메뉴 건너뛰기




Volumn 35, Issue 8, 2017, Pages 785-796

Recent Advances in Microbial Production of Aromatic Chemicals and Derivatives

Author keywords

aromatic chemicals; bioproduction; chorismate derivatives; microorganism

Indexed keywords

AMINO ACIDS; AROMATIC COMPOUNDS; BACTERIA; BIOCHEMISTRY; CARBON; CHEMICAL COMPOUNDS; CHEMICALS; ESCHERICHIA COLI; INDICATORS (CHEMICAL); INDUSTRIAL CHEMICALS; INDUSTRIAL PLANTS; METABOLIC ENGINEERING; METABOLISM; MICROORGANISMS; PLANTS (BOTANY); SHALE OIL; YEAST;

EID: 85020854455     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2017.05.006     Document Type: Review
Times cited : (92)

References (90)
  • 1
    • 84941217806 scopus 로고    scopus 로고
    • Top value platform chemicals: bio-based production of organic acids
    • Becker, J., et al. Top value platform chemicals: bio-based production of organic acids. Curr. Opin. Biotechnol. 36 (2015), 168–175.
    • (2015) Curr. Opin. Biotechnol. , vol.36 , pp. 168-175
    • Becker, J.1
  • 2
    • 84982306147 scopus 로고    scopus 로고
    • Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels
    • Cheon, S., et al. Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels. Curr. Opin. Chem. Biol. 35 (2016), 10–21.
    • (2016) Curr. Opin. Chem. Biol. , vol.35 , pp. 10-21
    • Cheon, S.1
  • 3
    • 84923809316 scopus 로고    scopus 로고
    • Biorefineries for the production of top building block chemicals and their derivatives
    • Choi, S., et al. Biorefineries for the production of top building block chemicals and their derivatives. Metab. Eng. 28 (2015), 223–239.
    • (2015) Metab. Eng. , vol.28 , pp. 223-239
    • Choi, S.1
  • 4
    • 84961922827 scopus 로고    scopus 로고
    • Fuelling the future: microbial engineering for the production of sustainable biofuels
    • Liao, J.C., et al. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14 (2016), 288–304.
    • (2016) Nat. Rev. Microbiol. , vol.14 , pp. 288-304
    • Liao, J.C.1
  • 5
    • 85007236642 scopus 로고    scopus 로고
    • Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass
    • Published online November 18, 2016.
    • Lee, J.H., Wendisch, V.F., Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. J. Biotechnol., 2016, 10.1016/j.jbiotec.2016.11.016 Published online November 18, 2016.
    • (2016) J. Biotechnol.
    • Lee, J.H.1    Wendisch, V.F.2
  • 6
    • 84942616025 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of phenylpyruvate derivatives
    • Liu, S.P., et al. Metabolic engineering of Escherichia coli for the production of phenylpyruvate derivatives. Metab. Eng. 32 (2015), 55–65.
    • (2015) Metab. Eng. , vol.32 , pp. 55-65
    • Liu, S.P.1
  • 7
    • 84949661523 scopus 로고    scopus 로고
    • Metabolic design of a platform Escherichia coli strain producing various chorismate derivatives
    • Noda, S., et al. Metabolic design of a platform Escherichia coli strain producing various chorismate derivatives. Metab. Eng. 33 (2016), 119–129.
    • (2016) Metab. Eng. , vol.33 , pp. 119-129
    • Noda, S.1
  • 8
    • 84878848636 scopus 로고    scopus 로고
    • Advanced biofuel production by the yeast Saccharomyces cerevisiae
    • Buijs, N.A., et al. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr. Opin. Chem. Biol. 17 (2013), 480–488.
    • (2013) Curr. Opin. Chem. Biol. , vol.17 , pp. 480-488
    • Buijs, N.A.1
  • 9
    • 0030201057 scopus 로고    scopus 로고
    • Improving production of aromatic compounds in Escherichia coli by metabolic engineering
    • Berry, A., Improving production of aromatic compounds in Escherichia coli by metabolic engineering. Trends Biotechnol. 14 (1996), 250–256.
    • (1996) Trends Biotechnol. , vol.14 , pp. 250-256
    • Berry, A.1
  • 10
    • 0035209901 scopus 로고    scopus 로고
    • Metabolic engineering for microbial production of aromatic amino acids and derived compounds
    • Bongaerts, J., et al. Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab. Eng. 3 (2001), 289–300.
