-
1
-
-
84938559642
-
The BisPCR2 method for targeted bisulfite sequencing
-
Bernstein DL, Kameswaran V, Le Lay JE, Sheaffer KL, Kaestner KH. 2015. The BisPCR2 method for targeted bisulfite sequencing. Epigenetics and Chromatin 8:27. doi: 10.1186/s13072-015-0020-x
-
(2015)
Epigenetics and Chromatin
, vol.8
, pp. 27
-
-
Bernstein, D.L.1
Kameswaran, V.2
Le Lay, J.E.3
Sheaffer, K.L.4
Kaestner, K.H.5
-
2
-
-
0026697174
-
Activation of mammalian DNA methyltransferase by cleavage of a zn binding regulatory domain
-
Bestor TH. 1992. Activation of mammalian DNA methyltransferase by cleavage of a zn binding regulatory domain. The EMBO Journal 11:2611-2617.
-
(1992)
The EMBO Journal
, vol.11
, pp. 2611-2617
-
-
Bestor, T.H.1
-
3
-
-
84555207349
-
Dnmt3a is essential for hematopoietic stem cell differentiation
-
Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS, Bock C, Vasanthakumar A, Gu H, Xi Y, Liang S, Lu Y, Darlington GJ, Meissner A, Issa J-PJ, Godley LA, Li W, Goodell MA. 2012. Dnmt3a is essential for hematopoietic stem cell differentiation. Nature Genetics 44:23-31. doi: 10.1038/ng.1009
-
(2012)
Nature Genetics
, vol.44
, pp. 23-31
-
-
Challen, G.A.1
Sun, D.2
Jeong, M.3
Luo, M.4
Jelinek, J.5
Berg, J.S.6
Bock, C.7
Vasanthakumar, A.8
Gu, H.9
Xi, Y.10
Liang, S.11
Lu, Y.12
Darlington, G.J.13
Meissner, A.14
Issa, J.-P.15
Godley, L.A.16
Li, W.17
Goodell, M.A.18
-
4
-
-
84925116257
-
Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells
-
Challen GA, Sun D, Mayle A, Jeong M, Luo M, Rodriguez B, Mallaney C, Celik H, Yang L, Xia Z, Cullen S, Berg J, Zheng Y, Darlington GJ, Li W, Goodell MA. 2014. Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell 15:350-364. doi: 10.1016/j.stem.2014.06.018
-
(2014)
Cell Stem Cell
, vol.15
, pp. 350-364
-
-
Challen, G.A.1
Sun, D.2
Mayle, A.3
Jeong, M.4
Luo, M.5
Rodriguez, B.6
Mallaney, C.7
Celik, H.8
Yang, L.9
Xia, Z.10
Cullen, S.11
Berg, J.12
Zheng, Y.13
Darlington, G.J.14
Li, W.15
Goodell, M.A.16
-
5
-
-
0032480226
-
DNA hypomethylation leads to elevated mutation rates
-
Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R. 1998. DNA hypomethylation leads to elevated mutation rates. Nature 395:89-93. doi: 10.1038/25779
-
(1998)
Nature
, vol.395
, pp. 89-93
-
-
Chen, R.Z.1
Pettersson, U.2
Beard, C.3
Jackson-Grusby, L.4
Jaenisch, R.5
-
6
-
-
0042132027
-
Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b
-
Chen T, Ueda Y, Dodge JE, Wang Z, Li E. 2003. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Molecular and Cellular Biology 23:5594-5695. doi: 10.1128/MCB.23.16.5594-5605.2003
-
(2003)
Molecular and Cellular Biology
, vol.23
, pp. 5594-5695
-
-
Chen, T.1
Ueda, Y.2
Dodge, J.E.3
Wang, Z.4
Li, E.5
-
7
-
-
33847293264
-
Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells
-
Chen T, Hevi S, Gay F, Tsujimoto N, He T, Zhang B, Ueda Y, Li E. 2007. Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nature Genetics 39:391-396. doi: 10.1038/ng1982
-
(2007)
Nature Genetics
, vol.39
, pp. 391-396
-
-
Chen, T.1
Hevi, S.2
Gay, F.3
Tsujimoto, N.4
He, T.5
Zhang, B.6
Ueda, Y.7
Li, E.8
-
8
-
-
24044481947
-
Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization
-
Dodge JE, Okano M, Dick F, Tsujimoto N, Chen T, Wang S, Ueda Y, Dyson N, Li E. 2005. Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization. Journal of Biological Chemistry 280:17986-17991. doi: 10.1074/jbc.M413246200
-
