-
1
-
-
84880548336
-
The intestinal crypt, a prototype stem cell compartment
-
Clevers H. The intestinal crypt, a prototype stem cell compartment. Cell 2013, 154:274–284.
-
(2013)
Cell
, vol.154
, pp. 274-284
-
-
Clevers, H.1
-
2
-
-
84867097416
-
Dll1+ secretory progenitor cells revert to stem cells upon crypt damage
-
Lyubimova A, Nee AN
-
van Es JH, Sato T, van de Wetering M, Lyubimova A, Nee AN, Gregorieff A, Sasaki N, Zeinstra L, van den Born M, Korving J, et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol 2012, 14:1099–1104.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 1099-1104
-
-
van Es, J.H.1
Sato, T.2
van de Wetering, M.3
Gregorieff, A.4
Sasaki, N.5
Zeinstra, L.6
van den Born, M.7
Korving, J.8
-
3
-
-
84874730918
-
Intestinal label-retaining cells are secretory precursors expressing Lgr5
-
Buczacki SJ, Zecchini HI, Nicholson AM, Russell R, Vermeulen L, Kemp R, Winton DJ. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 2013, 495:65–69.
-
(2013)
Nature
, vol.495
, pp. 65-69
-
-
Buczacki, S.J.1
Zecchini, H.I.2
Nicholson, A.M.3
Russell, R.4
Vermeulen, L.5
Kemp, R.6
Winton, D.J.7
-
4
-
-
84957869951
-
Replacement of Lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters
-
Tetteh PW, Basak O, Farin HF, Wiebrands K, Kretzschmar K, Begthel H, van den Born M, Korving J, de Sauvage F, van Es JH, et al. Replacement of Lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell 2016, 18:203–213.
-
(2016)
Cell Stem Cell
, vol.18
, pp. 203-213
-
-
Tetteh, P.W.1
Basak, O.2
Farin, H.F.3
Wiebrands, K.4
Kretzschmar, K.5
Begthel, H.6
van den Born, M.7
Korving, J.8
de Sauvage, F.9
van Es, J.H.10
-
5
-
-
46249128798
-
Bmi1 is expressed in vivo in intestinal stem cells
-
Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 2008, 40:915–920.
-
(2008)
Nat Genet
, vol.40
, pp. 915-920
-
-
Sangiorgi, E.1
Capecchi, M.R.2
-
6
-
-
83255193921
-
Interconversion between intestinal stem cell populations in distinct niches
-
Takeda N, Jain R, LeBoeuf MR, Wang Q, Lu MM, Epstein JA. Interconversion between intestinal stem cell populations in distinct niches. Science 2011, 334:1420–1424.
-
(2011)
Science
, vol.334
, pp. 1420-1424
-
-
Takeda, N.1
Jain, R.2
LeBoeuf, M.R.3
Wang, Q.4
Lu, M.M.5
Epstein, J.A.6
-
7
-
-
35548974423
-
Identification of stem cells in small intestine and colon by marker gene Lgr5
-
Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007, 449:1003–1007.
-
(2007)
Nature
, vol.449
, pp. 1003-1007
-
-
Barker, N.1
van Es, J.H.2
Kuipers, J.3
Kujala, P.4
van den Born, M.5
Cozijnsen, M.6
Haegebarth, A.7
Korving, J.8
Begthel, H.9
Peters, P.J.10
-
8
-
-
80054041585
-
A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable
-
Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, de Sauvage FJ. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 2011, 478:255–259.
-
(2011)
Nature
, vol.478
, pp. 255-259
-
-
Tian, H.1
Biehs, B.2
Warming, S.3
Leong, K.G.4
Rangell, L.5
Klein, O.D.6
de Sauvage, F.J.7
-
9
-
-
84922542256
-
Single-cell analysis of proxy reporter allele-marked epithelial cells establishes intestinal stem cell hierarchy
-
Li N, Yousefi M, Nakauka-Ddamba A, Jain R, Tobias J, Epstein JA, Jensen ST, Lengner CJ. Single-cell analysis of proxy reporter allele-marked epithelial cells establishes intestinal stem cell hierarchy. Stem Cell Rep 2014, 3:876–891.
-
(2014)
Stem Cell Rep
, vol.3
, pp. 876-891
-
-
Li, N.1
Yousefi, M.2
Nakauka-Ddamba, A.3
Jain, R.4
Tobias, J.5
Epstein, J.A.6
Jensen, S.T.7
Lengner, C.J.8
-
10
-
-
8444251784
-
The Wnt signaling pathway in development and disease
-
Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004, 20:781–810.
-
(2004)
Annu Rev Cell Dev Biol
, vol.20
, pp. 781-810
-
-
Logan, C.Y.1
Nusse, R.2
-
11
-
-
33746808398
-
Wnt/β-catenin signaling in development and disease
-
Clevers H. Wnt/β-catenin signaling in development and disease. Cell 2006, 127:469–480.
-
(2006)
Cell
, vol.127
, pp. 469-480
-
-
Clevers, H.1
-
12
-
-
0030949463
-
Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC
-
Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 1997, 275:1787–1790.
-
(1997)
Science
, vol.275
, pp. 1787-1790
-
-
Morin, P.J.1
Sparks, A.B.2
Korinek, V.3
Barker, N.4
Clevers, H.5
Vogelstein, B.6
Kinzler, K.W.7
-
13
-
-
0030975671
-
Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma
-
Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, Vogelstein B, Clevers H. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science 1997, 275:1784–1787.
-
(1997)
Science
, vol.275
, pp. 1784-1787
-
-
Korinek, V.1
Barker, N.2
Morin, P.J.3
van Wichen, D.4
de Weger, R.5
Kinzler, K.W.6
Vogelstein, B.7
Clevers, H.8
-
14
-
-
33847214547
-
The intestinal Wnt/TCF signature
-
Van der Flier LG, Sabates-Bellver J, Oving I, Haegebarth A, De Palo M, Anti M, Van Gijn ME, Suijkerbuijk S, Van de Wetering M, Marra G, et al. The intestinal Wnt/TCF signature. Gastroenterology 2007, 132:628–632.
-
(2007)
Gastroenterology
, vol.132
, pp. 628-632
-
-
Van der Flier, L.G.1
Sabates-Bellver, J.2
Oving, I.3
Haegebarth, A.4
De Palo, M.5
Anti, M.6
Van Gijn, M.E.7
Suijkerbuijk, S.8
Van de Wetering, M.9
Marra, G.10
-
15
-
-
80051926611
-
Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling
-
de Lau W, Barker N, Low TY, Koo BK, Li VS, Teunissen H, Kujala P, Haegebarth A, Peters PJ, van de Wetering M, et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 2011, 476:293–297.
-
(2011)
Nature
, vol.476
, pp. 293-297
-
-
de Lau, W.1
Barker, N.2
Low, T.Y.3
Koo, B.K.4
Li, V.S.5
Teunissen, H.6
Kujala, P.7
Haegebarth, A.8
Peters, P.J.9
van de Wetering, M.10
-
16
-
-
0031848068
-
Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4
-
Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, Clevers H. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 1998, 19:379–383.
-
(1998)
Nat Genet
, vol.19
, pp. 379-383
-
-
Korinek, V.1
Barker, N.2
Moerer, P.3
van Donselaar, E.4
Huls, G.5
Peters, P.J.6
Clevers, H.7
-
17
-
-
2142709556
-
Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of β-catenin
-
Ireland H, Kemp R, Houghton C, Howard L, Clarke AR, Sansom OJ, Winton DJ. Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of β-catenin. Gastroenterology 2004, 126:1236–1246.
