메뉴 건너뛰기




Volumn 33, Issue , 2015, Pages 1-7

Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers

Author keywords

[No Author keywords available]

Indexed keywords

BUTANOL ISOMERS;

EID: 84907546229     PISSN: 09581669     EISSN: 18790429     Source Type: Journal    
DOI: 10.1016/j.copbio.2014.09.004     Document Type: Review
Times cited : (76)

References (52)
  • 1
    • 79959505228 scopus 로고    scopus 로고
    • Fuel options: the ideal biofuel
    • Savage N. Fuel options: the ideal biofuel. Nature 2011, 474:9-11.
    • (2011) Nature , vol.474 , pp. 9-11
    • Savage, N.1
  • 2
    • 38149030843 scopus 로고    scopus 로고
    • Biobutanol: an attractive biofuel
    • Dürre P. Biobutanol: an attractive biofuel. Biotechnol J 2007, 12:1525-1534.
    • (2007) Biotechnol J , vol.12 , pp. 1525-1534
    • Dürre, P.1
  • 5
    • 84869465095 scopus 로고    scopus 로고
    • From fields to fuels: recent advances in the microbial production of biofuels
    • Kung Y., Runguphan W., Keasling J.D. From fields to fuels: recent advances in the microbial production of biofuels. ACS Synth Biol 2012, 11:498-513.
    • (2012) ACS Synth Biol , vol.11 , pp. 498-513
    • Kung, Y.1    Runguphan, W.2    Keasling, J.D.3
  • 6
    • 84873871551 scopus 로고    scopus 로고
    • Recent progress in synthetic biology for microbial production of C3-C10 alcohols
    • Lamsen E.N., Atsumi S. Recent progress in synthetic biology for microbial production of C3-C10 alcohols. Front Microbiol 2012, 3:196.
    • (2012) Front Microbiol , vol.3 , pp. 196
    • Lamsen, E.N.1    Atsumi, S.2
  • 7
    • 84876468510 scopus 로고    scopus 로고
    • Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources
    • Lan E.I., Liao J.C. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol 2013, 135:339-349.
    • (2013) Bioresour Technol , vol.135 , pp. 339-349
    • Lan, E.I.1    Liao, J.C.2
  • 8
    • 84878848636 scopus 로고    scopus 로고
    • Advanced biofuel production by the yeast Saccharomyces cerevisiae
    • Buijs N.A., Siewers V., Nielsen J. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr Opin Chem Biol 2013, 3:480-488.
    • (2013) Curr Opin Chem Biol , vol.3 , pp. 480-488
    • Buijs, N.A.1    Siewers, V.2    Nielsen, J.3
  • 10
    • 42349106782 scopus 로고    scopus 로고
    • The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism
    • Hazelwood L.A., Daran J.-M., van Maris A.J.A., Pronk J.T., Dickinson J.R. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 2008, 74:2259-2266.
    • (2008) Appl Environ Microbiol , vol.74 , pp. 2259-2266
    • Hazelwood, L.A.1    Daran, J.-M.2    van Maris, A.J.A.3    Pronk, J.T.4    Dickinson, J.R.5
  • 11
    • 38049001166 scopus 로고    scopus 로고
    • Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
    • Atsumi S., Hanai T., Liao J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 7174:86-89.
    • (2008) Nature , vol.7174 , pp. 86-89
    • Atsumi, S.1    Hanai, T.2    Liao, J.C.3
  • 12
    • 79960656765 scopus 로고    scopus 로고
    • Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism
    • Chen X., Nielsen K.F., Borodina I., Kielland-Brandt M.C., Karhumaa K. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 2011, 1:21.
    • (2011) Biotechnol Biofuels , vol.1 , pp. 21
    • Chen, X.1    Nielsen, K.F.2    Borodina, I.3    Kielland-Brandt, M.C.4    Karhumaa, K.5
  • 13
    • 0035424632 scopus 로고    scopus 로고
    • Regulation of yeast acetohydroxyacid synthase by valine and ATP
    • Pang S.S., Duggleby R.G. Regulation of yeast acetohydroxyacid synthase by valine and ATP. Biochem J 2001, 3:749-757.
    • (2001) Biochem J , vol.3 , pp. 749-757
    • Pang, S.S.1    Duggleby, R.G.2
  • 14
    • 84877256074 scopus 로고    scopus 로고
    • Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols
    • Avalos J.L., Fink G.R., Stephanopoulos G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 2013, 4:335-341.
    • (2013) Nat Biotechnol , vol.4 , pp. 335-341
    • Avalos, J.L.1    Fink, G.R.2    Stephanopoulos, G.3
  • 15
    • 84921392130 scopus 로고    scopus 로고
    • Combinatorial assembly of large biochemical pathways into yeast chromosomes for improved production of value-added compounds
    • Yuan J., Ching C.B. Combinatorial assembly of large biochemical pathways into yeast chromosomes for improved production of value-added compounds. ACS Synth Biol 2014, 10.1021/sb500079f.
    • (2014) ACS Synth Biol
    • Yuan, J.1    Ching, C.B.2
  • 17
    • 84865777627 scopus 로고    scopus 로고
    • Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae
    • Brat D., Weber C., Lorenzen W., Bode H.B., Boles E. Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol Biofuels 2012, 1:65.
    • (2012) Biotechnol Biofuels , vol.1 , pp. 65
    • Brat, D.1    Weber, C.2    Lorenzen, W.3    Bode, H.B.4    Boles, E.5
  • 18
    • 84873750369 scopus 로고    scopus 로고
    • Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae
    • Brat D., Boles E. Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae. FEMS Yeast Res 2013, 2:241-244.
    • (2013) FEMS Yeast Res , vol.2 , pp. 241-244
    • Brat, D.1    Boles, E.2
  • 19
    • 84870384496 scopus 로고    scopus 로고
    • Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes
    • Lee W., Seo S., Bae Y., Nan H., Jin Y., Seo J. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioproc Biosyst Eng 2012, 9:1467-1475.
    • (2012) Bioproc Biosyst Eng , vol.9 , pp. 1467-1475
    • Lee, W.1    Seo, S.2    Bae, Y.3    Nan, H.4    Jin, Y.5    Seo, J.6
  • 20
    • 84870228515 scopus 로고    scopus 로고
    • Construction of an artificial pathway for isobutanol biosynthesis in the cytosol of Saccharomyces cerevisiae
    • Matsuda F., Kondo T., Ida K., Tezuka H., Ishii J., Kondo A. Construction of an artificial pathway for isobutanol biosynthesis in the cytosol of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2012, 11:2139-2141.
    • (2012) Biosci Biotechnol Biochem , vol.11 , pp. 2139-2141
    • Matsuda, F.1    Kondo, T.2    Ida, K.3    Tezuka, H.4    Ishii, J.5    Kondo, A.6
  • 21
    • 84889061841 scopus 로고    scopus 로고
    • Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance
    • Matsuda F., Ishii J., Kondo T., Ida K., Tezuka H., Kondo A. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance. Microb Cell Fact 2013, 1:119.
    • (2013) Microb Cell Fact , vol.1 , pp. 119
    • Matsuda, F.1    Ishii, J.2    Kondo, T.3    Ida, K.4    Tezuka, H.5    Kondo, A.6
  • 22
    • 84859499726 scopus 로고    scopus 로고
    • Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae
    • Kondo T., Tezuka H., Ishii J., Matsuda F., Ogino C., Kondo A. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. J Biotechnol 2012, 1-2:32-37.
    • (2012) J Biotechnol , pp. 32-37
    • Kondo, T.1    Tezuka, H.2    Ishii, J.3    Matsuda, F.4    Ogino, C.5    Kondo, A.6
  • 23
    • 84866145291 scopus 로고    scopus 로고
    • An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae
    • Oud B., Flores C., Gancedo C., Zhang X., Trueheart J., Daran J., Pronk J.T., van Maris A.J.A. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb Cell Fact 2012, 11:131.
    • (2012) Microb Cell Fact , vol.11 , pp. 131
    • Oud, B.1    Flores, C.2    Gancedo, C.3    Zhang, X.4    Trueheart, J.5    Daran, J.6    Pronk, J.T.7    van Maris, A.J.A.8
  • 24
    • 84896932547 scopus 로고    scopus 로고
    • Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis
    • Kozak B.U., van Rossum H.M., Benjamin K.R., Wu L., Daran J.G., Pronk J.T., van Maris A.J.A. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab Eng 2014, 21:46-59.
    • (2014) Metab Eng , vol.21 , pp. 46-59
