-
1
-
-
1542265814
-
13C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations
-
13C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations. Appl. Microbiol. Biotechnol. 2003, 63:407-417.
-
(2003)
Appl. Microbiol. Biotechnol.
, vol.63
, pp. 407-417
-
-
Al Zaid Siddiquee, K.1
Arauzo-Bravo, M.J.2
Shimizu, K.3
-
2
-
-
79953173626
-
Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate
-
Andexer J.N., Kendrew S.G., Nur-e-Alam M., Lazos O., Foster T.A., Zimmermann A.S., Warneck T.D., Suthar D., Coates N.J., Koehn F.E., Skotnicki J.S., Carter G.T., Gregory M.A., Martin C.J., Moss S.J., Leadlay P.F., Wilkinson B. Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate. Proc. Natl. Acad. Sci. USA 2011, 108:4776-4781. 10.1073/pnas.1015773108.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 4776-4781
-
-
Andexer, J.N.1
Kendrew, S.G.2
Nur-e-Alam, M.3
Lazos, O.4
Foster, T.A.5
Zimmermann, A.S.6
Warneck, T.D.7
Suthar, D.8
Coates, N.J.9
Koehn, F.E.10
Skotnicki, J.S.11
Carter, G.T.12
Gregory, M.A.13
Martin, C.J.14
Moss, S.J.15
Leadlay, P.F.16
Wilkinson, B.17
-
3
-
-
38049001166
-
Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
-
Atsumi S., Hanai T., Liao J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451:86-89. 10.1038/nature06450.
-
(2008)
Nature
, vol.451
, pp. 86-89
-
-
Atsumi, S.1
Hanai, T.2
Liao, J.C.3
-
4
-
-
84877256074
-
Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols
-
Avalos J.L., Fink G.R., Stephanopoulos G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat. Biotechnol. 2013, 31:335-341. 10.1038/nbt.2509.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 335-341
-
-
Avalos, J.L.1
Fink, G.R.2
Stephanopoulos, G.3
-
5
-
-
4344573757
-
Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli
-
Baez-Viveros J.L., Osuna J., Hernandez-Chavez G., Soberon X., Bolivar F., Gosset G. Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli. Biotechnol. Bioeng. 2004, 87:516-524.
-
(2004)
Biotechnol. Bioeng.
, vol.87
, pp. 516-524
-
-
Baez-Viveros, J.L.1
Osuna, J.2
Hernandez-Chavez, G.3
Soberon, X.4
Bolivar, F.5
Gosset, G.6
-
6
-
-
65449144374
-
Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli
-
Balderas-Hernandez V.E., Sabido-Ramos A., Silva P., Cabrera-Valladares N., Hernandez-Chavez G., Baez-Viveros J.L., Martinez A., Bolivar F., Gosset G. Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli. Microb. Cell. Fact. 2009, 8:19-30. 10.1186/1475-2859-8-19.
-
(2009)
Microb. Cell. Fact.
, vol.8
, pp. 19-30
-
-
Balderas-Hernandez, V.E.1
Sabido-Ramos, A.2
Silva, P.3
Cabrera-Valladares, N.4
Hernandez-Chavez, G.5
Baez-Viveros, J.L.6
Martinez, A.7
Bolivar, F.8
Gosset, G.9
-
7
-
-
0035829830
-
Microbial synthesis of p-hydroxybenzoic acid from glucose
-
Barker J.L., Frost J.W. Microbial synthesis of p-hydroxybenzoic acid from glucose. Biotechnol. Bioeng. 2001, 76:376-390.
-
(2001)
Biotechnol. Bioeng.
, vol.76
, pp. 376-390
-
-
Barker, J.L.1
Frost, J.W.2
-
8
-
-
84055200869
-
Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli
-
Bokinsky G., Peralta-Yahya P.P., George A., Holmes B.M., Steen E.J., Dietrich J., Lee T.S., Tullman-Ercek D., Voigt C.A., Simmons B.A., Keasling J.D. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc. Natl. Acad. Sci. USA. 2011, 108:19949-19954. 10.1073/pnas.1106958108.
