-
1
-
-
84941217806
-
Top value platform chemicals: bio-based production of organic acids
-
Becker, J., et al. Top value platform chemicals: bio-based production of organic acids. Curr. Opin. Biotechnol. 36 (2015), 168–175.
-
(2015)
Curr. Opin. Biotechnol.
, vol.36
, pp. 168-175
-
-
Becker, J.1
-
2
-
-
84982306147
-
Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels
-
Cheon, S., et al. Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels. Curr. Opin. Chem. Biol. 35 (2016), 10–21.
-
(2016)
Curr. Opin. Chem. Biol.
, vol.35
, pp. 10-21
-
-
Cheon, S.1
-
3
-
-
84923809316
-
Biorefineries for the production of top building block chemicals and their derivatives
-
Choi, S., et al. Biorefineries for the production of top building block chemicals and their derivatives. Metab. Eng. 28 (2015), 223–239.
-
(2015)
Metab. Eng.
, vol.28
, pp. 223-239
-
-
Choi, S.1
-
4
-
-
84961922827
-
Fuelling the future: microbial engineering for the production of sustainable biofuels
-
Liao, J.C., et al. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14 (2016), 288–304.
-
(2016)
Nat. Rev. Microbiol.
, vol.14
, pp. 288-304
-
-
Liao, J.C.1
-
5
-
-
85007236642
-
Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass
-
Published online November 18, 2016.
-
Lee, J.H., Wendisch, V.F., Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. J. Biotechnol., 2016, 10.1016/j.jbiotec.2016.11.016 Published online November 18, 2016.
-
(2016)
J. Biotechnol.
-
-
Lee, J.H.1
Wendisch, V.F.2
-
6
-
-
84942616025
-
Metabolic engineering of Escherichia coli for the production of phenylpyruvate derivatives
-
Liu, S.P., et al. Metabolic engineering of Escherichia coli for the production of phenylpyruvate derivatives. Metab. Eng. 32 (2015), 55–65.
-
(2015)
Metab. Eng.
, vol.32
, pp. 55-65
-
-
Liu, S.P.1
-
7
-
-
84949661523
-
Metabolic design of a platform Escherichia coli strain producing various chorismate derivatives
-
Noda, S., et al. Metabolic design of a platform Escherichia coli strain producing various chorismate derivatives. Metab. Eng. 33 (2016), 119–129.
-
(2016)
Metab. Eng.
, vol.33
, pp. 119-129
-
-
Noda, S.1
-
8
-
-
84878848636
-
Advanced biofuel production by the yeast Saccharomyces cerevisiae
-
Buijs, N.A., et al. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr. Opin. Chem. Biol. 17 (2013), 480–488.
-
(2013)
Curr. Opin. Chem. Biol.
, vol.17
, pp. 480-488
-
-
Buijs, N.A.1
-
9
-
-
0030201057
-
Improving production of aromatic compounds in Escherichia coli by metabolic engineering
-
Berry, A., Improving production of aromatic compounds in Escherichia coli by metabolic engineering. Trends Biotechnol. 14 (1996), 250–256.
-
(1996)
Trends Biotechnol.
, vol.14
, pp. 250-256
-
-
Berry, A.1
-
10
-
-
0035209901
-
Metabolic engineering for microbial production of aromatic amino acids and derived compounds
-
Bongaerts, J., et al. Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab. Eng. 3 (2001), 289–300.
-
(2001)
Metab. Eng.
, vol.3
, pp. 289-300
-
-
Bongaerts, J.1
-
11
-
-
70449715238
-
Production of aromatic compounds in bacteria
-
Gosset, G., Production of aromatic compounds in bacteria. Curr. Opin. Biotechnol. 20 (2009), 651–658.
-
(2009)
Curr. Opin. Biotechnol.