    • Kozak, B.U.1    van Rossum, H.M.2    Benjamin, K.R.3    Wu, L.4    Daran, J.G.5    Pronk, J.T.6    van Maris, A.J.A.7
  • 25
    • 79955164750 scopus 로고    scopus 로고
    • Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli
    • Bastian S., Liu X., Meyerowitz J.T., Snow C.D., Chen M.M.Y., Arnold F.H. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 2011, 3:345-352.
    • (2011) Metab Eng , vol.3 , pp. 345-352
    • Bastian, S.1    Liu, X.2    Meyerowitz, J.T.3    Snow, C.D.4    Chen, M.M.Y.5    Arnold, F.H.6
  • 26
    • 33751177803 scopus 로고    scopus 로고
    • Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms
    • Lill R., Mühlenhoff U. Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu Rev Cell Dev Bi 2006, 22:457-486.
    • (2006) Annu Rev Cell Dev Bi , vol.22 , pp. 457-486
    • Lill, R.1    Mühlenhoff, U.2
  • 27
    • 47249094614 scopus 로고    scopus 로고
    • Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases
    • Lill R., Mühlenhoff U. Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem 2008, 77:669-700.
    • (2008) Annu Rev Biochem , vol.77 , pp. 669-700
    • Lill, R.1    Mühlenhoff, U.2
  • 31
    • 84890895919 scopus 로고    scopus 로고
    • The bacterial Entner-Doudoroff pathway does not replace glycolysis in Saccharomyces cerevisiae due to the lack of activity of iron-sulfur cluster enzyme 6-phosphogluconate dehydratase
    • Benisch F., Boles E. The bacterial Entner-Doudoroff pathway does not replace glycolysis in Saccharomyces cerevisiae due to the lack of activity of iron-sulfur cluster enzyme 6-phosphogluconate dehydratase. J Biotechnol 2014, 171:45-55.
    • (2014) J Biotechnol , vol.171 , pp. 45-55
    • Benisch, F.1    Boles, E.2
  • 33
    • 77954383990 scopus 로고    scopus 로고
    • Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass
    • Huang H., Liu H., Gan Y. Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnol Adv 2010, 5:651-657.
    • (2010) Biotechnol Adv , vol.5 , pp. 651-657
    • Huang, H.1    Liu, H.2    Gan, Y.3
  • 35
    • 10944238461 scopus 로고    scopus 로고
    • Butanol fermentation research: upstream and downstream manipulations
    • Ezeji T.C., Qureshi N., Blaschek H.P. Butanol fermentation research: upstream and downstream manipulations. Chem Rec 2004, 5:305-314.
    • (2004) Chem Rec , vol.5 , pp. 305-314
    • Ezeji, T.C.1    Qureshi, N.2    Blaschek, H.P.3
  • 36
  • 39
    • 79952910616 scopus 로고    scopus 로고
    • Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
    • Bond-Watts B.B., Bellerose R.J., Chang M.C.Y. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 2011, 4:222-227.
    • (2011) Nat Chem Biol , vol.4 , pp. 222-227
    • Bond-Watts, B.B.1    Bellerose, R.J.2    Chang, M.C.Y.3
  • 40
    • 84884351687 scopus 로고    scopus 로고
    • Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism
    • Krivoruchko A., Serrano-Amatriain C., Chen Y., Siewers V., Nielsen J. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J Ind Microbiol Biotechnol 2013, 9:1051-1056.
    • (2013) J Ind Microbiol Biotechnol , vol.9 , pp. 1051-1056
    • Krivoruchko, A.1    Serrano-Amatriain, C.2    Chen, Y.3    Siewers, V.4    Nielsen, J.5
  • 41
    • 84925666935 scopus 로고    scopus 로고
    • Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals
    • Lian J., Zhao H. Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals. ACS Synth Biol 2014, 10.1021/sb500243c.
    • (2014) ACS Synth Biol
    • Lian, J.1    Zhao, H.2
  • 42
    • 84901808659 scopus 로고    scopus 로고
    • Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains
    • Lian J., Si T., Nair N.U., Zhao H. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng 2014, 24:139-149.
    • (2014) Metab Eng , vol.24 , pp. 139-149
    • Lian, J.1    Si, T.2    Nair, N.U.3    Zhao, H.4
  • 43