-
(2004)
Gastroenterology
, vol.126
, pp. 1236-1246
-
-
Ireland, H.1
Kemp, R.2
Houghton, C.3
Howard, L.4
Clarke, A.R.5
Sansom, O.J.6
Winton, D.J.7
-
18
-
-
35648969554
-
Wnt/β-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells
-
Fevr T, Robine S, Louvard D, Huelsken J. Wnt/β-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol 2007, 27:7551–7559.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 7551-7559
-
-
Fevr, T.1
Robine, S.2
Louvard, D.3
Huelsken, J.4
-
19
-
-
84861372662
-
A critical role for the Wnt effector Tcf4 in adult intestinal homeostatic self-renewal
-
van Es JH, Haegebarth A, Kujala P, Itzkovitz S, Koo BK, Boj SF, Korving J, van den Born M, van Oudenaarden A, Robine S, et al. A critical role for the Wnt effector Tcf4 in adult intestinal homeostatic self-renewal. Mol Cell Biol 2012, 32:1918–1927.
-
(2012)
Mol Cell Biol
, vol.32
, pp. 1918-1927
-
-
van Es, J.H.1
Haegebarth, A.2
Kujala, P.3
Itzkovitz, S.4
Koo, B.K.5
Boj, S.F.6
Korving, J.7
van den Born, M.8
van Oudenaarden, A.9
Robine, S.10
-
20
-
-
0346458662
-
Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1
-
Kuhnert F, Davis CR, Wang HT, Chu P, Lee M, Yuan J, Nusse R, Kuo CJ. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci USA 2004, 101:266–271.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 266-271
-
-
Kuhnert, F.1
Davis, C.R.2
Wang, H.T.3
Chu, P.4
Lee, M.5
Yuan, J.6
Nusse, R.7
Kuo, C.J.8
-
21
-
-
0037829660
-
Canonical Wnt signals are essential for homeostasis of the intestinal epithelium
-
Pinto D, Gregorieff A, Begthel H, et al. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 2003, 17:1709–1713.
-
(2003)
Genes Dev
, vol.17
, pp. 1709-1713
-
-
Pinto, D.1
Gregorieff, A.2
Begthel, H.3
-
22
-
-
84860765166
-
ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner
-
Hao HX, Xie Y, Zhang Y, Charlat O, Oster E, Avello M, Lei H, Mickanin C, Liu D, Ruffner H, et al. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 2012, 485:195–200.
-
(2012)
Nature
, vol.485
, pp. 195-200
-
-
Hao, H.X.1
Xie, Y.2
Zhang, Y.3
Charlat, O.4
Oster, E.5
Avello, M.6
Lei, H.7
Mickanin, C.8
Liu, D.9
Ruffner, H.10
-
23
-
-
84865517676
-
Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors
-
Koo BK, Spit M, Jordens I, Low TY, Stange DE, van de Wetering M, van Es JH, Mohammed S, Heck AJ, Maurice MM, et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 2012, 488:665–669.
-
(2012)
Nature
, vol.488
, pp. 665-669
-
-
Koo, B.K.1
Spit, M.2
Jordens, I.3
Low, T.Y.4
Stange, D.E.5
van de Wetering, M.6
van Es, J.H.7
Mohammed, S.8
Heck, A.J.9
Maurice, M.M.10
-
24
-
-
84959017482
-
Visualization of a short-range Wnt gradient in the intestinal stem-cell niche
-
Farin HF, Jordens I, Mosa MH, Basak O, Korving J, Tauriello DV, de Punder K, Angers S, Peters PJ, Maurice MM, et al. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature 2016, 530:340–343.
-
(2016)
Nature
, vol.530
, pp. 340-343
-
-
Farin, H.F.1
Jordens, I.2
Mosa, M.H.3
Basak, O.4
Korving, J.5
Tauriello, D.V.6
de Punder, K.7
Angers, S.8
Peters, P.J.9
Maurice, M.M.10
-
25
-
-
78751644734
-
Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts
-
Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 2011, 469:415–418.
-
(2011)
Nature
, vol.469
, pp. 415-418
-
-
Sato, T.1
van Es, J.H.2
Snippert, H.J.3
Stange, D.E.4
Vries, R.G.5
van den Born, M.6
Barker, N.7
Shroyer, N.F.8
van de Wetering, M.9
Clevers, H.10
-
26
-
-
84863230213
-
Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells
-
Kim TH, Escudero S, Shivdasani RA. Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells. Proc Natl Acad Sci USA 2012, 109:3932–3937.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 3932-3937
-
-
Kim, T.H.1
Escudero, S.2
Shivdasani, R.A.3
-
27
-
-
84861871905
-
Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1)
-
Durand A, Donahue B, Peignon G, Letourneur F, Cagnard N, Slomianny C, Perret C, Shroyer NF, Romagnolo B. Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). Proc Natl Acad Sci USA 2012, 109:8965–8970.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 8965-8970
-
-
Durand, A.1
Donahue, B.2
Peignon, G.3
Letourneur, F.4
Cagnard, N.5
Slomianny, C.6
Perret, C.7
Shroyer, N.F.8
Romagnolo, B.9
-
28
-
-
84869864069
-
Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells
-
Farin HF, Van Es JH, Clevers H. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology 2012, 143:1518–1529.e7.
-
(2012)
Gastroenterology
, vol.143
, pp. 1518-1529
-
-
Farin, H.F.1
Van Es, J.H.2
Clevers, H.3
-
29
-
-
84893749715
-
Wnt secretion from epithelial cells and subepithelial myofibroblasts is not required in the mouse intestinal stem cell niche in vivo
-
Shivdasani RA
-
San Roman AK, Jayewickreme CD, Murtaugh LC, Shivdasani RA. Wnt secretion from epithelial cells and subepithelial myofibroblasts is not required in the mouse intestinal stem cell niche in vivo. Stem Cell Rep 2014, 2:127–134.
-
(2014)
Stem Cell Rep
, vol.2
, pp. 127-134
-
-
San Roman, A.K.1
Jayewickreme, C.D.2
Murtaugh, L.C.3
-
30
-
-
84901386333
-
Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts
-
Kabiri Z, Greicius G, Madan B, Biechele S, Zhong Z, Zaribafzadeh H, Edison, Aliyev J, Wu Y, Bunte R, et al. Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts. Development 2014, 141:2206–2215.
-
(2014)
Development
, vol.141
, pp. 2206-2215
-
-
Kabiri, Z.1
Greicius, G.2
Madan, B.3
Biechele, S.4
Zhong, Z.5
Zaribafzadeh, H.6
Edison, A.J.7
Wu, Y.8
Bunte, R.9
-
31
-
-
84963955072
-
Wnt ligands secreted by subepithelial mesenchymal cells are essential for the survival of intestinal stem cells and gut homeostasis
-
Valenta T, Degirmenci B, Moor AE, Herr P, Zimmerli D, Moor MB, Hausmann G, Cantù C, Aguet M, Basler K. Wnt ligands secreted by subepithelial mesenchymal cells are essential for the survival of intestinal stem cells and gut homeostasis. Cell Rep 2016, 15:911–918.
-
(2016)
Cell Rep
, vol.15
, pp. 911-918
-
-
Valenta, T.1
Degirmenci, B.2
Moor, A.E.3
Herr, P.4
Zimmerli, D.5
Moor, M.B.6
Hausmann, G.7
Cantù, C.8
Aguet, M.9
Basler, K.10
-
32
-
-
61349150537
-
Transcription factor achaete scute-like 2 controls intestinal stem cell fate
-
van der Flier LG, van Gijn ME, Hatzis P, Kujala P, Haegebarth A, Stange DE, Begthel H, van den Born M, Guryev V, Oving I, et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 2009, 136:903–912.
-
(2009)
Cell
, vol.136
, pp. 903-912
-
-
van der Flier, L.G.1
van Gijn, M.E.2
Hatzis, P.3
Kujala, P.4
Haegebarth, A.5
Stange, D.E.6
Begthel, H.7
van den Born, M.8
Guryev, V.9
Oving, I.10
-
33
-
-
84924910660
-
Ascl2 acts as an R-spondin/Wnt-responsive switch to control stemness in intestinal crypts
-
Schuijers J, Junker JP, Mokry M, Hatzis P, Koo BK, Sasselli V, van der Flier LG, Cuppen E, van Oudenaarden A, Clevers H. Ascl2 acts as an R-spondin/Wnt-responsive switch to control stemness in intestinal crypts. Cell Stem Cell 2015, 16:158–170.