, vol.20
, pp. 651-658
-
-
Gosset, G.1
-
12
-
-
84873596341
-
Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs
-
Na, D., et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31 (2013), 170–174.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 170-174
-
-
Na, D.1
-
13
-
-
84865281539
-
Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli
-
Santos, C.N., et al. Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 13538–13543.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 13538-13543
-
-
Santos, C.N.1
-
14
-
-
84855694523
-
Modular engineering of L-tyrosine production in Escherichia coli
-
Juminaga, D., et al. Modular engineering of L-tyrosine production in Escherichia coli. Appl. Environ. Microbiol. 78 (2012), 89–98.
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, pp. 89-98
-
-
Juminaga, D.1
-
15
-
-
84986294149
-
Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration
-
Chen, L., Zeng, A.P., Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration. Appl. Microbiol. Biotechnol. 101 (2017), 559–568.
-
(2017)
Appl. Microbiol. Biotechnol.
, vol.101
, pp. 559-568
-
-
Chen, L.1
Zeng, A.P.2
-
16
-
-
84923874240
-
Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes
-
Gottlieb, K., et al. Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes. Microb. Cell Fact. 13 (2014), 96–111.
-
(2014)
Microb. Cell Fact.
, vol.13
, pp. 96-111
-
-
Gottlieb, K.1
-
17
-
-
84885916023
-
The improved L-tryptophan production in recombinant Escherichia coli by expressing the polyhydroxybutyrate synthesis pathway
-
Gu, P., et al. The improved L-tryptophan production in recombinant Escherichia coli by expressing the polyhydroxybutyrate synthesis pathway. Appl. Microbiol. Biotechnol. 97 (2013), 4121–4127.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, pp. 4121-4127
-
-
Gu, P.1
-
18
-
-
84975455174
-
Modulating the direction of carbon flow in Escherichia coli to improve L-tryptophan production by inactivating the global regulator FruR
-
Liu, L., et al. Modulating the direction of carbon flow in Escherichia coli to improve L-tryptophan production by inactivating the global regulator FruR. J. Biotechnol. 231 (2016), 141–148.
-
(2016)
J. Biotechnol.
, vol.231
, pp. 141-148
-
-
Liu, L.1
-
19
-
-
38649102167
-
Metabolic engineering of Escherichia coli to enhance phenylalanine production
-
Yakandawala, N., et al. Metabolic engineering of Escherichia coli to enhance phenylalanine production. Appl. Microbiol. Biotechnol. 78 (2008), 283–291.
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.78
, pp. 283-291
-
-
Yakandawala, N.1
-
20
-
-
84878218240
-
Enhanced production of L-phenylalanine in Corynebacterium glutamicum due to the introduction of Escherichia coli wild-type gene aroH
-
Zhang, C., et al. Enhanced production of L-phenylalanine in Corynebacterium glutamicum due to the introduction of Escherichia coli wild-type gene aroH. J. Ind. Microbiol. Biotechnol. 40 (2013), 643–651.
-
(2013)
J. Ind. Microbiol. Biotechnol.
, vol.40
, pp. 643-651
-
-
Zhang, C.1
-
21
-
-
84930804841
-
Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae
-
Jendresen, C.B., et al. Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 81 (2015), 4458–4476.
-
(2015)
Appl. Environ. Microbiol.
, vol.81
, pp. 4458-4476
-
-
Jendresen, C.B.1
-
22
-
-
84970031361
-
Alternative fermentation pathway of cinnamic acid production via phenyllactic acid
-
Masuo, S., et al. Alternative fermentation pathway of cinnamic acid production via phenyllactic acid. Appl. Microbiol. Biotechnol. 100 (2016), 8701–8709.
-
(2016)
Appl. Microbiol. Biotechnol.
, vol.100
, pp. 8701-8709
-
-
Masuo, S.1
-
23
-
-
84655167179
-
Production of Streptoverticillium cinnamoneum transglutaminase and cinnamic acid by recombinant Streptomyces lividans cultured on biomass-derived carbon sources
-
Noda, S., et al. Production of Streptoverticillium cinnamoneum transglutaminase and cinnamic acid by recombinant Streptomyces lividans cultured on biomass-derived carbon sources. Bioresour. Technol. 104 (2012), 648–651.
