-
1
-
-
79959505228
-
Fuel options: the ideal biofuel
-
Savage N. Fuel options: the ideal biofuel. Nature 2011, 474:9-11.
-
(2011)
Nature
, vol.474
, pp. 9-11
-
-
Savage, N.1
-
2
-
-
38149030843
-
Biobutanol: an attractive biofuel
-
Dürre P. Biobutanol: an attractive biofuel. Biotechnol J 2007, 12:1525-1534.
-
(2007)
Biotechnol J
, vol.12
, pp. 1525-1534
-
-
Dürre, P.1
-
3
-
-
78649736611
-
Challenges in biobutanol production: how to improve the efficiency?
-
García V., Päkkilä J., Ojamo H., Muurinen E., Keiski R.L. Challenges in biobutanol production: how to improve the efficiency?. Renew Sust Energ Rev 2011, 2:964-980.
-
(2011)
Renew Sust Energ Rev
, vol.2
, pp. 964-980
-
-
García, V.1
Päkkilä, J.2
Ojamo, H.3
Muurinen, E.4
Keiski, R.L.5
-
4
-
-
84865142847
-
Microbial engineering for the production of advanced biofuels
-
Peralta-Yahya P.P., Zhang F., Del Cardayre S.B., Keasling J.D. Microbial engineering for the production of advanced biofuels. Nature 2012, 7411:320-328.
-
(2012)
Nature
, vol.7411
, pp. 320-328
-
-
Peralta-Yahya, P.P.1
Zhang, F.2
Del Cardayre, S.B.3
Keasling, J.D.4
-
5
-
-
84869465095
-
From fields to fuels: recent advances in the microbial production of biofuels
-
Kung Y., Runguphan W., Keasling J.D. From fields to fuels: recent advances in the microbial production of biofuels. ACS Synth Biol 2012, 11:498-513.
-
(2012)
ACS Synth Biol
, vol.11
, pp. 498-513
-
-
Kung, Y.1
Runguphan, W.2
Keasling, J.D.3
-
6
-
-
84873871551
-
Recent progress in synthetic biology for microbial production of C3-C10 alcohols
-
Lamsen E.N., Atsumi S. Recent progress in synthetic biology for microbial production of C3-C10 alcohols. Front Microbiol 2012, 3:196.
-
(2012)
Front Microbiol
, vol.3
, pp. 196
-
-
Lamsen, E.N.1
Atsumi, S.2
-
7
-
-
84876468510
-
Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources
-
Lan E.I., Liao J.C. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol 2013, 135:339-349.
-
(2013)
Bioresour Technol
, vol.135
, pp. 339-349
-
-
Lan, E.I.1
Liao, J.C.2
-
8
-
-
84878848636
-
Advanced biofuel production by the yeast Saccharomyces cerevisiae
-
Buijs N.A., Siewers V., Nielsen J. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr Opin Chem Biol 2013, 3:480-488.
-
(2013)
Curr Opin Chem Biol
, vol.3
, pp. 480-488
-
-
Buijs, N.A.1
Siewers, V.2
Nielsen, J.3
-
9
-
-
77955558633
-
Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels
-
Weber C., Farwick A., Benisch F., Brat D., Dietz H., Subtil T., Boles E. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 2010, 4:1303-1315.
-
(2010)
Appl Microbiol Biotechnol
, vol.4
, pp. 1303-1315
-
-
Weber, C.1
Farwick, A.2
Benisch, F.3
Brat, D.4
Dietz, H.5
Subtil, T.6
Boles, E.7
-
10
-
-
42349106782
-
The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism
-
Hazelwood L.A., Daran J.-M., van Maris A.J.A., Pronk J.T., Dickinson J.R. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 2008, 74:2259-2266.
-
(2008)
Appl Environ Microbiol
, vol.74
, pp. 2259-2266
-
-
Hazelwood, L.A.1
Daran, J.-M.2
van Maris, A.J.A.3
Pronk, J.T.4
Dickinson, J.R.5
-
11
-
-
38049001166
-
Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
-
Atsumi S., Hanai T., Liao J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 7174:86-89.
-
(2008)
Nature
, vol.7174
, pp. 86-89
-
-
Atsumi, S.1
Hanai, T.2
Liao, J.C.3
-
12
-
-
79960656765
-
Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism
-
Chen X., Nielsen K.F., Borodina I., Kielland-Brandt M.C., Karhumaa K. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 2011, 1:21.