-
(2015)
Cell Stem Cell
, vol.16
, pp. 158-170
-
-
Schuijers, J.1
Junker, J.P.2
Mokry, M.3
Hatzis, P.4
Koo, B.K.5
Sasselli, V.6
van der Flier, L.G.7
Cuppen, E.8
van Oudenaarden, A.9
Clevers, H.10
-
34
-
-
84975138424
-
A positive regulatory loop between a Wnt-regulated non-coding RNA and ASCL2 controls intestinal stem cell fate
-
Giakountis A, Moulos P, Zarkou V, Oikonomou C, Harokopos V, Hatzigeorgiou AG, Reczko M, Hatzis P. A positive regulatory loop between a Wnt-regulated non-coding RNA and ASCL2 controls intestinal stem cell fate. Cell Rep 2016, 15:2588–2596.
-
(2016)
Cell Rep
, vol.15
, pp. 2588-2596
-
-
Giakountis, A.1
Moulos, P.2
Zarkou, V.3
Oikonomou, C.4
Harokopos, V.5
Hatzigeorgiou, A.G.6
Reczko, M.7
Hatzis, P.8
-
35
-
-
20244364236
-
Wnt signalling induces maturation of Paneth cells in intestinal crypts
-
van Es JH, Jay P, Gregorieff A, van Gijn ME, Jonkheer S, Hatzis P, Thiele A, van den Born M, Begthel H, Brabletz T, et al. Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol 2005, 7:381–386.
-
(2005)
Nat Cell Biol
, vol.7
, pp. 381-386
-
-
van Es, J.H.1
Jay, P.2
Gregorieff, A.3
van Gijn, M.E.4
Jonkheer, S.5
Hatzis, P.6
Thiele, A.7
van den Born, M.8
Begthel, H.9
Brabletz, T.10
-
36
-
-
84927696737
-
Opposing activities of Notch and Wnt signaling regulate intestinal stem cells and gut homeostasis
-
Tian H, Biehs B, Chiu C, Siebel CW, Wu Y, Costa M, de Sauvage FJ, Klein OD. Opposing activities of Notch and Wnt signaling regulate intestinal stem cells and gut homeostasis. Cell Rep 2015, 11:33–42.
-
(2015)
Cell Rep
, vol.11
, pp. 33-42
-
-
Tian, H.1
Biehs, B.2
Chiu, C.3
Siebel, C.W.4
Wu, Y.5
Costa, M.6
de Sauvage, F.J.7
Klein, O.D.8
-
37
-
-
33747623018
-
Notch signalling: a simple pathway becomes complex
-
Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 2006, 7:678–689.
-
(2006)
Nat Rev Mol Cell Biol
, vol.7
, pp. 678-689
-
-
Bray, S.J.1
-
38
-
-
0033617522
-
Notch signaling: cell fate control and signal integration in development
-
Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science 1999, 284:770–776.
-
(1999)
Science
, vol.284
, pp. 770-776
-
-
Artavanis-Tsakonas, S.1
Rand, M.D.2
Lake, R.J.3
-
39
-
-
84928926944
-
Stem cell and progenitor fate in the mammalian intestine: Notch and lateral inhibition in homeostasis and disease
-
Sancho R, Cremona CA, Behrens A. Stem cell and progenitor fate in the mammalian intestine: Notch and lateral inhibition in homeostasis and disease. EMBO Rep 2015, 16:571–581.
-
(2015)
EMBO Rep
, vol.16
, pp. 571-581
-
-
Sancho, R.1
Cremona, C.A.2
Behrens, A.3
-
40
-
-
79953204955
-
Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells
-
Pellegrinet L, Rodilla V, Liu Z, Chen S, Koch U, Espinosa L, Kaestner KH, Kopan R, Lewis J, Radtke F. Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology 2011, 140:1230–1240.e1–7.
-
(2011)
Gastroenterology
, vol.140
, pp. 1230-1240
-
-
Pellegrinet, L.1
Rodilla, V.2
Liu, Z.3
Chen, S.4
Koch, U.5
Espinosa, L.6
Kaestner, K.H.7
Kopan, R.8
Lewis, J.9
Radtke, F.10
-
41
-
-
20544460148
-
Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells
-
van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F, et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 2005, 435:959–963.
-
(2005)
Nature
, vol.435
, pp. 959-963
-
-
van Es, J.H.1
van Gijn, M.E.2
Riccio, O.3
van den Born, M.4
Vooijs, M.5
Begthel, H.6
Cozijnsen, M.7
Robine, S.8
Winton, D.J.9
Radtke, F.10
-
42
-
-
48749089743
-
Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2
-
Riccio O, van Gijn ME, Bezdek AC, Pellegrinet L, van Es JH, Zimber-Strobl U, Strobl LJ, Honjo T, Clevers H, Radtke F. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep 2008, 9:377–383.
-
(2008)
EMBO Rep
, vol.9
, pp. 377-383
-
-
Riccio, O.1
van Gijn, M.E.2
Bezdek, A.C.3
Pellegrinet, L.4
van Es, J.H.5
Zimber-Strobl, U.6
Strobl, L.J.7
Honjo, T.8
Clevers, H.9
Radtke, F.10
-
43
-
-
20544447734
-
Notch signals control the fate of immature progenitor cells in the intestine
-
Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S. Notch signals control the fate of immature progenitor cells in the intestine. Nature 2005, 435:964–968.
-
(2005)
Nature
, vol.435
, pp. 964-968
-
-
Fre, S.1
Huyghe, M.2
Mourikis, P.3
Robine, S.4
Louvard, D.5
Artavanis-Tsakonas, S.6
-
44
-
-
24644494243
-
Direct regulation of intestinal fate by Notch
-
Stanger BZ, Datar R, Murtaugh LC, Melton DA. Direct regulation of intestinal fate by Notch. Proc Natl Acad Sci USA 2005, 102:12443–12448.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 12443-12448
-
-
Stanger, B.Z.1
Datar, R.2
Murtaugh, L.C.3
Melton, D.A.4
-
45
-
-
79959187704
-
Intestinal stem cells lacking the Math1 tumour suppressor are refractory to Notch inhibitors
-
van Es JH, de Geest N, van de Born M, Clevers H, Hassan BA. Intestinal stem cells lacking the Math1 tumour suppressor are refractory to Notch inhibitors. Nat Commun 2010, 1:18.
-
(2010)
Nat Commun
, vol.1
, pp. 18
-
-
van Es, J.H.1
de Geest, N.2
van de Born, M.3
Clevers, H.4
Hassan, B.A.5
-
46
-
-
77956144348
-
Atonal homolog 1 is required for growth and differentiation effects of notch/γ-secretase inhibitors on normal and cancerous intestinal epithelial cells
-
Kazanjian A, Noah T, Brown D, Burkart J, Shroyer NF. Atonal homolog 1 is required for growth and differentiation effects of notch/γ-secretase inhibitors on normal and cancerous intestinal epithelial cells. Gastroenterology 2010, 139:918–928, 928.e1–6.
-
(2010)
Gastroenterology
, vol.139
, pp. 918-928
-
-
Kazanjian, A.1
Noah, T.2
Brown, D.3
Burkart, J.4
Shroyer, N.F.5
-
47
-
-
79953176341
-
Genetic evidence that intestinal Notch functions vary regionally and operate through a common mechanism of Math1 repression
-
Kim TH, Shivdasani RA. Genetic evidence that intestinal Notch functions vary regionally and operate through a common mechanism of Math1 repression. J Biol Chem 2011, 286:11427–11433.