-
(2012)
Bioresour. Technol.
, vol.104
, pp. 648-651
-
-
Noda, S.1
-
24
-
-
84986254065
-
Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis
-
Rodriguez, A., et al. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab. Eng. 31 (2015), 181–188.
-
(2015)
Metab. Eng.
, vol.31
, pp. 181-188
-
-
Rodriguez, A.1
-
25
-
-
33847252518
-
Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi
-
Vannelli, T., et al. Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metab. Eng. 9 (2007), 142–151.
-
(2007)
Metab. Eng.
, vol.9
, pp. 142-151
-
-
Vannelli, T.1
-
26
-
-
84924040608
-
Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli
-
Vargas-Tah, A., et al. Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli. Microb. Cell Fact. 14 (2015), 6–17.
-
(2015)
Microb. Cell Fact.
, vol.14
, pp. 6-17
-
-
Vargas-Tah, A.1
-
27
-
-
84998577619
-
Styrene production from a biomass-derived carbon source using a coculture system of phenylalanine ammonia lyase and phenylacrylic acid decarboxylase-expressing Streptomyces lividans transformants
-
Fujiwara, R., et al. Styrene production from a biomass-derived carbon source using a coculture system of phenylalanine ammonia lyase and phenylacrylic acid decarboxylase-expressing Streptomyces lividans transformants. J. Biosci. Bioeng. 122 (2016), 730–773.
-
(2016)
J. Biosci. Bioeng.
, vol.122
, pp. 730-773
-
-
Fujiwara, R.1
-
28
-
-
84931056040
-
Artificial de novo biosynthesis of hydroxystyrene derivatives in a tyrosine overproducing Escherichia coli strain
-
Kang, S.Y., Artificial de novo biosynthesis of hydroxystyrene derivatives in a tyrosine overproducing Escherichia coli strain. Microb. Cell Fact. 14 (2015), 78–88.
-
(2015)
Microb. Cell Fact.
, vol.14
, pp. 78-88
-
-
Kang, S.Y.1
-
29
-
-
84919787681
-
Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae
-
McKenna, R., et al. Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae. Microb. Cell Fact. 13 (2014), 123–134.
-
(2014)
Microb. Cell Fact.
, vol.13
, pp. 123-134
-
-
McKenna, R.1
-
30
-
-
84920902005
-
4-Vinylphenol biosynthesis from cellulose as the sole carbon source using phenolic acid decarboxylase- and tyrosine ammonia lyase-expressing Streptomyces lividans
-
Noda, S., et al. 4-Vinylphenol biosynthesis from cellulose as the sole carbon source using phenolic acid decarboxylase- and tyrosine ammonia lyase-expressing Streptomyces lividans. Bioresour. Technol. 180 (2015), 59–65.
-
(2015)
Bioresour. Technol.
, vol.180
, pp. 59-65
-
-
Noda, S.1
-
31
-
-
59949088615
-
Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation
-
Verhoef, S., et al. Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation. Appl. Environ. Microbiol. 75 (2009), 931–936.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 931-936
-
-
Verhoef, S.1
-
32
-
-
84958255462
-
Aerobic biosynthesis of hydrocinnamic acids in Escherichia coli with a strictly oxygen-sensitive enoate reductase
-
Sun, J., et al. Aerobic biosynthesis of hydrocinnamic acids in Escherichia coli with a strictly oxygen-sensitive enoate reductase. Metab. Eng. 35 (2016), 75–82.
-
(2016)
Metab. Eng.
, vol.35
, pp. 75-82
-
-
Sun, J.1
-
33
-
-
84975506761
-
Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones
-
Kallscheuer, N., et al. Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones. Metab. Eng. 38 (2016), 47–55.
-
(2016)
Metab. Eng.