-
(2011)
Biotechnol Biofuels
, vol.1
, pp. 21
-
-
Chen, X.1
Nielsen, K.F.2
Borodina, I.3
Kielland-Brandt, M.C.4
Karhumaa, K.5
-
13
-
-
0035424632
-
Regulation of yeast acetohydroxyacid synthase by valine and ATP
-
Pang S.S., Duggleby R.G. Regulation of yeast acetohydroxyacid synthase by valine and ATP. Biochem J 2001, 3:749-757.
-
(2001)
Biochem J
, vol.3
, pp. 749-757
-
-
Pang, S.S.1
Duggleby, R.G.2
-
14
-
-
84877256074
-
Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols
-
Avalos J.L., Fink G.R., Stephanopoulos G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 2013, 4:335-341.
-
(2013)
Nat Biotechnol
, vol.4
, pp. 335-341
-
-
Avalos, J.L.1
Fink, G.R.2
Stephanopoulos, G.3
-
15
-
-
84921392130
-
Combinatorial assembly of large biochemical pathways into yeast chromosomes for improved production of value-added compounds
-
Yuan J., Ching C.B. Combinatorial assembly of large biochemical pathways into yeast chromosomes for improved production of value-added compounds. ACS Synth Biol 2014, 10.1021/sb500079f.
-
(2014)
ACS Synth Biol
-
-
Yuan, J.1
Ching, C.B.2
-
17
-
-
84865777627
-
Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae
-
Brat D., Weber C., Lorenzen W., Bode H.B., Boles E. Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol Biofuels 2012, 1:65.
-
(2012)
Biotechnol Biofuels
, vol.1
, pp. 65
-
-
Brat, D.1
Weber, C.2
Lorenzen, W.3
Bode, H.B.4
Boles, E.5
-
18
-
-
84873750369
-
Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae
-
Brat D., Boles E. Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae. FEMS Yeast Res 2013, 2:241-244.
-
(2013)
FEMS Yeast Res
, vol.2
, pp. 241-244
-
-
Brat, D.1
Boles, E.2
-
19
-
-
84870384496
-
Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes
-
Lee W., Seo S., Bae Y., Nan H., Jin Y., Seo J. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioproc Biosyst Eng 2012, 9:1467-1475.
-
(2012)
Bioproc Biosyst Eng
, vol.9
, pp. 1467-1475
-
-
Lee, W.1
Seo, S.2
Bae, Y.3
Nan, H.4
Jin, Y.5
Seo, J.6
-
20
-
-
84870228515
-
Construction of an artificial pathway for isobutanol biosynthesis in the cytosol of Saccharomyces cerevisiae
-
Matsuda F., Kondo T., Ida K., Tezuka H., Ishii J., Kondo A. Construction of an artificial pathway for isobutanol biosynthesis in the cytosol of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2012, 11:2139-2141.
-
(2012)
Biosci Biotechnol Biochem
, vol.11
, pp. 2139-2141
-
-
Matsuda, F.1
Kondo, T.2
Ida, K.3
Tezuka, H.4
Ishii, J.5
Kondo, A.6
-
21
-
-
84889061841
-
Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance
-
Matsuda F., Ishii J., Kondo T., Ida K., Tezuka H., Kondo A. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance. Microb Cell Fact 2013, 1:119.
-
(2013)
Microb Cell Fact
, vol.1
, pp. 119
-
-
Matsuda, F.1
Ishii, J.2
Kondo, T.3
Ida, K.4
Tezuka, H.5
Kondo, A.6
-
22
-
-
84859499726
-
Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae
-
Kondo T., Tezuka H., Ishii J., Matsuda F., Ogino C., Kondo A. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. J Biotechnol 2012, 1-2:32-37.
-
(2012)
J Biotechnol
, pp. 32-37
-
-
Kondo, T.1
Tezuka, H.2
Ishii, J.3
Matsuda, F.4
Ogino, C.5
Kondo, A.6
-
23
-
-
84866145291
-
An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae
-
Oud B., Flores C., Gancedo C., Zhang X., Trueheart J., Daran J., Pronk J.T., van Maris A.J.A. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb Cell Fact 2012, 11:131.