-
(2011)
J Biol Chem
, vol.286
, pp. 11427-11433
-
-
Kim, T.H.1
Shivdasani, R.A.2
-
48
-
-
80052526022
-
Delta1 expression, cell cycle exit, and commitment to a specific secretory fate coincide within a few hours in the mouse intestinal stem cell system
-
Stamataki D, Holder M, Hodgetts C, Jeffery R, Nye E, Spencer-Dene B, Winton DJ, Lewis J. Delta1 expression, cell cycle exit, and commitment to a specific secretory fate coincide within a few hours in the mouse intestinal stem cell system. PLoS One 2011, 6:e24484.
-
(2011)
PLoS One
, vol.6
-
-
Stamataki, D.1
Holder, M.2
Hodgetts, C.3
Jeffery, R.4
Nye, E.5
Spencer-Dene, B.6
Winton, D.J.7
Lewis, J.8
-
49
-
-
84896691636
-
Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity
-
Kim TH, Li F, Ferreiro-Neira I, Ho LL, Luyten A, Nalapareddy K, Long H, Verzi M, Shivdasani RA. Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity. Nature 2014, 506:511–515.
-
(2014)
Nature
, vol.506
, pp. 511-515
-
-
Kim, T.H.1
Li, F.2
Ferreiro-Neira, I.3
Ho, L.L.4
Luyten, A.5
Nalapareddy, K.6
Long, H.7
Verzi, M.8
Shivdasani, R.A.9
-
50
-
-
84981744785
-
Single-cell transcript profiles reveal multilineage priming in early progenitors derived from Lgr5(+) intestinal stem cells
-
Kim TH, Saadatpour A, Guo G, Saxena M, Cavazza A, Desai N, Jadhav U, Jiang L, Rivera MN, Orkin SH, et al. Single-cell transcript profiles reveal multilineage priming in early progenitors derived from Lgr5(+) intestinal stem cells. Cell Rep 2016, 16:2053–2060.
-
(2016)
Cell Rep
, vol.16
, pp. 2053-2060
-
-
Kim, T.H.1
Saadatpour, A.2
Guo, G.3
Saxena, M.4
Cavazza, A.5
Desai, N.6
Jadhav, U.7
Jiang, L.8
Rivera, M.N.9
Orkin, S.H.10
-
52
-
-
84947725512
-
Hippo pathway in organ size control, tissue homeostasis, and cancer
-
Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 2015, 163:811–828.
-
(2015)
Cell
, vol.163
, pp. 811-828
-
-
Yu, F.X.1
Zhao, B.2
Guan, K.L.3
-
53
-
-
36549074631
-
YAP1 increases organ size and expands undifferentiated progenitor cells
-
Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, Brummelkamp TR. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 2007, 17:2054–2060.
-
(2007)
Curr Biol
, vol.17
, pp. 2054-2060
-
-
Camargo, F.D.1
Gokhale, S.2
Johnnidis, J.B.3
Fu, D.4
Bell, G.W.5
Jaenisch, R.6
Brummelkamp, T.R.7
-
54
-
-
83755195660
-
Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance
-
Zhou D, Zhang Y, Wu H, Barry E, Yin Y, Lawrence E, Dawson D, Willis JE, Markowitz SD, Camargo FD, et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proc Natl Acad Sci USA 2011, 108:E1312–E1320.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. E1312-E1320
-
-
Zhou, D.1
Zhang, Y.2
Wu, H.3
Barry, E.4
Yin, Y.5
Lawrence, E.6
Dawson, D.7
Willis, J.E.8
Markowitz, S.D.9
Camargo, F.D.10
-
55
-
-
78049451932
-
The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program
-
Cai J, Zhang N, Zheng Y, de Wilde RF, Maitra A, Pan D. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev 2010, 24:2383–2388.
-
(2010)
Genes Dev
, vol.24
, pp. 2383-2388
-
-
Cai, J.1
Zhang, N.2
Zheng, Y.3
de Wilde, R.F.4
Maitra, A.5
Pan, D.6
-
56
-
-
85018698979
-
Dual role of YAP and TAZ in renewal of the intestinal epithelium
-
Imajo M, Ebisuya M, Nishida E. Dual role of YAP and TAZ in renewal of the intestinal epithelium. Nat Cell Biol 2015, 17:7–19.
-
(2015)
Nat Cell Biol
, vol.17
, pp. 7-19
-
-
Imajo, M.1
Ebisuya, M.2
Nishida, E.3
-
57
-
-
84923333865
-
Repression of intestinal stem cell function and tumorigenesis through direct phosphorylation of β-catenin and Yap by PKCzeta
-
Llado V, Nakanishi Y, Duran A, Reina-Campos M, Shelton PM, Linares JF, Yajima T, Campos A, Aza-Blanc P, Leitges M, et al. Repression of intestinal stem cell function and tumorigenesis through direct phosphorylation of β-catenin and Yap by PKCzeta. Cell Rep 2015, 10:740–754.
-
(2015)
Cell Rep
, vol.10
, pp. 740-754
-
-
Llado, V.1
Nakanishi, Y.2
Duran, A.3
Reina-Campos, M.4
Shelton, P.M.5
Linares, J.F.6
Yajima, T.7
Campos, A.8
Aza-Blanc, P.9
Leitges, M.10
-
58
-
-
84945892538
-
Yap-dependent reprogramming of Lgr5(+) stem cells drives intestinal regeneration and cancer
-
Gregorieff A, Liu Y, Inanlou MR, Khomchuk Y, Wrana JL. Yap-dependent reprogramming of Lgr5(+) stem cells drives intestinal regeneration and cancer. Nature 2015, 526:715–718.
-
(2015)
Nature
, vol.526
, pp. 715-718
-
-
Gregorieff, A.1
Liu, Y.2
Inanlou, M.R.3
Khomchuk, Y.4
Wrana, J.L.5
-
59
-
-
84871789026
-
Restriction of intestinal stem cell expansion and the regenerative response by YAP
-
Barry ER, Morikawa T, Butler BL, Shrestha K, de la Rosa R, Yan KS, Fuchs CS, Magness ST, Smits R, Ogino S, et al. Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 2013, 493:106–110.
-
(2013)
Nature
, vol.493
, pp. 106-110
-
-
Barry, E.R.1
Morikawa, T.2
Butler, B.L.3
Shrestha, K.4
de la Rosa, R.5
Yan, K.S.6
Fuchs, C.S.7
Magness, S.T.8
Smits, R.9
Ogino, S.10
-
60
-
-
84933531136
-
Homeostatic control of Hippo signaling activity revealed by an endogenous activating mutation in YAP
-
Chen Q, Zhang N, Xie R, Wang W, Cai J, Choi KS, David KK, Huang B, Yabuta N, Nojima H, et al. Homeostatic control of Hippo signaling activity revealed by an endogenous activating mutation in YAP. Genes Dev 2015, 29:1285–1297.
-
(2015)
Genes Dev
, vol.29
, pp. 1285-1297
-
-
Chen, Q.1
Zhang, N.2
Xie, R.3
Wang, W.4
Cai, J.5
Choi, K.S.6
David, K.K.7
Huang, B.8
Yabuta, N.9
Nojima, H.10
-
61
-
-
84933508767
-
A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis
-
Moroishi T, Park HW, Qin B, Chen Q, Meng Z, Plouffe SW, Taniguchi K, Yu FX, Karin M, Pan D, et al. A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes Dev 2015, 29:1271–1284.
-
(2015)
Genes Dev
, vol.29
, pp. 1271-1284
-
-
Moroishi, T.1
Park, H.W.2
Qin, B.3
Chen, Q.4
Meng, Z.5
Plouffe, S.W.6
Taniguchi, K.7
Yu, F.X.8
Karin, M.9
Pan, D.10
-
62
-
-
77951915105
-
The Hippo pathway regulates Wnt/β-catenin signaling
-
Varelas X, Miller BW, Sopko R, Song S, Gregorieff A, Fellouse FA, Sakuma R, Pawson T, Hunziker W, McNeill H, et al. The Hippo pathway regulates Wnt/β-catenin signaling. Dev Cell 2010, 18:579–591.