, vol.38
, pp. 47-55
-
-
Kallscheuer, N.1
-
34
-
-
84941962714
-
De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae
-
Li, M., et al. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab. Eng. 32 (2015), 1–11.
-
(2015)
Metab. Eng.
, vol.32
, pp. 1-11
-
-
Li, M.1
-
35
-
-
84904566164
-
Engineering bacterial phenylalanine 4-hydroxylase for microbial synthesis of human neurotransmitter precursor 5-hydroxytryptophan
-
Lin, Y., et al. Engineering bacterial phenylalanine 4-hydroxylase for microbial synthesis of human neurotransmitter precursor 5-hydroxytryptophan. ACS Synth. Biol. 3 (2014), 497–505.
-
(2014)
ACS Synth. Biol.
, vol.3
, pp. 497-505
-
-
Lin, Y.1
-
36
-
-
84957553896
-
Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli
-
Nakagawa, A., et al. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat. Commun. 7 (2016), 10390–10397.
-
(2016)
Nat. Commun.
, vol.7
, pp. 10390-10397
-
-
Nakagawa, A.1
-
37
-
-
79957546214
-
A bacterial platform for fermentative production of plant alkaloids
-
Nakagawa, A., et al. A bacterial platform for fermentative production of plant alkaloids. Nat. Commun. 2 (2011), 326–334.
-
(2011)
Nat. Commun.
, vol.2
, pp. 326-334
-
-
Nakagawa, A.1
-
38
-
-
84938397207
-
Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli
-
Stahlhut, S.G., et al. Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli. Metab. Eng. 31 (2015), 84–93.
-
(2015)
Metab. Eng.
, vol.31
, pp. 84-93
-
-
Stahlhut, S.G.1
-
39
-
-
84887624536
-
Pathway and protein engineering approaches to produce novel and commodity small molecules
-
Bhan, N., et al. Pathway and protein engineering approaches to produce novel and commodity small molecules. Curr. Opin. Biotechnol. 24 (2013), 1137–1143.
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, pp. 1137-1143
-
-
Bhan, N.1
-
40
-
-
84879172594
-
Metabolic engineering and in vitro biosynthesis of phytochemicals and non-natural analogues
-
Mora-Pale, M., et al. Metabolic engineering and in vitro biosynthesis of phytochemicals and non-natural analogues. Plant Sci. 210 (2013), 10–24.
-
(2013)
Plant Sci.
, vol.210
, pp. 10-24
-
-
Mora-Pale, M.1
-
41
-
-
84961125909
-
Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology
-
Pandey, R.P., et al. Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology. Biotechnol. Adv. 34 (2016), 634–662.
-
(2016)
Biotechnol. Adv.
, vol.34
, pp. 634-662
-
-
Pandey, R.P.1
-
42
-
-
84950277538
-
Microbial production of value-added nutraceuticals
-
Wang, J., et al. Microbial production of value-added nutraceuticals. Curr. Opin. Biotechnol. 37 (2016), 97–104.
-
(2016)
Curr. Opin. Biotechnol.
, vol.37
, pp. 97-104
-
-
Wang, J.1
-
43
-
-
84896139366
-
Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli
-
Lin, Y., et al. Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli. Metab. Eng. 23 (2014), 62–69.
-
(2014)
Metab. Eng.
, vol.23
, pp. 62-69
-
-
Lin, Y.1
-
44
-
-
84995467722
-
Production of para-aminobenzoate by genetically engineered Corynebacterium glutamicum and non-biological formation of an N-glucosyl byproduct
-
Kubota, T., et al. Production of para-aminobenzoate by genetically engineered Corynebacterium glutamicum and non-biological formation of an N-glucosyl byproduct. Metab. Eng. 38 (2016), 322–330.
-
(2016)
Metab. Eng.
, vol.38
, pp. 322-330
-
-
Kubota, T.1
-
45
-
-
84969785107
-
Production of para-aminobenzoic acid from different carbon-sources in engineered Saccharomyces cerevisiae
-
Averesch, N.J., et al. Production of para-aminobenzoic acid from different carbon-sources in engineered Saccharomyces cerevisiae. Microb. Cell Fact. 15 (2016), 89–104.