(2005)
Journal of Biological Chemistry
, vol.280
, pp. 17986-17991
-
-
Dodge, J.E.1
Okano, M.2
Dick, F.3
Tsujimoto, N.4
Chen, T.5
Wang, S.6
Ueda, Y.7
Dyson, N.8
Li, E.9
-
9
-
-
4043059169
-
Tissue-specific and inducible cre-mediated recombination in the gut epithelium
-
El Marjou F, Janssen K-P, Hung-Junn Chang B, Li M, Hindie V, Chan L, Louvard D, Chambon P, Metzger D, Robine S. 2004. Tissue-specific and inducible cre-mediated recombination in the gut epithelium. Genesis 39: 186-193. doi: 10.1002/gene.20042
-
(2004)
Genesis
, vol.39
, pp. 186-193
-
-
El Marjou, F.1
Janssen, K.-P.2
Hung-Junn Chang, B.3
Li, M.4
Hindie, V.5
Chan, L.6
Louvard, D.7
Chambon, P.8
Metzger, D.9
Robine, S.10
-
10
-
-
84944151101
-
Epigenetic regulation of the intestinal epithelium
-
Elliott EN, Kaestner KH. 2015. Epigenetic regulation of the intestinal epithelium. Cellular and Molecular Life Sciences 72:4139-4156. doi: 10.1007/s00018-015-1997-9
-
(2015)
Cellular and Molecular Life Sciences
, vol.72
, pp. 4139-4156
-
-
Elliott, E.N.1
Kaestner, K.H.2
-
11
-
-
84931056085
-
Dnmt1 is essential to maintain progenitors in the perinatal intestinal epithelium
-
Elliott EN, Sheaffer KL, Schug J, Stappenbeck TS, Kaestner KH. 2015. Dnmt1 is essential to maintain progenitors in the perinatal intestinal epithelium. Development 142:2163-2172. doi: 10.1242/dev.117341
-
(2015)
Development
, vol.142
, pp. 2163-2172
-
-
Elliott, E.N.1
Sheaffer, K.L.2
Schug, J.3
Stappenbeck, T.S.4
Kaestner, K.H.5
-
12
-
-
0035109547
-
DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals
-
Fan G, Beard C, Chen RZ, Csankovszki G, Sun Y, Siniaia M, Biniszkiewicz D, Bates B, Lee PP, Kuhn R, Trumpp A, Poon C, Wilson CB, Jaenisch R. 2001. DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. Journal of Neuroscience 21:788-797.
-
(2001)
Journal of Neuroscience
, vol.21
, pp. 788-797
-
-
Fan, G.1
Beard, C.2
Chen, R.Z.3
Csankovszki, G.4
Sun, Y.5
Siniaia, M.6
Biniszkiewicz, D.7
Bates, B.8
Lee, P.P.9
Kuhn, R.10
Trumpp, A.11
Poon, C.12
Wilson, C.B.13
Jaenisch, R.14
-
13
-
-
0242584449
-
Induction of tumors in mice by genomic hypomethylation
-
Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R. 2003. Induction of tumors in mice by genomic hypomethylation. Science 300:489-492. doi: 10.1126/science.1083558
-
(2003)
Science
, vol.300
, pp. 489-492
-
-
Gaudet, F.1
Hodgson, J.G.2
Eden, A.3
Jackson-Grusby, L.4
Dausman, J.5
Gray, J.W.6
Leonhardt, H.7
Jaenisch, R.8
-
14
-
-
84874250442
-
DNMT1 represses p53 to maintain progenitor cell survival during pancreatic organogenesis
-
Georgia S, Kanji M, Bhushan A. 2013. DNMT1 represses p53 to maintain progenitor cell survival during pancreatic organogenesis. Genes and Development 27:372-377. doi: 10.1101/gad.207001.112
-
(2013)
Genes and Development
, vol.27
, pp. 372-377
-
-
Georgia, S.1
Kanji, M.2
Bhushan, A.3
-
15
-
-
34147173677
-
Expansion of adult beta-cell mass in response to increased metabolic demand is dependent on HNF-4
-
Gupta RK, Gao N, Gorski RK, White P, Hardy OT, Rafiq K, Brestelli JE, Chen G, Stoeckert CJ, Kaestner KH. 2007. Expansion of adult beta-cell mass in response to increased metabolic demand is dependent on HNF-4. Genes and Development 21:756-769. doi: 10.1101/gad.1535507
-
(2007)
Genes and Development
, vol.21
, pp. 756-769
-
-
Gupta, R.K.1
Gao, N.2
Gorski, R.K.3
White, P.4
Hardy, O.T.5
Rafiq, K.6
Brestelli, J.E.7
Chen, G.8