-
(2010)
Dev Cell
, vol.18
, pp. 579-591
-
-
Varelas, X.1
Miller, B.W.2
Sopko, R.3
Song, S.4
Gregorieff, A.5
Fellouse, F.A.6
Sakuma, R.7
Pawson, T.8
Hunziker, W.9
McNeill, H.10
-
63
-
-
84858002052
-
A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling
-
Imajo M, Miyatake K, Iimura A, Miyamoto A, Nishida E. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling. EMBO J 2012, 31:1109–1122.
-
(2012)
EMBO J
, vol.31
, pp. 1109-1122
-
-
Imajo, M.1
Miyatake, K.2
Iimura, A.3
Miyamoto, A.4
Nishida, E.5
-
64
-
-
84904043132
-
YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response
-
Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, Bresolin S, Frasson C, Basso G, Guzzardo V, et al. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell 2014, 158:157–170.
-
(2014)
Cell
, vol.158
, pp. 157-170
-
-
Azzolin, L.1
Panciera, T.2
Soligo, S.3
Enzo, E.4
Bicciato, S.5
Dupont, S.6
Bresolin, S.7
Frasson, C.8
Basso, G.9
Guzzardo, V.10
-
65
-
-
77958188278
-
Mesenchymal cells of the intestinal lamina propria
-
Powell DW, Pinchuk IV, Saada JI, Chen X, Mifflin RC. Mesenchymal cells of the intestinal lamina propria. Annu Rev Physiol 2011, 73:213–237.
-
(2011)
Annu Rev Physiol
, vol.73
, pp. 213-237
-
-
Powell, D.W.1
Pinchuk, I.V.2
Saada, J.I.3
Chen, X.4
Mifflin, R.C.5
-
66
-
-
84975748266
-
Foxl1-expressing mesenchymal cells constitute the intestinal stem cell niche
-
Aoki R, Shoshkes-Carmel M, Gao N, Shin S, May CL, Golson ML, Zahm AM, Ray M, Wiser CL, Wright CV, et al. Foxl1-expressing mesenchymal cells constitute the intestinal stem cell niche. Cell Mol Gastroenterol Hepatol 2016, 2:175–188.
-
(2016)
Cell Mol Gastroenterol Hepatol
, vol.2
, pp. 175-188
-
-
Aoki, R.1
Shoshkes-Carmel, M.2
Gao, N.3
Shin, S.4
May, C.L.5
Golson, M.L.6
Zahm, A.M.7
Ray, M.8
Wiser, C.L.9
Wright, C.V.10
-
67
-
-
51949085076
-
Hedgehog: functions and mechanisms
-
Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev 2008, 22:2454–2472.
-
(2008)
Genes Dev
, vol.22
, pp. 2454-2472
-
-
Varjosalo, M.1
Taipale, J.2
-
68
-
-
67650979371
-
Paracrine Hedgehog signaling in stomach and intestine: new roles for hedgehog in gastrointestinal patterning
-
Kolterud A, Grosse AS, Zacharias WJ, Walton KD, Kretovich KE, Madison BB, Waghray M, Ferris JE, Hu C, Merchant JL, et al. Paracrine Hedgehog signaling in stomach and intestine: new roles for hedgehog in gastrointestinal patterning. Gastroenterology 2009, 137:618–628.
-
(2009)
Gastroenterology
, vol.137
, pp. 618-628
-
-
Kolterud, A.1
Grosse, A.S.2
Zacharias, W.J.3
Walton, K.D.4
Kretovich, K.E.5
Madison, B.B.6
Waghray, M.7
Ferris, J.E.8
Hu, C.9
Merchant, J.L.10
-
69
-
-
77952165223
-
Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract
-
Mao J, Kim BM, Rajurkar M, Shivdasani RA, McMahon AP. Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development 2010, 137:1721–1729.
-
(2010)
Development
, vol.137
, pp. 1721-1729
-
-
Mao, J.1
Kim, B.M.2
Rajurkar, M.3
Shivdasani, R.A.4
McMahon, A.P.5
-
70
-
-
84879042647
-
Specific requirement of Gli transcription factors in Hedgehog-mediated intestinal development
-
Huang H, Cotton JL, Wang Y, Rajurkar M, Zhu LJ, Lewis BC, Mao J. Specific requirement of Gli transcription factors in Hedgehog-mediated intestinal development. J Biol Chem 2013, 288:17589–17596.
-
(2013)
J Biol Chem
, vol.288
, pp. 17589-17596
-
-
Huang, H.1
Cotton, J.L.2
Wang, Y.3
Rajurkar, M.4
Zhu, L.J.5
Lewis, B.C.6
Mao, J.7
-
71
-
-
78049469952
-
Loss of Indian Hedgehog activates multiple aspects of a wound healing response in the mouse intestine
-
van Dop WA, Heijmans J, Buller NV, Snoek SA, Rosekrans SL, Wassenberg EA, van den Bergh Weerman MA, Lanske B, Clarke AR, et al. Loss of Indian Hedgehog activates multiple aspects of a wound healing response in the mouse intestine. Gastroenterology 2010, 139:1665–1676, 1676.e1–10.
-
(2010)
Gastroenterology
, vol.139
, pp. 1665-1676
-
-
van Dop, W.A.1
Heijmans, J.2
Buller, N.V.3
Snoek, S.A.4
Rosekrans, S.L.5
Wassenberg, E.A.6
van den Bergh Weerman, M.A.7
Lanske, B.8
Clarke, A.R.9
-
72
-
-
79957591569
-
Hedgehog signaling controls homeostasis of adult intestinal smooth muscle
-
Zacharias WJ, Madison BB, Kretovich KE, Walton KD, Richards N, Udager AM, Li X, Gumucio DL. Hedgehog signaling controls homeostasis of adult intestinal smooth muscle. Dev Biol 2011, 355:152–162.
-
(2011)
Dev Biol
, vol.355
, pp. 152-162
-
-
Zacharias, W.J.1
Madison, B.B.2
Kretovich, K.E.3
Walton, K.D.4
Richards, N.5
Udager, A.M.6
Li, X.7
Gumucio, D.L.8
-
73
-
-
75649127963
-
Bone morphogenetic protein receptors and signal transduction
-
Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem 2010, 147:35–51.
-
(2010)
J Biochem
, vol.147
, pp. 35-51
-
-
Miyazono, K.1
Kamiya, Y.2
Morikawa, M.3
-
74
-
-
6944224156
-
BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-β-catenin signaling
-
He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH, Tian Q, Zeng X, He X, Wiedemann LM, et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-β-catenin signaling. Nat Genet 2004, 36:1117–1121.
-
(2004)
Nat Genet
, vol.36
, pp. 1117-1121
-
-
He, X.C.1
Zhang, J.2
Tong, W.G.3
Tawfik, O.4
Ross, J.5
Scoville, D.H.6
Tian, Q.7
Zeng, X.8
He, X.9
Wiedemann, L.M.10
-
75
-
-
34848868159
-
Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors
-
Kosinski C, Li VS, Chan AS, Zhang J, Ho C, Tsui WY, Chan TL, Mifflin RC, Powell DW, Yuen ST, et al. Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci USA 2007, 104:15418–15423.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 15418-15423
-
-
Kosinski, C.1
Li, V.S.2
Chan, A.S.3
Zhang, J.4
Ho, C.5
Tsui, W.Y.6
Chan, T.L.7
Mifflin, R.C.8
Powell, D.W.9
Yuen, S.T.10
-
76
-
-
84874194072
-
DNA methylation: roles in mammalian development
-
Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet 2013, 14:204–220.
