메뉴 건너뛰기




Volumn 110, Issue 8, 2013, Pages 2216-2224

Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway

Author keywords

Acetyl CoA; NADPH; Phosphoketolase pathway; Polyhydroxybutyrate

Indexed keywords

ACETYL-COA; BACTERIAL BIOPOLYMERS; CENTRAL CARBON METABOLISMS; GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE; HETEROLOGOUS EXPRESSION; NADPH; PHOSPHOKETOLASE; POLYHYDROXYBUTYRATE;

EID: 84879603106     PISSN: 00063592     EISSN: 10970290     Source Type: Journal    
DOI: 10.1002/bit.24888     Document Type: Article
Times cited : (89)

References (27)
  • 1
    • 1942473105 scopus 로고    scopus 로고
    • TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates
    • Blank LM, Sauer U. 2004. TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology 150(Pt 4):1085-1093.
    • (2004) Microbiology , vol.150 , Issue.PART 4 , pp. 1085-1093
    • Blank, L.M.1    Sauer, U.2
  • 2
    • 0024286690 scopus 로고
    • A general method for the chromosomal amplification of genes in yeast
    • Boeke J, Xu H, Fink G. 1988. A general method for the chromosomal amplification of genes in yeast. Science 239(4837):280-282.
    • (1988) Science , vol.239 , Issue.4837 , pp. 280-282
    • Boeke, J.1    Xu, H.2    Fink, G.3
  • 3
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
    • Bro C, Regenberg B, Forster J, Nielsen J. 2006. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 8(2):102-111.
    • (2006) Metab Eng , vol.8 , Issue.2 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Forster, J.3    Nielsen, J.4
  • 4
    • 0023032668 scopus 로고
    • The NADP(H) redox couple in yeast metabolism
    • Bruinenberg PM. 1986. The NADP(H) redox couple in yeast metabolism. Antonie Van Leeuwenhoek 52(5):411-429.
    • (1986) Antonie Van Leeuwenhoek , vol.52 , Issue.5 , pp. 411-429
    • Bruinenberg, P.M.1
  • 5
    • 0020614458 scopus 로고
    • A theoretical-analysis of NADPH production and consumption in yeasts
    • Bruinenberg PM, Vandijken JP, Scheffers WA. 1983. A theoretical-analysis of NADPH production and consumption in yeasts. J Gen Microbiol 129:953-964.
    • (1983) J Gen Microbiol , vol.129 , pp. 953-964
    • Bruinenberg, P.M.1    Vandijken, J.P.2    Scheffers, W.A.3
  • 6
    • 33745497716 scopus 로고    scopus 로고
    • Effects of recombinant precursor pathway variations on poly[(R)-3-hydroxybutyrate] synthesis in Saccharomyces cerevisiae
    • Carlson R, Srienc F. 2006. Effects of recombinant precursor pathway variations on poly[(R)-3-hydroxybutyrate] synthesis in Saccharomyces cerevisiae. J Biotechnol 124(3):561-573.
    • (2006) J Biotechnol , vol.124 , Issue.3 , pp. 561-573
    • Carlson, R.1    Srienc, F.2
  • 7
    • 0037142769 scopus 로고    scopus 로고
    • Metabolic pathway analysis of a recombinant yeast for rational strain development
    • Carlson R, Fell D, Srienc F. 2002. Metabolic pathway analysis of a recombinant yeast for rational strain development. Biotechnol Bioeng 79(2):121-134.
    • (2002) Biotechnol Bioeng , vol.79 , Issue.2 , pp. 121-134
    • Carlson, R.1    Fell, D.2    Srienc, F.3
  • 8
    • 84875279038 scopus 로고    scopus 로고
    • Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism
    • Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J. 2013. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Met Eng 15(0):48-54.
    • (2013) Met Eng , vol.15 , Issue.0 , pp. 48-54
    • Chen, Y.1    Daviet, L.2    Schalk, M.3    Siewers, V.4    Nielsen, J.5
  • 9
    • 0015823869 scopus 로고