-
(2016)
Microb. Cell Fact.
, vol.15
, pp. 89-104
-
-
Averesch, N.J.1
-
46
-
-
65449144374
-
Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli
-
Balderas-Hernández, V.E., et al. Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli. Microb. Cell Fact. 8 (2009), 19–30.
-
(2009)
Microb. Cell Fact.
, vol.8
, pp. 19-30
-
-
Balderas-Hernández, V.E.1
-
47
-
-
0035829830
-
Microbial synthesis of p-hydroxybenzoic acid from glucose
-
Barker, J.L., Frost, J.W., Microbial synthesis of p-hydroxybenzoic acid from glucose. Biotechnol. Bioeng. 76 (2001), 376–390.
-
(2001)
Biotechnol. Bioeng.
, vol.76
, pp. 376-390
-
-
Barker, J.L.1
Frost, J.W.2
-
48
-
-
84923861016
-
Production of p-aminobenzoic acid by metabolically engineered Escherichia coli
-
Koma, D., et al. Production of p-aminobenzoic acid by metabolically engineered Escherichia coli. Biosci. Biotechnol. Biochem. 78 (2014), 350–357.
-
(2014)
Biosci. Biotechnol. Biochem.
, vol.78
, pp. 350-357
-
-
Koma, D.1
-
49
-
-
84936803078
-
Engineering Escherichia coli coculture systems for the production of biochemical products
-
Zhang, H., et al. Engineering Escherichia coli coculture systems for the production of biochemical products. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 8266–8271.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. 8266-8271
-
-
Zhang, H.1
-
50
-
-
0036010273
-
Benzene-free synthesis of adipic acid
-
Niu, W., et al. Benzene-free synthesis of adipic acid. Biotechnol. Prog. 18 (2002), 201–211.
-
(2002)
Biotechnol. Prog.
, vol.18
, pp. 201-211
-
-
Niu, W.1
-
51
-
-
84946047532
-
Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli
-
Sengupta, S., et al. Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli. Appl. Environ. Microbiol. 81 (2015), 8037–8043.
-
(2015)
Appl. Environ. Microbiol.
, vol.81
, pp. 8037-8043
-
-
Sengupta, S.1
-
52
-
-
84879825132
-
A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate
-
Sun, X., et al. A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate. Appl. Environ. Microbiol. 79 (2013), 4024–4030.
-
(2013)
Appl. Environ. Microbiol.
, vol.79
, pp. 4024-4030
-
-
Sun, X.1
-
53
-
-
84875265625
-
Metabolic engineering of muconic acid production in Saccharomyces cerevisiae
-
Curran, K.A., et al. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab. Eng. 15 (2013), 55–66.
-
(2013)
Metab. Eng.
, vol.15
, pp. 55-66
-
-
Curran, K.A.1
-
54
-
-
84870834865
-
Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae
-
Weber, C., et al. Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 78 (2012), 8421–8430.
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, pp. 8421-8430
-
-
Weber, C.1
-
55
-
-
85006412293
-
Biological production of muconic acid via a prokaryotic 2,3-dihydroxybenzoic acid decarboxylase
-
Sun, X., et al. Biological production of muconic acid via a prokaryotic 2,3-dihydroxybenzoic acid decarboxylase. ChemSusChem 7 (2014), 2478–2481.
-
(2014)
ChemSusChem
, vol.7
, pp. 2478-2481
-
-
Sun, X.1
-
56
-
-
85011060324
-
Alkene hydrogenation activity of enoate reductases for an environmentally benign biosynthesis of adipic acid
-
Joo, J.C., et al. Alkene hydrogenation activity of enoate reductases for an environmentally benign biosynthesis of adipic acid. Chem. Sci. 8 (2016), 1406–1413.
-
(2016)
Chem. Sci.