Stoeckert, C.J.9
Kaestner, K.H.10
-
16
-
-
84857577343
-
Inflammation, DNA methylation and colitis-associated cancer
-
Hartnett L, Egan LJ. 2012. Inflammation, DNA methylation and colitis-associated cancer. Carcinogenesis 33:723-731. doi: 10.1093/carcin/bgs006
-
(2012)
Carcinogenesis
, vol.33
, pp. 723-731
-
-
Hartnett, L.1
Egan, L.J.2
-
17
-
-
4744372577
-
Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells
-
Jackson M, Krassowska A, Gilbert N, Chevassut T, Forrester L, Ansell J, Ramsahoye B. 2004. Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Molecular and Cellular Biology 24:8862-8871. [p2]. doi: 10.1128/MCB.24.20.8862-8871.2004
-
(2004)
Molecular and Cellular Biology
, vol.24
, pp. 8862-8871
-
-
Jackson, M.1
Krassowska, A.2
Gilbert, N.3
Chevassut, T.4
Forrester, L.5
Ansell, J.6
Ramsahoye, B.7
-
18
-
-
0035158704
-
Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation
-
Jackson-Grusby L, Beard C, Possemato R, Tudor M, Fambrough D, Csankovszki G, Dausman J, Lee P, Wilson C, Lander E, Jaenisch R. 2001. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nature Genetics 27:31-39. doi: 10.1038/83730
-
(2001)
Nature Genetics
, vol.27
, pp. 31-39
-
-
Jackson-Grusby, L.1
Beard, C.2
Possemato, R.3
Tudor, M.4
Fambrough, D.5
Csankovszki, G.6
Dausman, J.7
Lee, P.8
Wilson, C.9
Lander, E.10
Jaenisch, R.11
-
19
-
-
70349742486
-
DNMT1 and DNMT3B modulate distinct polycomb-mediated histone modifications in colon cancer
-
Jin B, Yao B, Li J-L, Fields CR, Delmas AL, Liu C, Robertson KD. 2009. DNMT1 and DNMT3B modulate distinct polycomb-mediated histone modifications in colon cancer. Cancer Research 69:7412-7421. [p2]. doi: 10.1158/0008-5472.CAN-09-0116
-
(2009)
Cancer Research
, vol.69
, pp. 7412-7421
-
-
Jin, B.1
Yao, B.2
Li, J.-L.3
Fields, C.R.4
Delmas, A.L.5
Liu, C.6
Robertson, K.D.7
-
20
-
-
3042584653
-
Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting
-
Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H. 2004. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429:900-903. doi: 10.1038/nature02633
-
(2004)
Nature
, vol.429
, pp. 900-903
-
-
Kaneda, M.1
Okano, M.2
Hata, K.3
Sado, T.4
Tsujimoto, N.5
Li, E.6
Sasaki, H.7
-
21
-
-
79958025266
-
An endogenously anti-inflammatory role for methylation in mucosal inflammation identified through metabolite profiling
-
Kominsky DJ, Keely S, MacManus CF, Glover LE, Scully M, Collins CB, Bowers BE, Campbell EL, Colgan SP. 2011. An endogenously anti-inflammatory role for methylation in mucosal inflammation identified through metabolite profiling. The Journal of Immunology 186:6505-6514. doi: 10.4049/jimmunol.1002805
-
(2011)
The Journal of Immunology
, vol.186
, pp. 6505-6514
-
-
Kominsky, D.J.1
Keely, S.2
Macmanus, C.F.3
Glover, L.E.4
Scully, M.5
Collins, C.B.6
Bowers, B.E.7
Campbell, E.L.8
Colgan, S.P.9
-
22
-
-
0037298161
-
Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse
-
Lane N, Dean W, Erhardt S, Hajkova P, Surani A, Walter J, Reik W. 2003. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35:88-93. doi: 10.1002/gene.10168
-
(2003)
Genesis
, vol.35
, pp. 88-93
-
-
Lane, N.1
Dean, W.2
Erhardt, S.3
Hajkova, P.4
Surani, A.5
Walter, J.6
Reik, W.7
-
23
-
-
0029803192
-
De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells
-
Lei H, Oh SP, Okano M, Juttermann R, Goss KA, Jaenisch R, Li E. 1996. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122:3195-3205.