    • (2001) Metab. Eng. , vol.3 , pp. 289-300
    • Bongaerts, J.1
  • 11
    • 70449715238 scopus 로고    scopus 로고
    • Production of aromatic compounds in bacteria
    • Gosset, G., Production of aromatic compounds in bacteria. Curr. Opin. Biotechnol. 20 (2009), 651–658.
    • (2009) Curr. Opin. Biotechnol. , vol.20 , pp. 651-658
    • Gosset, G.1
  • 12
    • 84873596341 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs
    • Na, D., et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31 (2013), 170–174.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 170-174
    • Na, D.1
  • 13
    • 84865281539 scopus 로고    scopus 로고
    • Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli
    • Santos, C.N., et al. Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 13538–13543.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 13538-13543
    • Santos, C.N.1
  • 14
    • 84855694523 scopus 로고    scopus 로고
    • Modular engineering of L-tyrosine production in Escherichia coli
    • Juminaga, D., et al. Modular engineering of L-tyrosine production in Escherichia coli. Appl. Environ. Microbiol. 78 (2012), 89–98.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 89-98
    • Juminaga, D.1
  • 15
    • 84986294149 scopus 로고    scopus 로고
    • Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration
    • Chen, L., Zeng, A.P., Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration. Appl. Microbiol. Biotechnol. 101 (2017), 559–568.
    • (2017) Appl. Microbiol. Biotechnol. , vol.101 , pp. 559-568
    • Chen, L.1    Zeng, A.P.2
  • 16
    • 84923874240 scopus 로고    scopus 로고
    • Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes
    • Gottlieb, K., et al. Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes. Microb. Cell Fact. 13 (2014), 96–111.
    • (2014) Microb. Cell Fact. , vol.13 , pp. 96-111
    • Gottlieb, K.1
  • 17
    • 84885916023 scopus 로고    scopus 로고
    • The improved L-tryptophan production in recombinant Escherichia coli by expressing the polyhydroxybutyrate synthesis pathway
    • Gu, P., et al. The improved L-tryptophan production in recombinant Escherichia coli by expressing the polyhydroxybutyrate synthesis pathway. Appl. Microbiol. Biotechnol. 97 (2013), 4121–4127.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 4121-4127
    • Gu, P.1
  • 18
    • 84975455174 scopus 로고    scopus 로고
    • Modulating the direction of carbon flow in Escherichia coli to improve L-tryptophan production by inactivating the global regulator FruR
    • Liu, L., et al. Modulating the direction of carbon flow in Escherichia coli to improve L-tryptophan production by inactivating the global regulator FruR. J. Biotechnol. 231 (2016), 141–148.
    • (2016) J. Biotechnol. , vol.231 , pp. 141-148
    • Liu, L.1
  • 19
    • 38649102167 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli to enhance phenylalanine production
    • Yakandawala, N., et al. Metabolic engineering of Escherichia coli to enhance phenylalanine production. Appl. Microbiol. Biotechnol. 78 (2008), 283–291.
    • (2008) Appl. Microbiol. Biotechnol. , vol.78 , pp. 283-291
    • Yakandawala, N.1
  • 20
    • 84878218240 scopus 로고    scopus 로고
    • Enhanced production of L-phenylalanine in Corynebacterium glutamicum due to the introduction of Escherichia coli wild-type gene aroH
    • Zhang, C., et al. Enhanced production of L-phenylalanine in Corynebacterium glutamicum due to the introduction of Escherichia coli wild-type gene aroH. J. Ind. Microbiol. Biotechnol. 40 (2013), 643–651.
    • (2013) J. Ind. Microbiol. Biotechnol. , vol.40 , pp. 643-651
    • Zhang, C.1
  • 21
    • 84930804841 scopus 로고    scopus 로고
    • Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae
    • Jendresen, C.B., et al. Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 81 (2015), 4458–4476.
    • (2015) Appl. Environ. Microbiol. , vol.81 , pp. 4458-4476
    • Jendresen, C.B.1
  • 22
    • 84970031361 scopus 로고    scopus 로고
    • Alternative fermentation pathway of cinnamic acid production via phenyllactic acid
    • Masuo, S., et al. Alternative fermentation pathway of cinnamic acid production via phenyllactic acid. Appl. Microbiol. Biotechnol. 100 (2016), 8701–8709.