-
(2012)
Microb Cell Fact
, vol.11
, pp. 131
-
-
Oud, B.1
Flores, C.2
Gancedo, C.3
Zhang, X.4
Trueheart, J.5
Daran, J.6
Pronk, J.T.7
van Maris, A.J.A.8
-
24
-
-
84896932547
-
Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis
-
Kozak B.U., van Rossum H.M., Benjamin K.R., Wu L., Daran J.G., Pronk J.T., van Maris A.J.A. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab Eng 2014, 21:46-59.
-
(2014)
Metab Eng
, vol.21
, pp. 46-59
-
-
Kozak, B.U.1
van Rossum, H.M.2
Benjamin, K.R.3
Wu, L.4
Daran, J.G.5
Pronk, J.T.6
van Maris, A.J.A.7
-
25
-
-
79955164750
-
Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli
-
Bastian S., Liu X., Meyerowitz J.T., Snow C.D., Chen M.M.Y., Arnold F.H. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 2011, 3:345-352.
-
(2011)
Metab Eng
, vol.3
, pp. 345-352
-
-
Bastian, S.1
Liu, X.2
Meyerowitz, J.T.3
Snow, C.D.4
Chen, M.M.Y.5
Arnold, F.H.6
-
26
-
-
33751177803
-
Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms
-
Lill R., Mühlenhoff U. Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu Rev Cell Dev Bi 2006, 22:457-486.
-
(2006)
Annu Rev Cell Dev Bi
, vol.22
, pp. 457-486
-
-
Lill, R.1
Mühlenhoff, U.2
-
27
-
-
47249094614
-
Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases
-
Lill R., Mühlenhoff U. Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem 2008, 77:669-700.
-
(2008)
Annu Rev Biochem
, vol.77
, pp. 669-700
-
-
Lill, R.1
Mühlenhoff, U.2
-
28
-
-
84919965031
-
Maturation of cytosolic and nuclear iron-sulfur proteins
-
Netz D.J.A., Mascarenhas J., Stehling O., Pierik A.J., Lill R. Maturation of cytosolic and nuclear iron-sulfur proteins. Trends Cell Biol 2013, 25:1-10.
-
(2013)
Trends Cell Biol
, vol.25
, pp. 1-10
-
-
Netz, D.J.A.1
Mascarenhas, J.2
Stehling, O.3
Pierik, A.J.4
Lill, R.5
-
30
-
-
84864247762
-
-
September 13
-
Dundon CA, Aristidou A, Hawkins A, Lies D, Albert LH: Methods of increasing dihydroxy acid dehydratase activity to improve production of fuels, chemicals, and amino acids. Patent: US8017376 B2, September 13, 2011.
-
(2011)
Methods of increasing dihydroxy acid dehydratase activity to improve production of fuels, chemicals, and amino acids
-
-
Dundon, C.A.1
Aristidou, A.2
Hawkins, A.3
Lies, D.4
Albert, L.H.5
-
31
-
-
84890895919
-
The bacterial Entner-Doudoroff pathway does not replace glycolysis in Saccharomyces cerevisiae due to the lack of activity of iron-sulfur cluster enzyme 6-phosphogluconate dehydratase
-
Benisch F., Boles E. The bacterial Entner-Doudoroff pathway does not replace glycolysis in Saccharomyces cerevisiae due to the lack of activity of iron-sulfur cluster enzyme 6-phosphogluconate dehydratase. J Biotechnol 2014, 171:45-55.
-
(2014)
J Biotechnol
, vol.171
, pp. 45-55
-
-
Benisch, F.1
Boles, E.2
-
32
-
-
84879416874
-
Heterologous expression and characterization of bacterial 2-C-methyl-D-erythritol-4-phosphate pathway in Saccharomyces cerevisiae
-
Carlsen S., Ajikumar P.K., Formenti L.R., Zhou K., Phon T.H., Nielsen M.L., Lantz A.E., Kielland-Brandt M.C., Stephanopoulos G. Heterologous expression and characterization of bacterial 2-C-methyl-D-erythritol-4-phosphate pathway in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2013, 97:5753-5769.
-
(2013)
Appl Microbiol Biotechnol
, vol.97
, pp. 5753-5769
-
-
Carlsen, S.1
Ajikumar, P.K.2
Formenti, L.R.3
Zhou, K.4
Phon, T.H.5
Nielsen, M.L.6
Lantz, A.E.7
Kielland-Brandt, M.C.8
Stephanopoulos, G.9
-
33
-
-
77954383990
-
Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass
-
Huang H., Liu H., Gan Y. Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnol Adv 2010, 5:651-657.