-
(1996)
Development
, vol.122
, pp. 3195-3205
-
-
Lei, H.1
Oh, S.P.2
Okano, M.3
Juttermann, R.4
Goss, K.A.5
Jaenisch, R.6
Li, E.7
-
24
-
-
0026439115
-
A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei
-
Leonhardt H, Page AW, Weier H-U, Bestor TH. 1992. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71:865-873. [p2]. doi: 10.1016/0092-8674(92)90561-P
-
(1992)
Cell
, vol.71
, pp. 865-873
-
-
Leonhardt, H.1
Page, A.W.2
Weier, H.-U.3
Bestor, T.H.4
-
25
-
-
0026708177
-
Targeted mutation of the DNA methyltransferase gene results in embryonic lethality
-
Li E, Bestor TH, Jaenisch R. 1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915-926. [p2]. doi: 10.1016/0092-8674(92)90611-F
-
(1992)
Cell
, vol.69
, pp. 915-926
-
-
Li, E.1
Bestor, T.H.2
Jaenisch, R.3
-
26
-
-
0036135014
-
Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements
-
Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E, Laird PW, Jones PA. 2002. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Molecular and Cellular Biology 22:480-491. doi: 10.1128/MCB.22.2.480-491.2002
-
(2002)
Molecular and Cellular Biology
, vol.22
, pp. 480-491
-
-
Liang, G.1
Chan, M.F.2
Tomigahara, Y.3
Tsai, Y.C.4
Gonzales, F.A.5
Li, E.6
Laird, P.W.7
Jones, P.A.8
-
27
-
-
84929134273
-
Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells
-
Liao J, Karnik R, Gu H, Ziller MJ, Clement K, Tsankov AM, Akopian V, Gifford CA, Donaghey J, Galonska C, Pop R, Reyon D, Tsai SQ, Mallard W, Joung JK, Rinn JL, Gnirke A, Meissner A. 2015. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nature Genetics 47:469-478. doi: 10.1038/ng.3258
-
(2015)
Nature Genetics
, vol.47
, pp. 469-478
-
-
Liao, J.1
Karnik, R.2
Gu, H.3
Ziller, M.J.4
Clement, K.5
Tsankov, A.M.6
Akopian, V.7
Gifford, C.A.8
Donaghey, J.9
Galonska, C.10
Pop, R.11
Reyon, D.12
Tsai, S.Q.13
Mallard, W.14
Joung, J.K.15
Rinn, J.L.16
Gnirke, A.17
Meissner, A.18
-
28
-
-
33645825196
-
Suppression of intestinal neoplasia by deletion of Dnmt3b
-
Lin H, Yamada Y, Nguyen S, Linhart H, Jackson-Grusby L, Meissner A, Meletis K, Lo G, Jaenisch R. 2006. Suppression of intestinal neoplasia by deletion of Dnmt3b. Molecular and Cellular Biology 26:2976-2983. [p2]. doi: 10.1128/MCB.26.8.2976-2983.2006
-
(2006)
Molecular and Cellular Biology
, vol.26
, pp. 2976-2983
-
-
Lin, H.1
Yamada, Y.2
Nguyen, S.3
Linhart, H.4
Jackson-Grusby, L.5
Meissner, A.6
Meletis, K.7
Lo, G.8
Jaenisch, R.9
-
29
-
-
84924390152
-
Epigenetic control of intestinal barrier function and inflammation in zebrafish
-
Marjoram L, Alvers A, Deerhake ME, Bagwell J, Mankiewicz J, Cocchiaro JL, Beerman RW, Willer J, Sumigray KD, Katsanis N, Tobin DM, Rawls JF, Goll MG, Bagnat M. 2015. Epigenetic control of intestinal barrier function and inflammation in zebrafish. Proceedings of the National Academy of Sciences of the United States of America 112:2770-2775. doi: 10.1073/pnas.1424089112