    • (2016) Appl. Microbiol. Biotechnol. , vol.100 , pp. 8701-8709
    • Masuo, S.1
  • 23
    • 84655167179 scopus 로고    scopus 로고
    • Production of Streptoverticillium cinnamoneum transglutaminase and cinnamic acid by recombinant Streptomyces lividans cultured on biomass-derived carbon sources
    • Noda, S., et al. Production of Streptoverticillium cinnamoneum transglutaminase and cinnamic acid by recombinant Streptomyces lividans cultured on biomass-derived carbon sources. Bioresour. Technol. 104 (2012), 648–651.
    • (2012) Bioresour. Technol. , vol.104 , pp. 648-651
    • Noda, S.1
  • 24
    • 84986254065 scopus 로고    scopus 로고
    • Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis
    • Rodriguez, A., et al. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab. Eng. 31 (2015), 181–188.
    • (2015) Metab. Eng. , vol.31 , pp. 181-188
    • Rodriguez, A.1
  • 25
    • 33847252518 scopus 로고    scopus 로고
    • Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi
    • Vannelli, T., et al. Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metab. Eng. 9 (2007), 142–151.
    • (2007) Metab. Eng. , vol.9 , pp. 142-151
    • Vannelli, T.1
  • 26
    • 84924040608 scopus 로고    scopus 로고
    • Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli
    • Vargas-Tah, A., et al. Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli. Microb. Cell Fact. 14 (2015), 6–17.
    • (2015) Microb. Cell Fact. , vol.14 , pp. 6-17
    • Vargas-Tah, A.1
  • 27
    • 84998577619 scopus 로고    scopus 로고
    • Styrene production from a biomass-derived carbon source using a coculture system of phenylalanine ammonia lyase and phenylacrylic acid decarboxylase-expressing Streptomyces lividans transformants
    • Fujiwara, R., et al. Styrene production from a biomass-derived carbon source using a coculture system of phenylalanine ammonia lyase and phenylacrylic acid decarboxylase-expressing Streptomyces lividans transformants. J. Biosci. Bioeng. 122 (2016), 730–773.
    • (2016) J. Biosci. Bioeng. , vol.122 , pp. 730-773
    • Fujiwara, R.1
  • 28
    • 84931056040 scopus 로고    scopus 로고
    • Artificial de novo biosynthesis of hydroxystyrene derivatives in a tyrosine overproducing Escherichia coli strain
    • Kang, S.Y., Artificial de novo biosynthesis of hydroxystyrene derivatives in a tyrosine overproducing Escherichia coli strain. Microb. Cell Fact. 14 (2015), 78–88.
    • (2015) Microb. Cell Fact. , vol.14 , pp. 78-88
    • Kang, S.Y.1
  • 29
    • 84919787681 scopus 로고    scopus 로고
    • Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae
    • McKenna, R., et al. Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae. Microb. Cell Fact. 13 (2014), 123–134.
    • (2014) Microb. Cell Fact. , vol.13 , pp. 123-134
    • McKenna, R.1
  • 30
    • 84920902005 scopus 로고    scopus 로고
    • 4-Vinylphenol biosynthesis from cellulose as the sole carbon source using phenolic acid decarboxylase- and tyrosine ammonia lyase-expressing Streptomyces lividans
    • Noda, S., et al. 4-Vinylphenol biosynthesis from cellulose as the sole carbon source using phenolic acid decarboxylase- and tyrosine ammonia lyase-expressing Streptomyces lividans. Bioresour. Technol. 180 (2015), 59–65.
    • (2015) Bioresour. Technol. , vol.180 , pp. 59-65
    • Noda, S.1
  • 31
    • 59949088615 scopus 로고    scopus 로고
    • Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation
    • Verhoef, S., et al. Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation. Appl. Environ. Microbiol. 75 (2009), 931–936.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 931-936
    • Verhoef, S.1
  • 32
    • 84958255462 scopus 로고    scopus 로고
    • Aerobic biosynthesis of hydrocinnamic acids in Escherichia coli with a strictly oxygen-sensitive enoate reductase
    • Sun, J., et al. Aerobic biosynthesis of hydrocinnamic acids in Escherichia coli with a strictly oxygen-sensitive enoate reductase. Metab. Eng. 35 (2016), 75–82.