-
(2011)
Proc. Natl. Acad. Sci. USA.
, vol.108
, pp. 19949-19954
-
-
Bokinsky, G.1
Peralta-Yahya, P.P.2
George, A.3
Holmes, B.M.4
Steen, E.J.5
Dietrich, J.6
Lee, T.S.7
Tullman-Ercek, D.8
Voigt, C.A.9
Simmons, B.A.10
Keasling, J.D.11
-
9
-
-
34547781736
-
Escherichia coli malic enzymes: two isoforms with substantial differences in kinetic properties, metabolic regulation, and structure
-
Bologna F.P., Andreo C.S., Drincovich M.F. Escherichia coli malic enzymes: two isoforms with substantial differences in kinetic properties, metabolic regulation, and structure. J. Bacteriol. 2007, 189:5937-5946.
-
(2007)
J. Bacteriol.
, vol.189
, pp. 5937-5946
-
-
Bologna, F.P.1
Andreo, C.S.2
Drincovich, M.F.3
-
10
-
-
34047148860
-
Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum
-
Brinkrolf K., Brune I., Tauch A. Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. Genet. Mol. Res. 2006, 5:773-789.
-
(2006)
Genet. Mol. Res.
, vol.5
, pp. 773-789
-
-
Brinkrolf, K.1
Brune, I.2
Tauch, A.3
-
11
-
-
84923809316
-
Biorefineries for the production of top building block chemicals and their derivatives
-
Choi S., Song C.W., Shin J.H., Lee S.Y. Biorefineries for the production of top building block chemicals and their derivatives. Metab. Eng. 2015, 28:223-239. 10.1016/j.ymben.2014.12.007.
-
(2015)
Metab. Eng.
, vol.28
, pp. 223-239
-
-
Choi, S.1
Song, C.W.2
Shin, J.H.3
Lee, S.Y.4
-
12
-
-
84886948663
-
Microbial production of short-chain alkanes
-
Choi Y.J., Lee S.Y. Microbial production of short-chain alkanes. Nature 2013, 502:571-574. 10.1038/nature12536.
-
(2013)
Nature
, vol.502
, pp. 571-574
-
-
Choi, Y.J.1
Lee, S.Y.2
-
13
-
-
0030612708
-
Menaquinone (vitamin K2) biosynthesis: overexpression, purification, and characterization of a new isochorismate synthase from Escherichia coli
-
Daruwala R., Bhattacharyya D.K., Kwon O., Meganathan R. Menaquinone (vitamin K2) biosynthesis: overexpression, purification, and characterization of a new isochorismate synthase from Escherichia coli. J. Bacteriol. 1997, 179:3133-3138.
-
(1997)
J. Bacteriol.
, vol.179
, pp. 3133-3138
-
-
Daruwala, R.1
Bhattacharyya, D.K.2
Kwon, O.3
Meganathan, R.4
-
14
-
-
84867322381
-
Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation
-
Escalante A., Salinas Cervantes A., Gosset G., Bolivar F. Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. Appl. Microbiol. Biotechnol. 2012, 94:1483-1494. 10.1007/s00253-012-4101-5.
-
(2012)
Appl. Microbiol. Biotechnol.
, vol.94
, pp. 1483-1494
-
-
Escalante, A.1
Salinas Cervantes, A.2
Gosset, G.3
Bolivar, F.4
-
15
-
-
70449715238
-
Production of aromatic compounds in bacteria
-
Gosset G. Production of aromatic compounds in bacteria. Curr. Opin. Biotechnol. 2009, 20:651-658. 10.1016/j.copbio.2009.09.012.
-
(2009)
Curr. Opin. Biotechnol.
, vol.20
, pp. 651-658
-
-
Gosset, G.1
-
16
-
-
0029764209
-
A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in Escherichia coli
-
Gosset G., Yong-Xiao J., Berry A. A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in Escherichia coli. J. Ind. Microbiol. 1996, 17:47-52.