-
(2015)
Proceedings of the National Academy of Sciences of the United States of America
, vol.112
, pp. 2770-2775
-
-
Marjoram, L.1
Alvers, A.2
Deerhake, M.E.3
Bagwell, J.4
Mankiewicz, J.5
Cocchiaro, J.L.6
Beerman, R.W.7
Willer, J.8
Sumigray, K.D.9
Katsanis, N.10
Tobin, D.M.11
Rawls, J.F.12
Goll, M.G.13
Bagnat, M.14
-
30
-
-
0031860739
-
Cloning and characterization of a family of novel mammalian DNA (Cytosine-5) methyltransferases
-
Okano M, Xie S, Li E. 1998. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genetics 19:219-220. doi: 10.1038/890
-
(1998)
Nature Genetics
, vol.19
, pp. 219-220
-
-
Okano, M.1
Xie, S.2
Li, E.3
-
31
-
-
0033615717
-
DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development
-
Okano M, Bell DW, Haber DA, Li E. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247-257. [p2]. doi: 10.1016/S0092-8674(00)81656-6
-
(1999)
Cell
, vol.99
, pp. 247-257
-
-
Okano, M.1
Bell, D.W.2
Haber, D.A.3
Li, E.4
-
32
-
-
75749104729
-
DNMT1 maintains progenitor function in self-renewing somatic tissue
-
Sen GL, Reuter JA, Webster DE, Zhu L, Khavari PA. 2010. DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature 463:563-567. [p2]. doi: 10.1038/nature08683
-
(2010)
Nature
, vol.463
, pp. 563-567
-
-
Sen, G.L.1
Reuter, J.A.2
Webster, D.E.3
Zhu, L.4
Khavari, P.A.5
-
33
-
-
84896378030
-
DNA methylation is required for the control of stem cell differentiation in the small intestine
-
Sheaffer KL, Kim R, Aoki R, Elliott EN, Schug J, Burger L, Schubeler D, Kaestner KH. 2014. DNA methylation is required for the control of stem cell differentiation in the small intestine. Genes and Development 28:652-664. doi: 10.1101/gad.230318.113
-
(2014)
Genes and Development
, vol.28
, pp. 652-664
-
-
Sheaffer, K.L.1
Kim, R.2
Aoki, R.3
Elliott, E.N.4
Schug, J.5
Burger, L.6
Schubeler, D.7
Kaestner, K.H.8
-
34
-
-
33847348016
-
DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells
-
Spada F, Haemmer A, Kuch D, Rothbauer U, Schermelleh L, Kremmer E, Carell T, Langst G, Leonhardt H. 2007. DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells. The Journal of Cell Biology 176:565-571. doi: 10.1083/jcb.200610062
-
(2007)
The Journal of Cell Biology
, vol.176
, pp. 565-571
-
-
Spada, F.1
Haemmer, A.2
Kuch, D.3
Rothbauer, U.4
Schermelleh, L.5
Kremmer, E.6
Carell, T.7
Langst, G.8
Leonhardt, H.9
-
35
-
-
33745270104
-
Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b
-
Tsumura A, Hayakawa T, Kumaki Y, Takebayashi Shin-ichiro, Sakaue M, Matsuoka C, Shimotohno K, Ishikawa F, Li E, Ueda HR, Nakayama Jun-ichi, Okano M. 2006. Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes to Cells 11:805-814. [p2]. doi: 10.1111/j.1365-2443.2006.00984.x
-
(2006)
Genes to Cells
, vol.11
, pp. 805-814
-
-
Tsumura, A.1