    • (2016) Metab. Eng. , vol.35 , pp. 75-82
    • Sun, J.1
  • 33
    • 84975506761 scopus 로고    scopus 로고
    • Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones
    • Kallscheuer, N., et al. Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones. Metab. Eng. 38 (2016), 47–55.
    • (2016) Metab. Eng. , vol.38 , pp. 47-55
    • Kallscheuer, N.1
  • 34
    • 84941962714 scopus 로고    scopus 로고
    • De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae
    • Li, M., et al. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab. Eng. 32 (2015), 1–11.
    • (2015) Metab. Eng. , vol.32 , pp. 1-11
    • Li, M.1
  • 35
    • 84904566164 scopus 로고    scopus 로고
    • Engineering bacterial phenylalanine 4-hydroxylase for microbial synthesis of human neurotransmitter precursor 5-hydroxytryptophan
    • Lin, Y., et al. Engineering bacterial phenylalanine 4-hydroxylase for microbial synthesis of human neurotransmitter precursor 5-hydroxytryptophan. ACS Synth. Biol. 3 (2014), 497–505.
    • (2014) ACS Synth. Biol. , vol.3 , pp. 497-505
    • Lin, Y.1
  • 36
    • 84957553896 scopus 로고    scopus 로고
    • Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli
    • Nakagawa, A., et al. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat. Commun. 7 (2016), 10390–10397.
    • (2016) Nat. Commun. , vol.7 , pp. 10390-10397
    • Nakagawa, A.1
  • 37
    • 79957546214 scopus 로고    scopus 로고
    • A bacterial platform for fermentative production of plant alkaloids
    • Nakagawa, A., et al. A bacterial platform for fermentative production of plant alkaloids. Nat. Commun. 2 (2011), 326–334.
    • (2011) Nat. Commun. , vol.2 , pp. 326-334
    • Nakagawa, A.1
  • 38
    • 84938397207 scopus 로고    scopus 로고
    • Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli
    • Stahlhut, S.G., et al. Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli. Metab. Eng. 31 (2015), 84–93.
    • (2015) Metab. Eng. , vol.31 , pp. 84-93
    • Stahlhut, S.G.1
  • 39
    • 84887624536 scopus 로고    scopus 로고
    • Pathway and protein engineering approaches to produce novel and commodity small molecules
    • Bhan, N., et al. Pathway and protein engineering approaches to produce novel and commodity small molecules. Curr. Opin. Biotechnol. 24 (2013), 1137–1143.
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 1137-1143
    • Bhan, N.1
  • 40
    • 84879172594 scopus 로고    scopus 로고
    • Metabolic engineering and in vitro biosynthesis of phytochemicals and non-natural analogues
    • Mora-Pale, M., et al. Metabolic engineering and in vitro biosynthesis of phytochemicals and non-natural analogues. Plant Sci. 210 (2013), 10–24.
    • (2013) Plant Sci. , vol.210 , pp. 10-24
    • Mora-Pale, M.1
  • 41
    • 84961125909 scopus 로고    scopus 로고
    • Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology
    • Pandey, R.P., et al. Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology. Biotechnol. Adv. 34 (2016), 634–662.
    • (2016) Biotechnol. Adv. , vol.34 , pp. 634-662
    • Pandey, R.P.1
  • 42
    • 84950277538 scopus 로고    scopus 로고
    • Microbial production of value-added nutraceuticals
    • Wang, J., et al. Microbial production of value-added nutraceuticals. Curr. Opin. Biotechnol. 37 (2016), 97–104.
    • (2016) Curr. Opin. Biotechnol. , vol.37 , pp. 97-104
    • Wang, J.1
  • 43
    • 84896139366 scopus 로고    scopus 로고
    • Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli
    • Lin, Y., et al. Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli. Metab. Eng. 23 (2014), 62–69.
    • (2014) Metab. Eng. , vol.23 , pp. 62-69
    • Lin, Y.1
  • 44
    • 84995467722 scopus 로고    scopus 로고
    • Production of para-aminobenzoate by genetically engineered Corynebacterium glutamicum and non-biological formation of an N-glucosyl byproduct
    • Kubota, T., et al. Production of para-aminobenzoate by genetically engineered Corynebacterium glutamicum and non-biological formation of an N-glucosyl byproduct. Metab. Eng. 38 (2016), 322–330.