, vol.8
, pp. 1406-1413
-
-
Joo, J.C.1
-
57
-
-
84885378866
-
Microbial monomers custom-synthesized to build true bio-derived aromatic polymers
-
Fujita, T., et al. Microbial monomers custom-synthesized to build true bio-derived aromatic polymers. Appl. Microbiol. Biotechnol. 97 (2013), 8887–8894.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, pp. 8887-8894
-
-
Fujita, T.1
-
58
-
-
84898618984
-
Cloning Rosa hybrid phenylacetaldehyde synthase for the production of 2-phenylethanol in a whole cell Escherichia coli system
-
Achmon, Y., et al. Cloning Rosa hybrid phenylacetaldehyde synthase for the production of 2-phenylethanol in a whole cell Escherichia coli system. Appl. Microbiol. Biotechnol. 98 (2014), 3603–3611.
-
(2014)
Appl. Microbiol. Biotechnol.
, vol.98
, pp. 3603-3611
-
-
Achmon, Y.1
-
59
-
-
85006974936
-
Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via Ehrlich pathway
-
Chen, X., et al. Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via Ehrlich pathway. J. Biotechnol. 242 (2017), 83–91.
-
(2017)
J. Biotechnol.
, vol.242
, pp. 83-91
-
-
Chen, X.1
-
60
-
-
84888018350
-
Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway
-
Kim, B., et al. Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Biotechnol. Bioeng. 111 (2014), 115–124.
-
(2014)
Biotechnol. Bioeng.
, vol.111
, pp. 115-124
-
-
Kim, B.1
-
61
-
-
84866285573
-
Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway
-
Koma, D., et al. Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway. Appl. Environ. Microbiol. 78 (2012), 6203–6216.
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, pp. 6203-6216
-
-
Koma, D.1
-
62
-
-
84886257717
-
Microbial biosynthesis of the anticoagulant precursor 4-hydroxycoumarin
-
Lin, Y., et al. Microbial biosynthesis of the anticoagulant precursor 4-hydroxycoumarin. Nat. Commun. 4 (2013), 2603–2610.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2603-2610
-
-
Lin, Y.1
-
63
-
-
29144524991
-
Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose
-
Wierckx, N.J., et al. Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl. Environ. Microbiol. 71 (2005), 8221–8227.
-
(2005)
Appl. Environ. Microbiol.
, vol.71
, pp. 8221-8227
-
-
Wierckx, N.J.1
-
64
-
-
84978767428
-
Broad-host-range ProUSER vectors enable fast characterization of inducible promoters and optimization of p-coumaric acid production in Pseudomonas putida KT2440
-
Calero, P., et al. Broad-host-range ProUSER vectors enable fast characterization of inducible promoters and optimization of p-coumaric acid production in Pseudomonas putida KT2440. ACS Synth. Biol. 5 (2016), 741–753.
-
(2016)
ACS Synth. Biol.
, vol.5
, pp. 741-753
-
-
Calero, P.1
-
65
-
-
84930934639
-
Expanding the chemical space of polyketides through structure-guided mutagenesis of Vitis vinifera stilbene synthase
-
Bhan, N., et al. Expanding the chemical space of polyketides through structure-guided mutagenesis of Vitis vinifera stilbene synthase. Biochimie 115 (2015), 136–143.
-
(2015)
Biochimie
, vol.115
, pp. 136-143
-
-
Bhan, N.1
-
66
-
-
84928898037
-
Enzymatic formation of a resorcylic acid by creating a structure-guided single-point mutation in stilbene synthase
-
Bhan, N., et al. Enzymatic formation of a resorcylic acid by creating a structure-guided single-point mutation in stilbene synthase. Protein Sci. 24 (2015), 167–173.
-
(2015)
Protein Sci.
, vol.24
, pp. 167-173
-
-
Bhan, N.1
-
67
-
-
79958224739
-
High-yield resveratrol production in engineered Escherichia coli
-
Lim, C.G., et al. High-yield resveratrol production in engineered Escherichia coli. Appl. Environ. Microbiol. 77 (2011), 3451–3460.