-
(2013)
Nat Rev Genet
, vol.14
, pp. 204-220
-
-
Smith, Z.D.1
Meissner, A.2
-
77
-
-
0032574977
-
Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex
-
Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998, 393:386–389.
-
(1998)
Nature
, vol.393
, pp. 386-389
-
-
Nan, X.1
Ng, H.H.2
Johnson, C.A.3
Laherty, C.D.4
Turner, B.M.5
Eisenman, R.N.6
Bird, A.7
-
78
-
-
0031837109
-
Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription
-
Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998, 19:187–191.
-
(1998)
Nat Genet
, vol.19
, pp. 187-191
-
-
Jones, P.L.1
Veenstra, G.J.2
Wade, P.A.3
Vermaak, D.4
Kass, S.U.5
Landsberger, N.6
Strouboulis, J.7
Wolffe, A.P.8
-
79
-
-
32844459336
-
The polycomb group protein EZH2 directly controls DNA methylation
-
Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, et al. The polycomb group protein EZH2 directly controls DNA methylation. Nature 2006, 439:871–874.
-
(2006)
Nature
, vol.439
, pp. 871-874
-
-
Vire, E.1
Brenner, C.2
Deplus, R.3
Blanchon, L.4
Fraga, M.5
Didelot, C.6
Morey, L.7
Van Eynde, A.8
Bernard, D.9
Vanderwinden, J.M.10
-
80
-
-
79956330964
-
CpG islands and the regulation of transcription
-
Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev 2011, 25:1010–1022.
-
(2011)
Genes Dev
, vol.25
, pp. 1010-1022
-
-
Deaton, A.M.1
Bird, A.2
-
81
-
-
84878248139
-
DNA methylation dynamics during intestinal stem cell differentiation reveals enhancers driving gene expression in the villus
-
Kaaij LT, van de Wetering M, Fang F, Decato B, Molaro A, van de Werken HJ, van Es JH, Schuijers J, de Wit E, de Laat W, et al. DNA methylation dynamics during intestinal stem cell differentiation reveals enhancers driving gene expression in the villus. Genome Biol 2013, 14:R50.
-
(2013)
Genome Biol
, vol.14
, pp. R50
-
-
Kaaij, L.T.1
van de Wetering, M.2
Fang, F.3
Decato, B.4
Molaro, A.5
van de Werken, H.J.6
van Es, J.H.7
Schuijers, J.8
de Wit, E.9
de Laat, W.10
-
82
-
-
84896378030
-
DNA methylation is required for the control of stem cell differentiation in the small intestine
-
Sheaffer KL, Kim R, Aoki R, Elliot EN, Schug J, Burger L, Schübeler D, Kaestner KH. DNA methylation is required for the control of stem cell differentiation in the small intestine. Genes Dev 2014, 28:652–664.
-
(2014)
Genes Dev
, vol.28
, pp. 652-664
-
-
Sheaffer, K.L.1
Kim, R.2
Aoki, R.3
Elliot, E.N.4
Schug, J.5
Burger, L.6
Schübeler, D.7
Kaestner, K.H.8
-
83
-
-
84942615814
-
Postnatal epigenetic regulation of intestinal stem cells requires DNA methylation and is guided by the microbiome
-
Yu DH, Gadkari M, Zhou Q, Yu S, Gao N, Guan Y, Schady D, Roshan TN, Chen MH, Laritsky E, et al. Postnatal epigenetic regulation of intestinal stem cells requires DNA methylation and is guided by the microbiome. Genome Biol 2015, 16:211.
-
(2015)
Genome Biol
, vol.16
, pp. 211
-
-
Yu, D.H.1
Gadkari, M.2
Zhou, Q.3
Yu, S.4
Gao, N.5
Guan, Y.6
Schady, D.7
Roshan, T.N.8
Chen, M.H.9
Laritsky, E.10
-
84
-
-
84931056085
-
Dnmt1 is essential to maintain progenitors in the perinatal intestinal epithelium
-
Elliott EN, Sheaffer KL, Schug J, Stappenbeck TS, Kaestner KH. Dnmt1 is essential to maintain progenitors in the perinatal intestinal epithelium. Development 2015, 142:2163–2172.
-
(2015)
Development
, vol.142
, pp. 2163-2172
-
-
Elliott, E.N.1
Sheaffer, K.L.2
Schug, J.3
Stappenbeck, T.S.4
Kaestner, K.H.5
-
85
-
-
84961262437
-
The 'de novo' DNA methyltransferase Dnmt3b compensates the Dnmt1-deficient intestinal epithelium
-
Elliott EN, Sheaffer KL, Kaestner KH. The 'de novo' DNA methyltransferase Dnmt3b compensates the Dnmt1-deficient intestinal epithelium. Elife 2016, 5 e12975:1–15.
-
(2016)
Elife
, vol.5
-
-
Elliott, E.N.1
Sheaffer, K.L.2
Kaestner, K.H.3
-
86
-
-
0030956032
-
Histone structure and the organization of the nucleosome
-
Ramakrishnan V. Histone structure and the organization of the nucleosome. Annu Rev Biophys Biomol Struct 1997, 26:83–112.
-
(1997)
Annu Rev Biophys Biomol Struct
, vol.26
, pp. 83-112
-
-
Ramakrishnan, V.1
-
87
-
-
0035839136
-
Translating the histone code
-
Jenuwein T, Allis CD. Translating the histone code. Science 2001, 293:1074–1080.
-
(2001)
Science
, vol.293
, pp. 1074-1080
-
-
Jenuwein, T.1
Allis, C.D.2
-
88
-
-
79952534189
-
Regulation of chromatin by histone modifications
-
Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011, 21:381–395.
-
(2011)
Cell Res
, vol.21
, pp. 381-395
-
-
Bannister, A.J.1
Kouzarides, T.2
-
89
-
-
84878267796
-
Polycomb complexes in stem cells and embryonic development
-
Aloia L, Di Stefano B, Di Croce L. Polycomb complexes in stem cells and embryonic development. Development 2013, 140:2525–2534.
-
(2013)
Development
, vol.140
, pp. 2525-2534
-
-
Aloia, L.1
Di Stefano, B.2
Di Croce, L.3
-
90
-
-
84971554437
-
Acquired tissue-specific promoter bivalency is a basis for PRC2 necessity in adult cells
-
Jadhav U, Nalapareddy K, Saxena M, O'Neill NK, Pinello L, Yuan GC, Orkin SH, Shivdasani RA. Acquired tissue-specific promoter bivalency is a basis for PRC2 necessity in adult cells. Cell 2016, 165:1389–1400.
-
(2016)
Cell
, vol.165
, pp. 1389-1400
-
-
Jadhav, U.1
Nalapareddy, K.2
Saxena, M.3
O'Neill, N.K.4
Pinello, L.5
Yuan, G.C.6
Orkin, S.H.7
Shivdasani, R.A.8
-
91
-
-
84987624331
-
Polycomb repressive complex 2 enacts Wnt signaling in intestinal homeostasis and contributes to the instigation of stemness in diseases entailing epithelial hyperplasia or neoplasia
-
Oittinen M, Popp A, Kurppa K, Lindfors K, Mäki M, Kaikkonen MU, Viiri K. Polycomb repressive complex 2 enacts Wnt signaling in intestinal homeostasis and contributes to the instigation of stemness in diseases entailing epithelial hyperplasia or neoplasia. Stem Cells 2016, 35:445–457.
-
(2016)
Stem Cells
, vol.35
, pp. 445-457
-
-
Oittinen, M.1
Popp, A.2
Kurppa, K.3
Lindfors, K.4
Mäki, M.5
Kaikkonen, M.U.6
Viiri, K.7
-
92
-
-
84989966657
-
Deletion of polycomb repressive complex 2 from mouse intestine causes loss of stem cells
-
Koppens MA, Bounova G, Gargiulo G, Tanger E, Janssen H, Cornelissen-Steijger P, Blom M, Song JY, Wessels LF, van Lohuizen M. Deletion of polycomb repressive complex 2 from mouse intestine causes loss of stem cells. Gastroenterology 2016, 151:684–697.e12.