Hayakawa, T.2
Kumaki, Y.3
Shin-Ichiro, T.4
Sakaue, M.5
Matsuoka, C.6
Shimotohno, K.7
Ishikawa, F.8
Li, E.9
Ueda, H.R.10
Jun-Ichi, N.11
Okano, M.12
-
36
-
-
0037129827
-
Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes
-
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3:research0034.1.RESEARCH0034. doi: 10.1186/gb-2002-3-7-research0034
-
(2002)
Genome Biology
, vol.3
, Issue.RESEARCH0034
-
-
Vandesompele, J.1
De Preter, K.2
Pattyn, F.3
Poppe, B.4
Van Roy, N.5
De Paepe, A.6
Speleman, F.7
-
37
-
-
77952695371
-
Dnmt3b recruitment through E2F6 transcriptional repressor mediates germ-line gene silencing in murine somatic tissues
-
Velasco G, Hube F, Rollin J, Neuillet D, Philippe C, Bouzinba-Segard H, Galvani A, Viegas-Pequignot E, Francastel C. 2010. Dnmt3b recruitment through E2F6 transcriptional repressor mediates germ-line gene silencing in murine somatic tissues. Proceedings of the National Academy of Sciences of the United States of America 107:9281-9286. doi: 10.1073/pnas.1000473107
-
(2010)
Proceedings of the National Academy of Sciences of the United States of America
, vol.107
, pp. 9281-9286
-
-
Velasco, G.1
Hube, F.2
Rollin, J.3
Neuillet, D.4
Philippe, C.5
Bouzinba-Segard, H.6
Galvani, A.7
Viegas-Pequignot, E.8
Francastel, C.9
-
38
-
-
1542563409
-
Initial sequencing and comparative analysis of the mouse genome
-
Mouse Genome Sequencing Consortium
-
Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigco R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O'Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES. Mouse Genome Sequencing Consortium. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520-562. doi: 10.1038/nature01262
-
(2002)
Nature
, vol.420
, pp. 520-562
-
-
Waterston, R.H.1
Lindblad-Toh, K.2
Birney, E.3
Rogers, J.4
Abril, J.F.5
Agarwal, P.6
Agarwala, R.7
Ainscough, R.8
Alexandersson, M.9
An, P.10
Antonarakis, S.E.11
Attwood, J.12
Baertsch, R.13
Bailey, J.14
Barlow, K.15
Beck, S.16
Berry, E.17
Birren, B.18
Bloom, T.19
Bork, P.20
Botcherby, M.21
Bray, N.22
Brent, M.R.23
Brown, D.G.24
Brown, S.D.25
Bult, C.26
Burton, J.27
Butler, J.28
Campbell, R.D.29
Carninci, P.30
Cawley, S.31
Chiaromonte, F.32
Chinwalla, A.T.33
Church, D.M.34
Clamp, M.35
Clee, C.36
Collins, F.S.37
Cook, L.L.38
Copley, R.R.39
Coulson, A.40
Couronne, O.41
Cuff, J.42
Curwen, V.43
Cutts, T.44
Daly, M.45
David, R.46
Davies, J.47
Delehaunty, K.D.48
Deri, J.49
Dermitzakis, E.T.50
Dewey, C.51
Dickens, N.J.52
Diekhans, M.53
Dodge, S.54
Dubchak, I.55
Dunn, D.M.56
Eddy, S.R.57
Elnitski, L.58
Emes, R.D.59
Eswara, P.60
Eyras, E.61
Felsenfeld, A.62
Fewell, G.A.63
Flicek, P.64
Foley, K.65
Frankel, W.N.66
Fulton, L.A.67
Fulton, R.S.68
Furey, T.S.69
Gage, D.70
Gibbs, R.A.71
Glusman, G.72
Gnerre, S.73
Goldman, N.74
Goodstadt, L.75
Grafham, D.76
Graves, T.A.77
Green, E.D.78
Gregory, S.79