    • The role and regulation of energy reserve polymers in micro-organisms.
    • In: AH, Rose DW, Tempest editors. London and New York: Academic Press.
    • Dawes EA, Senior PJ. 1973. The role and regulation of energy reserve polymers in micro-organisms. In: AH, Rose DW, Tempest editors. Advances in microbial physiology. Vol. 10. London and New York: Academic Press. p 135-266.
    • (1973) Advances in microbial physiology , vol.10 , pp. 135-266
    • Dawes, E.A.1    Senior, P.J.2
  • 10
    • 27744491124 scopus 로고    scopus 로고
    • Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis
    • Frick O, Wittmann C. 2005. Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microb Cell Fact 4(1):30.
    • (2005) Microb Cell Fact , vol.4 , Issue.1 , pp. 30
    • Frick, O.1    Wittmann, C.2
  • 11
    • 0036270543 scopus 로고    scopus 로고
    • Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method
    • Gietz RD, Woods RA. 2002. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87-96.
    • (2002) Methods Enzymol , vol.350 , pp. 87-96
    • Gietz, R.D.1    Woods, R.A.2
  • 12
    • 0035140099 scopus 로고    scopus 로고
    • Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under Different conditions of glucose repression
    • Gombert AK, Moreira dos Santos M, Christensen B, Nielsen J. 2001. Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under Different conditions of glucose repression. J Bacteriol 183(4):1441-1451.
    • (2001) J Bacteriol , vol.183 , Issue.4 , pp. 1441-1451
    • Gombert, A.K.1    Moreira dos Santos, M.2    Christensen, B.3    Nielsen, J.4
  • 13
    • 0038529613 scopus 로고    scopus 로고
    • The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity
    • Grabowska D, Chelstowska A. 2003. The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. J Biol Chem 278(16):13984-13988.
    • (2003) J Biol Chem , vol.278 , Issue.16 , pp. 13984-13988
    • Grabowska, D.1    Chelstowska, A.2
  • 14
    • 0021065601 scopus 로고
    • Analysis of poly-beta-hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detection
    • Karr DB, Waters JK, Emerich DW. 1983. Analysis of poly-beta-hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detection. Appl Environ Microbiol 46(6):1339-1344.
    • (1983) Appl Environ Microbiol , vol.46 , Issue.6 , pp. 1339-1344
    • Karr, D.B.1    Waters, J.K.2    Emerich, D.W.3
  • 15
    • 84871139004 scopus 로고    scopus 로고
    • Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae
    • Kocharin K, Chen Y, Siewers V, Nielsen J. 2012. Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae. AMB Express 2(1):52.
    • (2012) AMB Express , vol.2 , Issue.1 , pp. 52
    • Kocharin, K.1    Chen, Y.2    Siewers, V.3    Nielsen, J.4
  • 16
    • 0032485354 scopus 로고    scopus 로고
    • Metabolic modeling of polyhydroxybutyrate biosynthesis
    • Leaf TA, Srienc F. 1998. Metabolic modeling of polyhydroxybutyrate biosynthesis. Biotechnol Bioeng 57(5):557-570.
    • (1998) Biotechnol Bioeng , vol.57 , Issue.5 , pp. 557-570
    • Leaf, T.A.1    Srienc, F.2
  • 17
    • 27744558510 scopus 로고    scopus 로고
    • Sources of NADPH in yeast vary with carbon source
    • Minard KI, McAlister-Henn L. 2005. Sources of NADPH in yeast vary with carbon source. J Biol Chem 280(48):39890-39896.
    • (2005) J Biol Chem , vol.280 , Issue.48 , pp. 39890-39896
    • Minard, K.I.1    McAlister-Henn, L.2
  • 19
    • 78149328427 scopus 로고    scopus 로고
    • Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae
    • Partow S, Siewers V, Bjorn S, Nielsen J, Maury J. 2010. Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27(11):955-964.
    • (2010) Yeast , vol.27 , Issue.11 , pp. 955-964
    • Partow, S.1    Siewers, V.2    Bjorn, S.3    Nielsen, J.4    Maury, J.5
  • 20
    • 77958100958 scopus 로고    scopus 로고
    • The Inoue method for preparation and transformation of competent E. Coli: "Ultra-Competent" cells
    • Sambrook J, Russell DW. 2006. The Inoue method for preparation and transformation of competent E. Coli: "Ultra-Competent" cells. Cold Spring Harb Protoc 2006(2):3944.
    • (2006) Cold Spring Harb Protoc , vol.2006 , Issue.2 , pp. 3944
    • Sambrook, J.1    Russell, D.W.2
  • 21
    • 84865545171 scopus 로고    scopus 로고
    • Combined metabolic engineering of precursor and co-factor supply to increase alpha-santalene production by Saccharomyces cerevisiae
    • Scalcinati G, Partow S, Siewers V, Schalk M, Daviet L, Nielsen J. 2012. Combined metabolic engineering of precursor and co-factor supply to increase alpha-santalene production by Saccharomyces cerevisiae. Microb Cell Fact 11(1):117.
    • (2012) Microb Cell Fact , vol.11 , Issue.1 , pp. 117
    • Scalcinati, G.1    Partow, S.2    Siewers, V.3    Schalk, M.4    Daviet, L.5    Nielsen, J.6
  • 22
    • 0342679075 scopus 로고    scopus 로고
    • Reoxidation of the NADPH produced by the pentose phosphate pathway is necessary for the utilization of glucose by Kluyveromyces lactisrag2 mutants
    • Siso MIG, Freire Picos MA, Cerdan ME. 1996. Reoxidation of the NADPH produced by the pentose phosphate pathway is necessary for the utilization of glucose by Kluyveromyces lactisrag2 mutants. FEBS Lett 387(1):7-10.
    • (1996) FEBS Lett , vol.387 , Issue.1 , pp. 7-10
    • Siso, M.I.G.1    Freire Picos, M.A.2    Cerdan, M.E.3
  • 23
    • 2442684544 scopus 로고    scopus 로고
    • Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae
    • Sonderegger M, Schumperli M, Sauer U. 2004. Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Appl Environ Microbiol 70(5):2892-2897.
    • (2004) Appl Environ Microbiol , vol.70 , Issue.5 , pp. 2892-2897
    • Sonderegger, M.1    Schumperli, M.2    Sauer, U.3
  • 24
    • 33646542650 scopus 로고    scopus 로고
    • High-throughput screen for poly-3-hydroxybutyrate in Escherichia coli and Synechocystis sp. strain PCC6803
    • Tyo KE, Zhou H, Stephanopoulos GN. 2006. High-throughput screen for poly-3-hydroxybutyrate in Escherichia coli and Synechocystis sp. strain PCC6803. Appl. Environ. Microbiol 72(5):3412-3417.
    • (2006) Appl. Environ. Microbiol , vol.72 , Issue.5 , pp. 3412-3417
    • Tyo, K.E.1    Zhou, H.2    Stephanopoulos, G.N.3
  • 26
    • 0033107539 scopus 로고    scopus 로고
    • In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae
    • Vaseghi S, Baumeister A, Rizzi M, Reuss M. 1999. In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae. Metab Eng 1(2):128-140.
    • (1999) Metab Eng , vol.1 , Issue.2 , pp. 128-140
    • Vaseghi, S.1    Baumeister, A.2    Rizzi, M.3    Reuss, M.4
  • 27
    • 0025318231 scopus 로고
    • Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures
    • Verduyn C, Postma E, Scheffers WA, van Dijken JP. 1990. Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136(3):395-403.
    • (1990) J Gen Microbiol , vol.136 , Issue.3 , pp. 395-403
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    van Dijken, J.P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.