-
(2016)
Gastroenterology
, vol.151
, pp. 684-697
-
-
Koppens, M.A.1
Bounova, G.2
Gargiulo, G.3
Tanger, E.4
Janssen, H.5
Cornelissen-Steijger, P.6
Blom, M.7
Song, J.Y.8
Wessels, L.F.9
van Lohuizen, M.10
-
93
-
-
33947134834
-
The polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells
-
Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard-Mönch K, Minucci S, Porse BT, Marine JC, Hansen KH, et al. The polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 2007, 21:525–530.
-
(2007)
Genes Dev
, vol.21
, pp. 525-530
-
-
Bracken, A.P.1
Kleine-Kohlbrecher, D.2
Dietrich, N.3
Pasini, D.4
Gargiulo, G.5
Beekman, C.6
Theilgaard-Mönch, K.7
Minucci, S.8
Porse, B.T.9
Marine, J.C.10
Hansen, K.H.11
-
94
-
-
84993145020
-
PRC2 preserves intestinal progenitors and restricts secretory lineage commitment
-
Chiacchiera F, Rossi A, Jammula S, Zanotti M, Pasini D. PRC2 preserves intestinal progenitors and restricts secretory lineage commitment. EMBO J 2016, 35:2301–2314.
-
(2016)
EMBO J
, vol.35
, pp. 2301-2314
-
-
Chiacchiera, F.1
Rossi, A.2
Jammula, S.3
Zanotti, M.4
Pasini, D.5
-
95
-
-
38149098408
-
Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation
-
Zhou W, Zhu P, Wang J, Pascual G, Ohgi KA, Lozach J, Glass CK, Rosenfeld MG. Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol Cell 2008, 29:69–80.
-
(2008)
Mol Cell
, vol.29
, pp. 69-80
-
-
Zhou, W.1
Zhu, P.2
Wang, J.3
Pascual, G.4
Ohgi, K.A.5
Lozach, J.6
Glass, C.K.7
Rosenfeld, M.G.8
-
96
-
-
38149081168
-
Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation
-
Nakagawa T, Kajitani T, Togo S, Masuko N, Ohdan H, Hishikawa Y, Koji T, Matsuyama T, Ikura T, Muramatsu M, et al. Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation. Genes Dev 2008, 22:37–49.
-
(2008)
Genes Dev
, vol.22
, pp. 37-49
-
-
Nakagawa, T.1
Kajitani, T.2
Togo, S.3
Masuko, N.4
Ohdan, H.5
Hishikawa, Y.6
Koji, T.7
Matsuyama, T.8
Ikura, T.9
Muramatsu, M.10
-
97
-
-
84954380059
-
Polycomb complex PRC1 preserves intestinal stem cell identity by sustaining Wnt/β-catenin transcriptional activity
-
Chiacchiera F, Rossi A, Jammula S, Piunti A, Scelfo A, Ordóñez-Morán P, Huelsken J, Koseki H, Pasini D. Polycomb complex PRC1 preserves intestinal stem cell identity by sustaining Wnt/β-catenin transcriptional activity. Cell Stem Cell 2016, 18:91–103.
-
(2016)
Cell Stem Cell
, vol.18
, pp. 91-103
-
-
Chiacchiera, F.1
Rossi, A.2
Jammula, S.3
Piunti, A.4
Scelfo, A.5
Ordóñez-Morán, P.6
Huelsken, J.7
Koseki, H.8
Pasini, D.9
-
98
-
-
79959960773
-
The diverse functions of Dot1 and H3K79 methylation
-
Nguyen AT, Zhang Y. The diverse functions of Dot1 and H3K79 methylation. Genes Dev 2011, 25:1345–1358.
-
(2011)
Genes Dev
, vol.25
, pp. 1345-1358
-
-
Nguyen, A.T.1
Zhang, Y.2
-
99
-
-
78649920369
-
The leukemia-associated Mllt10/Af10-Dot1l are Tcf4/β-catenin coactivators essential for intestinal homeostasis
-
Mahmoudi T, Boj SF, Hatzis P, Li VS, Taouatas N, Vries RG, Teunissen H, Begthel H, Korving J, Mohammed S, et al. The leukemia-associated Mllt10/Af10-Dot1l are Tcf4/β-catenin coactivators essential for intestinal homeostasis. PLoS Biol 2010, 8:e1000539.
-
(2010)
PLoS Biol
, vol.8
-
-
Mahmoudi, T.1
Boj, S.F.2
Hatzis, P.3
Li, V.S.4
Taouatas, N.5
Vries, R.G.6
Teunissen, H.7
Begthel, H.8
Korving, J.9
Mohammed, S.10
-
100
-
-
84876454836
-
DOT1L-mediated H3K79 methylation in chromatin is dispensable for Wnt pathway-specific and other intestinal epithelial functions
-
Ho LL, Sinha A, Verzi M, Bernt KM, Armstrong SA, Shivdasani RA. DOT1L-mediated H3K79 methylation in chromatin is dispensable for Wnt pathway-specific and other intestinal epithelial functions. Mol Cell Biol 2013, 33:1735–1745.
-
(2013)
Mol Cell Biol
, vol.33
, pp. 1735-1745
-
-
Ho, L.L.1
Sinha, A.2
Verzi, M.3
Bernt, K.M.4
Armstrong, S.A.5
Shivdasani, R.A.6
-
101
-
-
64549114508
-
Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2
-
Gao N, White P, Kaestner KH. Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. Dev Cell 2009, 16:588–599.
-
(2009)
Dev Cell
, vol.16
, pp. 588-599
-
-
Gao, N.1
White, P.2
Kaestner, K.H.3
-
102
-
-
77649188305
-
Cdx2 regulates patterning of the intestinal epithelium
-
Grainger S, Savory JG, Lohnes D. Cdx2 regulates patterning of the intestinal epithelium. Dev Biol 2010, 339:155–165.
-
(2010)
Dev Biol
, vol.339
, pp. 155-165
-
-
Grainger, S.1
Savory, J.G.2
Lohnes, D.3
-
103
-
-
78149485097
-
Differentiation-specific histone modifications reveal dynamic chromatin interactions and partners for the intestinal transcription factor CDX2
-
Verzi MP, Shin H, He HH, Sulahian R, Meyer CA, Montgomery RK, Fleet JC, Brown M, Liu XS, Shivdasani RA, et al. Differentiation-specific histone modifications reveal dynamic chromatin interactions and partners for the intestinal transcription factor CDX2. Dev Cell 2010, 19:713–726.
-
(2010)
Dev Cell
, vol.19
, pp. 713-726
-
-
Verzi, M.P.1
Shin, H.2
He, H.H.3
Sulahian, R.4
Meyer, C.A.5
Montgomery, R.K.6
Fleet, J.C.7
Brown, M.8
Liu, X.S.9
Shivdasani, R.A.10
-
104
-
-
84871866512
-
Intestinal master transcription factor CDX2 controls chromatin access for partner transcription factor binding
-
Verzi MP, Shin H, San Roman AK, Liu XS, Shivdasani RA. Intestinal master transcription factor CDX2 controls chromatin access for partner transcription factor binding. Mol Cell Biol 2013, 33:281–292.
-
(2013)
Mol Cell Biol
, vol.33
, pp. 281-292
-
-
Verzi, M.P.1
Shin, H.2
San Roman, A.K.3
Liu, X.S.4
Shivdasani, R.A.5
-
105
-
-
84946743931
-
Distinct processes and transcriptional targets underlie CDX2 requirements in intestinal stem cells and differentiated villus cells
-
San Roman AK, Tovaglieri A, Breault DT, Shivdasani RA. Distinct processes and transcriptional targets underlie CDX2 requirements in intestinal stem cells and differentiated villus cells. Stem Cell Rep 2015, 5:673–681.