    • (2016) Metab. Eng. , vol.38 , pp. 322-330
    • Kubota, T.1
  • 45
    • 84969785107 scopus 로고    scopus 로고
    • Production of para-aminobenzoic acid from different carbon-sources in engineered Saccharomyces cerevisiae
    • Averesch, N.J., et al. Production of para-aminobenzoic acid from different carbon-sources in engineered Saccharomyces cerevisiae. Microb. Cell Fact. 15 (2016), 89–104.
    • (2016) Microb. Cell Fact. , vol.15 , pp. 89-104
    • Averesch, N.J.1
  • 46
    • 65449144374 scopus 로고    scopus 로고
    • Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli
    • Balderas-Hernández, V.E., et al. Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli. Microb. Cell Fact. 8 (2009), 19–30.
    • (2009) Microb. Cell Fact. , vol.8 , pp. 19-30
    • Balderas-Hernández, V.E.1
  • 47
    • 0035829830 scopus 로고    scopus 로고
    • Microbial synthesis of p-hydroxybenzoic acid from glucose
    • Barker, J.L., Frost, J.W., Microbial synthesis of p-hydroxybenzoic acid from glucose. Biotechnol. Bioeng. 76 (2001), 376–390.
    • (2001) Biotechnol. Bioeng. , vol.76 , pp. 376-390
    • Barker, J.L.1    Frost, J.W.2
  • 48
    • 84923861016 scopus 로고    scopus 로고
    • Production of p-aminobenzoic acid by metabolically engineered Escherichia coli
    • Koma, D., et al. Production of p-aminobenzoic acid by metabolically engineered Escherichia coli. Biosci. Biotechnol. Biochem. 78 (2014), 350–357.
    • (2014) Biosci. Biotechnol. Biochem. , vol.78 , pp. 350-357
    • Koma, D.1
  • 49
    • 84936803078 scopus 로고    scopus 로고
    • Engineering Escherichia coli coculture systems for the production of biochemical products
    • Zhang, H., et al. Engineering Escherichia coli coculture systems for the production of biochemical products. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 8266–8271.
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , pp. 8266-8271
    • Zhang, H.1
  • 50
    • 0036010273 scopus 로고    scopus 로고
    • Benzene-free synthesis of adipic acid
    • Niu, W., et al. Benzene-free synthesis of adipic acid. Biotechnol. Prog. 18 (2002), 201–211.
    • (2002) Biotechnol. Prog. , vol.18 , pp. 201-211
    • Niu, W.1
  • 51
    • 84946047532 scopus 로고    scopus 로고
    • Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli
    • Sengupta, S., et al. Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli. Appl. Environ. Microbiol. 81 (2015), 8037–8043.
    • (2015) Appl. Environ. Microbiol. , vol.81 , pp. 8037-8043
    • Sengupta, S.1
  • 52
    • 84879825132 scopus 로고    scopus 로고
    • A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate
    • Sun, X., et al. A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate. Appl. Environ. Microbiol. 79 (2013), 4024–4030.
    • (2013) Appl. Environ. Microbiol. , vol.79 , pp. 4024-4030
    • Sun, X.1
  • 53
    • 84875265625 scopus 로고    scopus 로고
    • Metabolic engineering of muconic acid production in Saccharomyces cerevisiae
    • Curran, K.A., et al. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab. Eng. 15 (2013), 55–66.
    • (2013) Metab. Eng. , vol.15 , pp. 55-66
    • Curran, K.A.1
  • 54
    • 84870834865 scopus 로고    scopus 로고
    • Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae
    • Weber, C., et al. Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 78 (2012), 8421–8430.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 8421-8430
    • Weber, C.1
  • 55
    • 85006412293 scopus 로고    scopus 로고
    • Biological production of muconic acid via a prokaryotic 2,3-dihydroxybenzoic acid decarboxylase
    • Sun, X., et al. Biological production of muconic acid via a prokaryotic 2,3-dihydroxybenzoic acid decarboxylase. ChemSusChem 7 (2014), 2478–2481.