    • 84878016831 scopus 로고    scopus 로고
    • Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction
    • Ida Y., Hirasawa T., Furusawa C., Shimizu H. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Appl Microbiol Biotechnol 2013, 11:4811-4819.
    • (2013) Appl Microbiol Biotechnol , vol.11 , pp. 4811-4819
    • Ida, Y.1    Hirasawa, T.2    Furusawa, C.3    Shimizu, H.4
  • 44
    • 84892572079 scopus 로고    scopus 로고
    • Potential of a Saccharomyces cerevisiae recombinant strain lacking ethanol and glycerol biosynthesis pathways in efficient anaerobic bioproduction
    • Hirasawa T., Ida Y., Furuasawa C., Shimizu H. Potential of a Saccharomyces cerevisiae recombinant strain lacking ethanol and glycerol biosynthesis pathways in efficient anaerobic bioproduction. Bioengineered 2014, 2:123-128.
    • (2014) Bioengineered , vol.2 , pp. 123-128
    • Hirasawa, T.1    Ida, Y.2    Furuasawa, C.3    Shimizu, H.4
  • 45
    • 84893502214 scopus 로고    scopus 로고
    • Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae
    • Si T., Luo Y., Xiao H., Zhao H. Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae. Metab Eng 2014, 22:60-68.
    • (2014) Metab Eng , vol.22 , pp. 60-68
    • Si, T.1    Luo, Y.2    Xiao, H.3    Zhao, H.4
  • 47
    • 84904639399 scopus 로고    scopus 로고
    • 2-Butanol and butanone production in Saccharomyces cerevisiae through combination of a B12 dependent dehydratase and a secondary alcohol dehydrogenase using a TEV-based expression system
    • Ghiaci P., Norbeck J., Larsson C. 2-Butanol and butanone production in Saccharomyces cerevisiae through combination of a B12 dependent dehydratase and a secondary alcohol dehydrogenase using a TEV-based expression system. PLoS ONE 2014, 7:e102774.
    • (2014) PLoS ONE , vol.7 , pp. e102774
    • Ghiaci, P.1    Norbeck, J.2    Larsson, C.3
  • 48
    • 84861442550 scopus 로고    scopus 로고
    • Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering
    • Ng C.Y., Jung M., Lee J., Oh M. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Fact 2012, 11:68.
    • (2012) Microb Cell Fact , vol.11 , pp. 68
    • Ng, C.Y.1    Jung, M.2    Lee, J.3    Oh, M.4
  • 49
    • 84882274841 scopus 로고    scopus 로고
    • Production of 2,3-butanediol by engineered Saccharomyces cerevisiae
    • Kim S., Seo S., Jin Y., Seo J. Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresource Technol 2013, 146:274-281.
    • (2013) Bioresource Technol , vol.146 , pp. 274-281
    • Kim, S.1    Seo, S.2    Jin, Y.3    Seo, J.4
  • 50
    • 57049150206 scopus 로고    scopus 로고
    • Selection and optimization of microbial hosts for biofuels production
    • Fischer C.R., Klein-Marcuschamer D., Stephanopoulos G. Selection and optimization of microbial hosts for biofuels production. Metab Eng 2008, 6:295-304.
    • (2008) Metab Eng , vol.6 , pp. 295-304
    • Fischer, C.R.1    Klein-Marcuschamer, D.2    Stephanopoulos, G.3
  • 51
    • 84875642557 scopus 로고    scopus 로고
    • Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation
    • González-Ramos D., van den Broek M., van Maris A.J.A., Pronk J.T., Daran J.G. Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation. Biotechnol Biofuels 2013, 1:48.
    • (2013) Biotechnol Biofuels , vol.1 , pp. 48
    • González-Ramos, D.1    van den Broek, M.2    van Maris, A.J.A.3    Pronk, J.T.4    Daran, J.G.5
  • 52
    • 85040956333 scopus 로고    scopus 로고
    • Physiological adaptations of Saccharomyces cerevisiae evolved for improved butanol tolerance
    • Ghiaci P., Norbeck J., Larsson C. Physiological adaptations of Saccharomyces cerevisiae evolved for improved butanol tolerance. Biotechnol Biofuels 2013, 1:101.
    • (2013) Biotechnol Biofuels , vol.1 , pp. 101
    • Ghiaci, P.1    Norbeck, J.2    Larsson, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.