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, pp. 3451-3460
-
-
Lim, C.G.1
-
68
-
-
84946482931
-
Antimicrobial mechanism of resveratrol-trans-dihydrodimer produced from peroxidase-catalyzed oxidation of resveratrol
-
Mora-Pale, M., et al. Antimicrobial mechanism of resveratrol-trans-dihydrodimer produced from peroxidase-catalyzed oxidation of resveratrol. Biotechnol. Bioeng. 112 (2015), 2417–2428.
-
(2015)
Biotechnol. Bioeng.
, vol.112
, pp. 2417-2428
-
-
Mora-Pale, M.1
-
69
-
-
84864186953
-
Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
-
Hong, K.K., Nielsen, J., Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol. Life Sci. 69 (2012), 2671–2690.
-
(2012)
Cell Mol. Life Sci.
, vol.69
, pp. 2671-2690
-
-
Hong, K.K.1
Nielsen, J.2
-
70
-
-
31144476958
-
Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering
-
Ikeda, M., Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl. Microbiol. Biotechnol. 69 (2006), 615–626.
-
(2006)
Appl. Microbiol. Biotechnol.
, vol.69
, pp. 615-626
-
-
Ikeda, M.1
-
71
-
-
84984655327
-
Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction
-
Kogure, T., et al. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction. Metab. Eng. 38 (2016), 204–216.
-
(2016)
Metab. Eng.
, vol.38
, pp. 204-216
-
-
Kogure, T.1
-
72
-
-
84862202252
-
Benzoic acid fermentation from starch and cellulose via a plant-like β-oxidation pathway in Streptomyces maritimus
-
Noda, S., et al. Benzoic acid fermentation from starch and cellulose via a plant-like β-oxidation pathway in Streptomyces maritimus. Microb. Cell Fact. 11 (2012), 49–58.
-
(2012)
Microb. Cell Fact.
, vol.11
, pp. 49-58
-
-
Noda, S.1
-
73
-
-
84909954184
-
Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds
-
Sonoki, T., et al. Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds. J. Biotechnol. 192 (2014), 71–77.
-
(2014)
J. Biotechnol.
, vol.192
, pp. 71-77
-
-
Sonoki, T.1
-
74
-
-
84925264917
-
M-path: a compass for navigating potential metabolic pathways
-
Araki, M., et al. M-path: a compass for navigating potential metabolic pathways. Bioinformatics 31 (2015), 905–911.
-
(2015)
Bioinformatics
, vol.31
, pp. 905-911
-
-
Araki, M.1
-
75
-
-
17444382016
-
Exploring the diversity of complex metabolic networks
-
Hatzimanikatis, V., et al. Exploring the diversity of complex metabolic networks. Bioinformatics 21 (2005), 1603–1609.
-
(2005)
Bioinformatics
, vol.21
, pp. 1603-1609
-
-
Hatzimanikatis, V.1
-
76
-
-
84954357507
-
Designing intracellular metabolism for production of target compounds by introducing a heterologous metabolic reaction based on a Synechosystis sp. 6803 genome-scale model
-
Shirai, T., et al. Designing intracellular metabolism for production of target compounds by introducing a heterologous metabolic reaction based on a Synechosystis sp. 6803 genome-scale model. Microb. Cell Fact. 15 (2016), 13–18.
-
(2016)
Microb. Cell Fact.
, vol.15
, pp. 13-18
-
-
Shirai, T.1
-
77
-
-
84879190343
-
Redirecting carbon flux into malonyl-CoA to improve resveratrol titers: proof of concept for genetic interventions predicted by OptForce computational framework
-
Bhan, N., et al. Redirecting carbon flux into malonyl-CoA to improve resveratrol titers: proof of concept for genetic interventions predicted by OptForce computational framework. Chem. Eng. Sci. 103 (2013), 109–114.