-
(2015)
Stem Cell Rep
, vol.5
, pp. 673-681
-
-
San Roman, A.K.1
Tovaglieri, A.2
Breault, D.T.3
Shivdasani, R.A.4
-
106
-
-
84897128298
-
The noncoding RNA revolution-trashing old rules to forge new ones
-
Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 2014, 157:77–94.
-
(2014)
Cell
, vol.157
, pp. 77-94
-
-
Cech, T.R.1
Steitz, J.A.2
-
107
-
-
50549095181
-
let-7 microRNAs in development, stem cells and cancer
-
Bussing I, Slack FJ, Grosshans H. let-7 microRNAs in development, stem cells and cancer. Trends Mol Med 2008, 14:400–409.
-
(2008)
Trends Mol Med
, vol.14
, pp. 400-409
-
-
Bussing, I.1
Slack, F.J.2
Grosshans, H.3
-
108
-
-
84885896439
-
LIN28B promotes growth and tumorigenesis of the intestinal epithelium via Let-7
-
Madison BB, Liu Q, Zhong X, Hahn CM, Lin N, Emmett MJ, Stanger BZ, Lee JS, Rustgi AK. LIN28B promotes growth and tumorigenesis of the intestinal epithelium via Let-7. Genes Dev 2013, 27:2233–2245.
-
(2013)
Genes Dev
, vol.27
, pp. 2233-2245
-
-
Madison, B.B.1
Liu, Q.2
Zhong, X.3
Hahn, C.M.4
Lin, N.5
Emmett, M.J.6
Stanger, B.Z.7
Lee, J.S.8
Rustgi, A.K.9
-
109
-
-
84940770434
-
Let-7 represses carcinogenesis and a stem cell phenotype in the intestine via regulation of Hmga2
-
Madison BB, Jeganathan AN, Mizuno R, Winslow MM, Castells A, Cuatrecasas M, Rustgi AK. Let-7 represses carcinogenesis and a stem cell phenotype in the intestine via regulation of Hmga2. PLoS Genet 2015, 11:e1005408.
-
(2015)
PLoS Genet
, vol.11
-
-
Madison, B.B.1
Jeganathan, A.N.2
Mizuno, R.3
Winslow, M.M.4
Castells, A.5
Cuatrecasas, M.6
Rustgi, A.K.7
-
110
-
-
84929590704
-
LIN28 cooperates with WNT signaling to drive invasive intestinal and colorectal adenocarcinoma in mice and humans
-
Tu HC, Schwitalla S, Qian Z, LaPier GS, Yermalovich A, Ku YC, Chen SC, Viswanathan SR, Zhu H, Nishihara R, et al. LIN28 cooperates with WNT signaling to drive invasive intestinal and colorectal adenocarcinoma in mice and humans. Genes Dev 2015, 29:1074–1086.
-
(2015)
Genes Dev
, vol.29
, pp. 1074-1086
-
-
Tu, H.C.1
Schwitalla, S.2
Qian, Z.3
LaPier, G.S.4
Yermalovich, A.5
Ku, Y.C.6
Chen, S.C.7
Viswanathan, S.R.8
Zhu, H.9
Nishihara, R.10
-
111
-
-
70349320158
-
Causes and consequences of microRNA dysregulation in cancer
-
Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009, 10:704–714.
-
(2009)
Nat Rev Genet
, vol.10
, pp. 704-714
-
-
Croce, C.M.1
-
112
-
-
84877263242
-
A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells
-
Bu P, Chen KY, Chen JH, Wang L, Walters J, Shin YJ, Goerger JP, Sun J, Witherspoon M, Rakhilin N, et al. A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells. Cell Stem Cell 2013, 12:602–615.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 602-615
-
-
Bu, P.1
Chen, K.Y.2
Chen, J.H.3
Wang, L.4
Walters, J.5
Shin, Y.J.6
Goerger, J.P.7
Sun, J.8
Witherspoon, M.9
Rakhilin, N.10
-
113
-
-
84968919057
-
A long non-coding RNA targets microRNA miR-34a to regulate colon cancer stem cell asymmetric division
-
Wang L, Bu P, Ai Y, Srinivasan T, Chen HJ, Xiang K, Lipkin SM, Shen X. A long non-coding RNA targets microRNA miR-34a to regulate colon cancer stem cell asymmetric division. Elife 2016, e14620:1–16.
-
(2016)
Elife
, pp. 201-216
-
-
Wang, L.1
Bu, P.2
Ai, Y.3
Srinivasan, T.4
Chen, H.J.5
Xiang, K.6
Lipkin, S.M.7
Shen, X.8
-
114
-
-
84897507889
-
MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells
-
Hwang WL, Jiang JK, Yang SH, Huang TS, Lan HY, Teng HW, Yang CY, Tsai YP, Lin CH, Wang HW, Yang MH, et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol 2014, 16:268–280.
-
(2014)
Nat Cell Biol
, vol.16
, pp. 268-280
-
-
Hwang, W.L.1
Jiang, J.K.2
Yang, S.H.3
Huang, T.S.4
Lan, H.Y.5
Teng, H.W.6
Yang, C.Y.7
Tsai, Y.P.8
Lin, C.H.9
Wang, H.W.10
Yang, M.H.11
-
115
-
-
84931268960
-
Cloning and variation of ground state intestinal stem cells
-
Wang X, Yamamoto Y, Wilson LH, Zhang T, Howitt BE, Farrow MA, Kern F, Ning G, Hong Y, Khor CC, et al. Cloning and variation of ground state intestinal stem cells. Nature 2015, 522:173–178.
-
(2015)
Nature
, vol.522
, pp. 173-178
-
-
Wang, X.1
Yamamoto, Y.2
Wilson, L.H.3
Zhang, T.4
Howitt, B.E.5
Farrow, M.A.6
Kern, F.7
Ning, G.8
Hong, Y.9
Khor, C.C.10
-
116
-
-
84899029183
-
Adult stem cells in the small intestine are intrinsically programmed with their location-specific function
-
Middendorp S, Schneeberger K, Wiegerinck CL, Mokry M, Akkerman RD, van Wijngaarden S, Clevers H, Nieuwenhuis EE. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells 2014, 32:1083–1091.
-
(2014)
Stem Cells
, vol.32
, pp. 1083-1091
-
-
Middendorp, S.1
Schneeberger, K.2
Wiegerinck, C.L.3
Mokry, M.4
Akkerman, R.D.5
van Wijngaarden, S.6
Clevers, H.7
Nieuwenhuis, E.E.8
-
117
-
-
84890051386
-
Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury
-
Fordham RP, Yui S, Hannan NR, Soendergaard C, Madgwick A, Schweiger PJ, Nielsen OH, Vallier L, Pedersen RA, Nakamura T, et al. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell 2013, 13:734–744.
-
(2013)
Cell Stem Cell
, vol.13
, pp. 734-744
-
-
Fordham, R.P.1
Yui, S.2
Hannan, N.R.3
Soendergaard, C.4
Madgwick, A.5
Schweiger, P.J.6
Nielsen, O.H.7
Vallier, L.8
Pedersen, R.A.9
Nakamura, T.10
-
118
-
-
84890033064
-
Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients
-
Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 2013, 13:653–658.
-
(2013)
Cell Stem Cell
, vol.13
, pp. 653-658
-
-
Schwank, G.1
Koo, B.K.2
Sasselli, V.3
Dekkers, J.F.4
Heo, I.5
Demircan, T.6
Sasaki, N.7
Boymans, S.8
Cuppen, E.9
van der Ent, C.K.10
-
119
-
-
84953273098
-
Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip
-
Kim HJ, Li H, Collins JJ, Ingber DE. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci USA 2016, 113:E7–E15.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. E7-E15
-
-
Kim, H.J.1
Li, H.2
Collins, J.J.3
Ingber, D.E.4
|