-
(2010)
Biotechnol Adv
, vol.5
, pp. 651-657
-
-
Huang, H.1
Liu, H.2
Gan, Y.3
-
34
-
-
51649108629
-
Fermentative butanol production by Clostridia
-
Lee S.Y., Park J.H., Jang S.H., Nielsen L.K., Kim J., Jung K.S. Fermentative butanol production by Clostridia. Biotechnol Bioeng 2008, 2:209-228.
-
(2008)
Biotechnol Bioeng
, vol.2
, pp. 209-228
-
-
Lee, S.Y.1
Park, J.H.2
Jang, S.H.3
Nielsen, L.K.4
Kim, J.5
Jung, K.S.6
-
35
-
-
10944238461
-
Butanol fermentation research: upstream and downstream manipulations
-
Ezeji T.C., Qureshi N., Blaschek H.P. Butanol fermentation research: upstream and downstream manipulations. Chem Rec 2004, 5:305-314.
-
(2004)
Chem Rec
, vol.5
, pp. 305-314
-
-
Ezeji, T.C.1
Qureshi, N.2
Blaschek, H.P.3
-
36
-
-
68049135724
-
Engineering alternative butanol production platforms in heterologous bacteria
-
Nielsen D.R., Leonard E., Yoon S., Tseng H., Yuan C., Jones Prather K.L. Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 2009, 4-5:262-273.
-
(2009)
Metab Eng
, vol.4-5
, pp. 262-273
-
-
Nielsen, D.R.1
Leonard, E.2
Yoon, S.3
Tseng, H.4
Yuan, C.5
Jones Prather, K.L.6
-
37
-
-
53049097710
-
Metabolic engineering of Escherichia coli for 1-butanol production
-
Atsumi S., Cann A.F., Connor M.R., Shen C.R., Smith K.M., Brynildsen M.P., Chou K.J.Y., Hanai T., Liao J.C. Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 2008, 6:305-311.
-
(2008)
Metab Eng
, vol.6
, pp. 305-311
-
-
Atsumi, S.1
Cann, A.F.2
Connor, M.R.3
Shen, C.R.4
Smith, K.M.5
Brynildsen, M.P.6
Chou, K.J.Y.7
Hanai, T.8
Liao, J.C.9
-
38
-
-
58249098522
-
Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol
-
Steen E.J., Chan R., Prasad N., Myers S., Petzold C.J., Redding A., Ouellet M., Keasling J.D. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 2008, 7:36.
-
(2008)
Microb Cell Fact
, vol.7
, pp. 36
-
-
Steen, E.J.1
Chan, R.2
Prasad, N.3
Myers, S.4
Petzold, C.J.5
Redding, A.6
Ouellet, M.7
Keasling, J.D.8
-
39
-
-
79952910616
-
Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
-
Bond-Watts B.B., Bellerose R.J., Chang M.C.Y. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 2011, 4:222-227.
-
(2011)
Nat Chem Biol
, vol.4
, pp. 222-227
-
-
Bond-Watts, B.B.1
Bellerose, R.J.2
Chang, M.C.Y.3
-
40
-
-
84884351687
-
Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism
-
Krivoruchko A., Serrano-Amatriain C., Chen Y., Siewers V., Nielsen J. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J Ind Microbiol Biotechnol 2013, 9:1051-1056.
-
(2013)
J Ind Microbiol Biotechnol
, vol.9
, pp. 1051-1056
-
-
Krivoruchko, A.1
Serrano-Amatriain, C.2
Chen, Y.3
Siewers, V.4
Nielsen, J.5
-
41
-
-
84925666935
-
Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals
-
Lian J., Zhao H. Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals. ACS Synth Biol 2014, 10.1021/sb500243c.
-
(2014)
ACS Synth Biol
-
-
Lian, J.1
Zhao, H.2
-
42
-
-
84901808659
-
Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains
-
Lian J., Si T., Nair N.U., Zhao H. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng 2014, 24:139-149.
-
(2014)
Metab Eng
, vol.24
, pp. 139-149
-
-
Lian, J.1
Si, T.2
Nair, N.U.3
Zhao, H.4
-
43
-
-
84878016831
-
Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction
-
Ida Y., Hirasawa T., Furusawa C., Shimizu H. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Appl Microbiol Biotechnol 2013, 11:4811-4819.