-
(2013)
Chem. Eng. Sci.
, vol.103
, pp. 109-114
-
-
Bhan, N.1
-
78
-
-
80052021573
-
Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA
-
Xu, P., et al. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab. Eng. 13 (2011), 578–587.
-
(2011)
Metab. Eng.
, vol.13
, pp. 578-587
-
-
Xu, P.1
-
79
-
-
84892605897
-
Genetic engineering of Escherichia coli to enhance production of L-tryptophan
-
7587–7496
-
Wang, J., et al. Genetic engineering of Escherichia coli to enhance production of L-tryptophan. Appl. Microbiol. Biotechnol., 97, 2013 7587–7496.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
-
-
Wang, J.1
-
80
-
-
84928753819
-
Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production
-
Soma, Y., Hanai, T., Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production. Metab. Eng. 30 (2015), 7–15.
-
(2015)
Metab. Eng.
, vol.30
, pp. 7-15
-
-
Soma, Y.1
Hanai, T.2
-
81
-
-
84899628032
-
Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch
-
Soma, Y., et al. Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch. Metab. Eng. 23 (2014), 175–184.
-
(2014)
Metab. Eng.
, vol.23
, pp. 175-184
-
-
Soma, Y.1
-
82
-
-
57049159362
-
A fast, robust and tunable synthetic gene oscillator
-
Stricker, J., et al. A fast, robust and tunable synthetic gene oscillator. Nature 456 (2008), 516–519.
-
(2008)
Nature
, vol.456
, pp. 516-519
-
-
Stricker, J.1
-
83
-
-
84905668376
-
Improving fatty acids production by engineering dynamic pathway regulation and metabolic control
-
Xu, P., et al. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 11299–11304.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 11299-11304
-
-
Xu, P.1
-
84
-
-
84868252437
-
A modified Cre-lox genetic switch to dynamically control metabolic flow in Saccharomyces cerevisiae
-
Yamanishi, M., Matsuyama, T., A modified Cre-lox genetic switch to dynamically control metabolic flow in Saccharomyces cerevisiae. ACS Synth. Biol. 1 (2012), 172–180.
-
(2012)
ACS Synth. Biol.
, vol.1
, pp. 172-180
-
-
Yamanishi, M.1
Matsuyama, T.2
-
85
-
-
84934907570
-
Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum
-
Zhou, L.B., Zeng, A.P., Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum. ACS Synth. Biol. 4 (2015), 729–734.
-
(2015)
ACS Synth. Biol.
, vol.4
, pp. 729-734
-
-
Zhou, L.B.1
Zeng, A.P.2
-
86
-
-
84917699113
-
Enzyme clustering accelerates processing of intermediates through metabolic channeling
-
Castellana, M., et al. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat. Biotechnol. 32 (2014), 1011–1018.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 1011-1018
-
-
Castellana, M.1
-
87
-
-
85017503706
-
Sortase A-mediated metabolic enzyme ligation in Escherichia coli
-
Matsumoto, T., et al. Sortase A-mediated metabolic enzyme ligation in Escherichia coli. ACS Synth. Biol. 5 (2016), 1284–1289.
-
(2016)
ACS Synth. Biol.
, vol.5
, pp. 1284-1289
-
-
Matsumoto, T.1
-
88
-
-
84906248340
-
In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner
-
Sachdeva, G., et al. In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner. Nucleic Acids Res. 42 (2014), 9493–9503.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 9493-9503
-
-
Sachdeva, G.1
-
89
-
-
55549116661
-
Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene
-
Anthony, J.R., et al. Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab. Eng. 11 (2009), 13–19.
-
(2009)
Metab. Eng.
, vol.11
, pp. 13-19
-
-
Anthony, J.R.1
-
90
-
-
84865278051
-
Customized optimization of metabolic pathways by combinatorial transcriptional engineering
-
Du, J., et al. Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res., 40, 2012, e142.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. e142
-
-
Du, J.1
|