.
    • (2004) J Biol Chem , vol.279 , pp. 6613-6619
    • Sauer, U.1    Canonaco, F.2    Heri, S.3    Perrenoud, A.4    Fischer, E.5
  • 32
    • 0021800354 scopus 로고
    • Simultaneous purification and characterization of glucokinase, fructokinase and glucose-6-phosphate dehydrogenase from Zymomonas mobilis
    • 1:CAS:528:DyaL2MXkvVeqsL4%3D
    • Scopes RK, Testolin V, Stoter A, Griffiths-Smith K, Algar EM. Simultaneous purification and characterization of glucokinase, fructokinase and glucose-6-phosphate dehydrogenase from Zymomonas mobilis. Biochem J. 1985;228(3):627-34.
    • (1985) Biochem J. , vol.228 , Issue.3 , pp. 627-634
    • Scopes, R.K.1    Testolin, V.2    Stoter, A.3    Griffiths-Smith, K.4    Algar, E.M.5
  • 34
    • 0034642209 scopus 로고    scopus 로고
    • Delineation of the roles of amino acids involved in the catalytic functions of Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase
    • 1:CAS:528:DC%2BD3cXnvFartL8%3D
    • Vought V, Ciccone T, Davino MH, Fairbairn L, Lin Y, Cosgrove MS, et al. Delineation of the roles of amino acids involved in the catalytic functions of Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase. Biochemistry. 2000;39:15012-21.
    • (2000) Biochemistry , vol.39 , pp. 15012-15021
    • Vought, V.1    Ciccone, T.2    Davino, M.H.3    Fairbairn, L.4    Lin, Y.5    Cosgrove, M.S.6
  • 35
    • 4544371182 scopus 로고    scopus 로고
    • Coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans
    • 1:CAS:528:DC%2BD2cXjvV2ntw%3D%3D
    • Tonouchi N, Sugiyama M, Yokozeki K. Coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans. Biosci Biotechnol Biochem. 2003;67:2648-51.
    • (2003) Biosci Biotechnol Biochem , vol.67 , pp. 2648-2651
    • Tonouchi, N.1    Sugiyama, M.2    Yokozeki, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.