-
(2013)
Appl Microbiol Biotechnol
, vol.11
, pp. 4811-4819
-
-
Ida, Y.1
Hirasawa, T.2
Furusawa, C.3
Shimizu, H.4
-
44
-
-
84892572079
-
Potential of a Saccharomyces cerevisiae recombinant strain lacking ethanol and glycerol biosynthesis pathways in efficient anaerobic bioproduction
-
Hirasawa T., Ida Y., Furuasawa C., Shimizu H. Potential of a Saccharomyces cerevisiae recombinant strain lacking ethanol and glycerol biosynthesis pathways in efficient anaerobic bioproduction. Bioengineered 2014, 2:123-128.
-
(2014)
Bioengineered
, vol.2
, pp. 123-128
-
-
Hirasawa, T.1
Ida, Y.2
Furuasawa, C.3
Shimizu, H.4
-
45
-
-
84893502214
-
Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae
-
Si T., Luo Y., Xiao H., Zhao H. Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae. Metab Eng 2014, 22:60-68.
-
(2014)
Metab Eng
, vol.22
, pp. 60-68
-
-
Si, T.1
Luo, Y.2
Xiao, H.3
Zhao, H.4
-
46
-
-
84876976847
-
A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae
-
Branduardi P., Longo V., Berterame N.M., Rossi G., Porro D. A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnol Biofuels 2013, 1:68.
-
(2013)
Biotechnol Biofuels
, vol.1
, pp. 68
-
-
Branduardi, P.1
Longo, V.2
Berterame, N.M.3
Rossi, G.4
Porro, D.5
-
47
-
-
84904639399
-
2-Butanol and butanone production in Saccharomyces cerevisiae through combination of a B12 dependent dehydratase and a secondary alcohol dehydrogenase using a TEV-based expression system
-
Ghiaci P., Norbeck J., Larsson C. 2-Butanol and butanone production in Saccharomyces cerevisiae through combination of a B12 dependent dehydratase and a secondary alcohol dehydrogenase using a TEV-based expression system. PLoS ONE 2014, 7:e102774.
-
(2014)
PLoS ONE
, vol.7
, pp. e102774
-
-
Ghiaci, P.1
Norbeck, J.2
Larsson, C.3
-
48
-
-
84861442550
-
Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering
-
Ng C.Y., Jung M., Lee J., Oh M. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Fact 2012, 11:68.
-
(2012)
Microb Cell Fact
, vol.11
, pp. 68
-
-
Ng, C.Y.1
Jung, M.2
Lee, J.3
Oh, M.4
-
49
-
-
84882274841
-
Production of 2,3-butanediol by engineered Saccharomyces cerevisiae
-
Kim S., Seo S., Jin Y., Seo J. Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresource Technol 2013, 146:274-281.
-
(2013)
Bioresource Technol
, vol.146
, pp. 274-281
-
-
Kim, S.1
Seo, S.2
Jin, Y.3
Seo, J.4
-
50
-
-
57049150206
-
Selection and optimization of microbial hosts for biofuels production
-
Fischer C.R., Klein-Marcuschamer D., Stephanopoulos G. Selection and optimization of microbial hosts for biofuels production. Metab Eng 2008, 6:295-304.
-
(2008)
Metab Eng
, vol.6
, pp. 295-304
-
-
Fischer, C.R.1
Klein-Marcuschamer, D.2
Stephanopoulos, G.3
-
51
-
-
84875642557
-
Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation
-
González-Ramos D., van den Broek M., van Maris A.J.A., Pronk J.T., Daran J.G. Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation. Biotechnol Biofuels 2013, 1:48.
-
(2013)
Biotechnol Biofuels
, vol.1
, pp. 48
-
-
González-Ramos, D.1
van den Broek, M.2
van Maris, A.J.A.3
Pronk, J.T.4
Daran, J.G.5
-
52
-
-
85040956333
-
Physiological adaptations of Saccharomyces cerevisiae evolved for improved butanol tolerance
-
Ghiaci P., Norbeck J., Larsson C. Physiological adaptations of Saccharomyces cerevisiae evolved for improved butanol tolerance. Biotechnol Biofuels 2013, 1:101.
-
(2013)
Biotechnol Biofuels
, vol.1
, pp. 101
-
-
Ghiaci, P.1
Norbeck, J.2
Larsson, C.3
|