    • (2014) ChemSusChem , vol.7 , pp. 2478-2481
    • Sun, X.1
  • 56
    • 85011060324 scopus 로고    scopus 로고
    • Alkene hydrogenation activity of enoate reductases for an environmentally benign biosynthesis of adipic acid
    • Joo, J.C., et al. Alkene hydrogenation activity of enoate reductases for an environmentally benign biosynthesis of adipic acid. Chem. Sci. 8 (2016), 1406–1413.
    • (2016) Chem. Sci. , vol.8 , pp. 1406-1413
    • Joo, J.C.1
  • 57
    • 84885378866 scopus 로고    scopus 로고
    • Microbial monomers custom-synthesized to build true bio-derived aromatic polymers
    • Fujita, T., et al. Microbial monomers custom-synthesized to build true bio-derived aromatic polymers. Appl. Microbiol. Biotechnol. 97 (2013), 8887–8894.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 8887-8894
    • Fujita, T.1
  • 58
    • 84898618984 scopus 로고    scopus 로고
    • Cloning Rosa hybrid phenylacetaldehyde synthase for the production of 2-phenylethanol in a whole cell Escherichia coli system
    • Achmon, Y., et al. Cloning Rosa hybrid phenylacetaldehyde synthase for the production of 2-phenylethanol in a whole cell Escherichia coli system. Appl. Microbiol. Biotechnol. 98 (2014), 3603–3611.
    • (2014) Appl. Microbiol. Biotechnol. , vol.98 , pp. 3603-3611
    • Achmon, Y.1
  • 59
    • 85006974936 scopus 로고    scopus 로고
    • Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via Ehrlich pathway
    • Chen, X., et al. Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via Ehrlich pathway. J. Biotechnol. 242 (2017), 83–91.
    • (2017) J. Biotechnol. , vol.242 , pp. 83-91
    • Chen, X.1
  • 60
    • 84888018350 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway
    • Kim, B., et al. Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Biotechnol. Bioeng. 111 (2014), 115–124.
    • (2014) Biotechnol. Bioeng. , vol.111 , pp. 115-124
    • Kim, B.1
  • 61
    • 84866285573 scopus 로고    scopus 로고
    • Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway
    • Koma, D., et al. Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway. Appl. Environ. Microbiol. 78 (2012), 6203–6216.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 6203-6216
    • Koma, D.1
  • 62
    • 84886257717 scopus 로고    scopus 로고
    • Microbial biosynthesis of the anticoagulant precursor 4-hydroxycoumarin
    • Lin, Y., et al. Microbial biosynthesis of the anticoagulant precursor 4-hydroxycoumarin. Nat. Commun. 4 (2013), 2603–2610.
    • (2013) Nat. Commun. , vol.4 , pp. 2603-2610
    • Lin, Y.1
  • 63
    • 29144524991 scopus 로고    scopus 로고
    • Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose
    • Wierckx, N.J., et al. Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl. Environ. Microbiol. 71 (2005), 8221–8227.
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 8221-8227
    • Wierckx, N.J.1
  • 64
    • 84978767428 scopus 로고    scopus 로고
    • Broad-host-range ProUSER vectors enable fast characterization of inducible promoters and optimization of p-coumaric acid production in Pseudomonas putida KT2440
    • Calero, P., et al. Broad-host-range ProUSER vectors enable fast characterization of inducible promoters and optimization of p-coumaric acid production in Pseudomonas putida KT2440. ACS Synth. Biol. 5 (2016), 741–753.
    • (2016) ACS Synth. Biol. , vol.5 , pp. 741-753
    • Calero, P.1
  • 65
    • 84930934639 scopus 로고    scopus 로고
    • Expanding the chemical space of polyketides through structure-guided mutagenesis of Vitis vinifera stilbene synthase
    • Bhan, N., et al. Expanding the chemical space of polyketides through structure-guided mutagenesis of Vitis vinifera stilbene synthase. Biochimie 115 (2015), 136–143.
    • (2015) Biochimie , vol.115 , pp. 136-143
    • Bhan, N.1
  • 66
    • 84928898037 scopus 로고    scopus 로고
    • Enzymatic formation of a resorcylic acid by creating a structure-guided single-point mutation in stilbene synthase
    • Bhan, N., et al. Enzymatic formation of a resorcylic acid by creating a structure-guided single-point mutation in stilbene synthase. Protein Sci. 24 (2015), 167–173.