Guigco, R.80
Guyer, M.81
Hardison, R.C.82
Haussler, D.83
Hayashizaki, Y.84
Hillier, L.W.85
Hinrichs, A.86
Hlavina, W.87
Holzer, T.88
Hsu, F.89
Hua, A.90
Hubbard, T.91
Hunt, A.92
Jackson, I.93
Jaffe, D.B.94
Johnson, L.S.95
Jones, M.96
Jones, T.A.97
Joy, A.98
Kamal, M.99
Karlsson, E.K.100
Karolchik, D.101
Kasprzyk, A.102
Kawai, J.103
Keibler, E.104
Kells, C.105
Kent, W.J.106
Kirby, A.107
Kolbe, D.L.108
Korf, I.109
Kucherlapati, R.S.110
Kulbokas, E.J.111
Kulp, D.112
Landers, T.113
Leger, J.P.114
Leonard, S.115
Letunic, I.116
Levine, R.117
Li, J.118
Li, M.119
Lloyd, C.120
Lucas, S.121
Ma, B.122
Maglott, D.R.123
Mardis, E.R.124
Matthews, L.125
Mauceli, E.126
Mayer, J.H.127
McCarthy, M.128
McCombie, W.R.129
McLaren, S.130
McLay, K.131
McPherson, J.D.132
Meldrim, J.133
Meredith, B.134
Mesirov, J.P.135
Miller, W.136
Miner, T.L.137
Mongin, E.138
Montgomery, K.T.139
Morgan, M.140
Mott, R.141
Mullikin, J.C.142
Muzny, D.M.143
Nash, W.E.144
Nelson, J.O.145
Nhan, M.N.146
Nicol, R.147
Ning, Z.148
Nusbaum, C.149
O'connor, M.J.150
Okazaki, Y.151
Oliver, K.152
Overton-Larty, E.153
Pachter, L.154
Parra, G.155
Pepin, K.H.156
Peterson, J.157
Pevzner, P.158
Plumb, R.159
Pohl, C.S.160
Poliakov, A.161
Ponce, T.C.162
Ponting, C.P.163
Potter, S.164
Quail, M.165
Reymond, A.166
Roe, B.A.167
Roskin, K.M.168
Rubin, E.M.169
Rust, A.G.170
Santos, R.171
Sapojnikov, V.172
Schultz, B.173
Schultz, J.174
Schwartz, M.S.175
Schwartz, S.176
Scott, C.177
Seaman, S.178
Searle, S.179
Sharpe, T.180
Sheridan, A.181
Shownkeen, R.182
Sims, S.183
Singer, J.B.184
Slater, G.185
Smit, A.186
Smith, D.R.187
Spencer, B.188
Stabenau, A.189
Stange-Thomann, N.190
Sugnet, C.191
Suyama, M.192
Tesler, G.193
Thompson, J.194
Torrents, D.195
Trevaskis, E.196
Tromp, J.197
Ucla, C.198
Ureta-Vidal, A.199
Vinson, J.P.200
Von Niederhausern, A.C.201
Wade, C.M.202
Wall, M.203
Weber, R.J.204
Weiss, R.B.205
Wendl, M.C.206
West, A.P.207
Wetterstrand, K.208
Wheeler, R.209
Whelan, S.210
Wierzbowski, J.211
Willey, D.212
Williams, S.213
Wilson, R.K.214
Winter, E.215
Worley, K.C.216
Wyman, D.217
Yang, S.218
Yang, S.P.219
Zdobnov, E.M.220
Zody, M.C.221
Lander, E.S.222
more..
-
39
-
-
35348982262
-
Mouse models of inflammatory bowel disease
-
Wirtz S, Neurath MF. 2007. Mouse models of inflammatory bowel disease. Advanced Drug Delivery Reviews 59: 1073-1083. doi: 10.1016/j.addr.2007.07.003
-
(2007)
Advanced Drug Delivery Reviews
, vol.59
, pp. 1073-1083
-
-
Wirtz, S.1
Neurath, M.F.2
-
40
-
-
2342557977
-
A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements
-
Yang AS, Esteecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP. 2004. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Research 32:38e-38. doi: 10.1093/nar/gnh032
-
(2004)
Nucleic Acids Research
, vol.32
-
-
Yang, A.S.1
Esteecio, M.R.2
Doshi, K.3
Kondo, Y.4
Tajara, E.H.5
Issa, J.P.6
|