    • (2015) Protein Sci. , vol.24 , pp. 167-173
    • Bhan, N.1
  • 67
    • 79958224739 scopus 로고    scopus 로고
    • High-yield resveratrol production in engineered Escherichia coli
    • Lim, C.G., et al. High-yield resveratrol production in engineered Escherichia coli. Appl. Environ. Microbiol. 77 (2011), 3451–3460.
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 3451-3460
    • Lim, C.G.1
  • 68
    • 84946482931 scopus 로고    scopus 로고
    • Antimicrobial mechanism of resveratrol-trans-dihydrodimer produced from peroxidase-catalyzed oxidation of resveratrol
    • Mora-Pale, M., et al. Antimicrobial mechanism of resveratrol-trans-dihydrodimer produced from peroxidase-catalyzed oxidation of resveratrol. Biotechnol. Bioeng. 112 (2015), 2417–2428.
    • (2015) Biotechnol. Bioeng. , vol.112 , pp. 2417-2428
    • Mora-Pale, M.1
  • 69
    • 84864186953 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
    • Hong, K.K., Nielsen, J., Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol. Life Sci. 69 (2012), 2671–2690.
    • (2012) Cell Mol. Life Sci. , vol.69 , pp. 2671-2690
    • Hong, K.K.1    Nielsen, J.2
  • 70
    • 31144476958 scopus 로고    scopus 로고
    • Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering
    • Ikeda, M., Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl. Microbiol. Biotechnol. 69 (2006), 615–626.
    • (2006) Appl. Microbiol. Biotechnol. , vol.69 , pp. 615-626
    • Ikeda, M.1
  • 71
    • 84984655327 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction
    • Kogure, T., et al. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction. Metab. Eng. 38 (2016), 204–216.
    • (2016) Metab. Eng. , vol.38 , pp. 204-216
    • Kogure, T.1
  • 72
    • 84862202252 scopus 로고    scopus 로고
    • Benzoic acid fermentation from starch and cellulose via a plant-like β-oxidation pathway in Streptomyces maritimus
    • Noda, S., et al. Benzoic acid fermentation from starch and cellulose via a plant-like β-oxidation pathway in Streptomyces maritimus. Microb. Cell Fact. 11 (2012), 49–58.
    • (2012) Microb. Cell Fact. , vol.11 , pp. 49-58
    • Noda, S.1
  • 73
    • 84909954184 scopus 로고    scopus 로고
    • Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds
    • Sonoki, T., et al. Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds. J. Biotechnol. 192 (2014), 71–77.
    • (2014) J. Biotechnol. , vol.192 , pp. 71-77
    • Sonoki, T.1
  • 74
    • 84925264917 scopus 로고    scopus 로고
    • M-path: a compass for navigating potential metabolic pathways
    • Araki, M., et al. M-path: a compass for navigating potential metabolic pathways. Bioinformatics 31 (2015), 905–911.
    • (2015) Bioinformatics , vol.31 , pp. 905-911
    • Araki, M.1
  • 75
    • 17444382016 scopus 로고    scopus 로고
    • Exploring the diversity of complex metabolic networks
    • Hatzimanikatis, V., et al. Exploring the diversity of complex metabolic networks. Bioinformatics 21 (2005), 1603–1609.
    • (2005) Bioinformatics , vol.21 , pp. 1603-1609
    • Hatzimanikatis, V.1
  • 76
    • 84954357507 scopus 로고    scopus 로고
    • Designing intracellular metabolism for production of target compounds by introducing a heterologous metabolic reaction based on a Synechosystis sp. 6803 genome-scale model
    • Shirai, T., et al. Designing intracellular metabolism for production of target compounds by introducing a heterologous metabolic reaction based on a Synechosystis sp. 6803 genome-scale model. Microb. Cell Fact. 15 (2016), 13–18.
    • (2016) Microb. Cell Fact. , vol.15 , pp. 13-18
    • Shirai, T.1
  • 77
    • 84879190343 scopus 로고    scopus 로고
    • Redirecting carbon flux into malonyl-CoA to improve resveratrol titers: proof of concept for genetic interventions predicted by OptForce computational framework
    • Bhan, N., et al. Redirecting carbon flux into malonyl-CoA to improve resveratrol titers: proof of concept for genetic interventions predicted by OptForce computational framework. Chem. Eng. Sci. 103 (2013), 109–114.
    • (2013) Chem. Eng. Sci. , vol.103 , pp. 109-114
    • Bhan, N.1
  • 78
    • 80052021573 scopus 로고    scopus 로고
    • Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA
    • Xu, P., et al. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab. Eng. 13 (2011), 578–587.
    • (2011) Metab. Eng. , vol.13 , pp. 578-587
    • Xu, P.1
  • 79
    • 84892605897 scopus 로고    scopus 로고
    • Genetic engineering of Escherichia coli to enhance production of L-tryptophan
    • 7587–7496
    • Wang, J., et al. Genetic engineering of Escherichia coli to enhance production of L-tryptophan. Appl. Microbiol. Biotechnol., 97, 2013 7587–7496.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97
    • Wang, J.1
  • 80
    • 84928753819 scopus 로고    scopus 로고
    • Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production
    • Soma, Y., Hanai, T., Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production. Metab. Eng. 30 (2015), 7–15.
    • (2015) Metab. Eng. , vol.30 , pp. 7-15
    • Soma, Y.1    Hanai, T.2
  • 81
    • 84899628032 scopus 로고    scopus 로고
    • Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch
    • Soma, Y., et al. Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch. Metab. Eng. 23 (2014), 175–184.
    • (2014) Metab. Eng. , vol.23 , pp. 175-184
    • Soma, Y.1
  • 82
    • 57049159362 scopus 로고    scopus 로고
    • A fast, robust and tunable synthetic gene oscillator
    • Stricker, J., et al. A fast, robust and tunable synthetic gene oscillator. Nature 456 (2008), 516–519.
    • (2008) Nature , vol.456 , pp. 516-519
    • Stricker, J.1
  • 83
    • 84905668376 scopus 로고    scopus 로고
    • Improving fatty acids production by engineering dynamic pathway regulation and metabolic control
    • Xu, P., et al. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 11299–11304.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. 11299-11304
    • Xu, P.1
  • 84
    • 84868252437 scopus 로고    scopus 로고
    • A modified Cre-lox genetic switch to dynamically control metabolic flow in Saccharomyces cerevisiae
    • Yamanishi, M., Matsuyama, T., A modified Cre-lox genetic switch to dynamically control metabolic flow in Saccharomyces cerevisiae. ACS Synth. Biol. 1 (2012), 172–180.
    • (2012) ACS Synth. Biol. , vol.1 , pp. 172-180
    • Yamanishi, M.1    Matsuyama, T.2
  • 85
    • 84934907570 scopus 로고    scopus 로고
    • Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum
    • Zhou, L.B., Zeng, A.P., Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum. ACS Synth. Biol. 4 (2015), 729–734.
    • (2015) ACS Synth. Biol. , vol.4 , pp. 729-734
    • Zhou, L.B.1    Zeng, A.P.2
  • 86
    • 84917699113 scopus 로고    scopus 로고
    • Enzyme clustering accelerates processing of intermediates through metabolic channeling
    • Castellana, M., et al. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat. Biotechnol. 32 (2014), 1011–1018.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 1011-1018
    • Castellana, M.1
  • 87
    • 85017503706 scopus 로고    scopus 로고
    • Sortase A-mediated metabolic enzyme ligation in Escherichia coli
    • Matsumoto, T., et al. Sortase A-mediated metabolic enzyme ligation in Escherichia coli. ACS Synth. Biol. 5 (2016), 1284–1289.
    • (2016) ACS Synth. Biol. , vol.5 , pp. 1284-1289
    • Matsumoto, T.1
  • 88
    • 84906248340 scopus 로고    scopus 로고
    • In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner
    • Sachdeva, G., et al. In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner. Nucleic Acids Res. 42 (2014), 9493–9503.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 9493-9503
    • Sachdeva, G.1
  • 89
    • 55549116661 scopus 로고    scopus 로고
    • Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene
    • Anthony, J.R., et al. Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab. Eng. 11 (2009), 13–19.
    • (2009) Metab. Eng. , vol.11 , pp. 13-19
    • Anthony, J.R.1
  • 90
    • 84865278051 scopus 로고    scopus 로고
    • Customized optimization of metabolic pathways by combinatorial transcriptional engineering
    • Du, J., et al. Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res., 40, 2012, e142.
    • (2012) Nucleic Acids Res. , vol.40 , pp. e142
    • Du, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.