-
(1996)
J. Ind. Microbiol.
, vol.17
, pp. 47-52
-
-
Gosset, G.1
Yong-Xiao, J.2
Berry, A.3
-
17
-
-
0034816477
-
Regulatory interactions of Csr components: the RNA binding protein CsrA activates csrB transcription in Escherichia coli
-
Gudapaty S., Suzuki K., Wang X., Babitzke P., Romeo T. Regulatory interactions of Csr components: the RNA binding protein CsrA activates csrB transcription in Escherichia coli. J. Bacteriol. 2001, 183:6017-6027.
-
(2001)
J. Bacteriol.
, vol.183
, pp. 6017-6027
-
-
Gudapaty, S.1
Suzuki, K.2
Wang, X.3
Babitzke, P.4
Romeo, T.5
-
18
-
-
33749033361
-
The structure of MbtI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase
-
Harrison A.J., Yu M., Gardenborg T., Middleditch M., Ramsay R.J., Baker E.N., Lott J.S. The structure of MbtI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase. J. Bacteriol. 2006, 188:6081-6091.
-
(2006)
J. Bacteriol.
, vol.188
, pp. 6081-6091
-
-
Harrison, A.J.1
Yu, M.2
Gardenborg, T.3
Middleditch, M.4
Ramsay, R.J.5
Baker, E.N.6
Lott, J.S.7
-
19
-
-
0043023507
-
Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products
-
Hernandez-Montalvo V., Martinez A., Hernandez-Chavez G., Bolivar F., Valle F., Gosset G. Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol. Bioeng. 2003, 83:687-694.
-
(2003)
Biotechnol. Bioeng.
, vol.83
, pp. 687-694
-
-
Hernandez-Montalvo, V.1
Martinez, A.2
Hernandez-Chavez, G.3
Bolivar, F.4
Valle, F.5
Gosset, G.6
-
20
-
-
56449105588
-
Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C
-
Jantama K., Zhang X., Moore J.C., Shanmugam K.T., Svoronos S.A., Ingram L.O. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol. Bioeng. 2008, 101:881-893. 10.1002/bit.22005.
-
(2008)
Biotechnol. Bioeng.
, vol.101
, pp. 881-893
-
-
Jantama, K.1
Zhang, X.2
Moore, J.C.3
Shanmugam, K.T.4
Svoronos, S.A.5
Ingram, L.O.6
-
21
-
-
84855694523
-
Modular engineering of L-tyrosine production in Escherichia coli
-
Juminaga D., Baidoo E.E., Redding-Johanson A.M., Batth T.S., Burd H., Mukhopadhyay A., Petzold C.J., Keasling J.D. Modular engineering of L-tyrosine production in Escherichia coli. Appl. Environ. Microbiol. 2012, 78:89-98. 10.1128/AEM.06017-11.
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, pp. 89-98
-
-
Juminaga, D.1
Baidoo, E.E.2
Redding-Johanson, A.M.3
Batth, T.S.4
Burd, H.5
Mukhopadhyay, A.6
Petzold, C.J.7
Keasling, J.D.8
-
22
-
-
27744573112
-
A global regulatory role of gluconeogenic genes in Escherichia coli revealed by transcriptome network analysis
-
Kao K.C., Tran L.M., Liao J.C. A global regulatory role of gluconeogenic genes in Escherichia coli revealed by transcriptome network analysis. J. Biol. Chem. 2005, 280:36079-36087.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 36079-36087
-
-
Kao, K.C.1
Tran, L.M.2
Liao, J.C.3
-
23
-
-
84899747343
-
Metabolic engineering of Escherichia coli for the production of phenol from glucose
-
Kim B., Park H., Na D., Lee S.Y. Metabolic engineering of Escherichia coli for the production of phenol from glucose. Biotechnol. J. 2014, 9:621-629. 10.1002/biot.201300263.
-
(2014)
Biotechnol. J.
, vol.9
, pp. 621-629
-
-
Kim, B.1
Park, H.2
Na, D.3
Lee, S.Y.4
-
24
-
-
84866285573
-
Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway
-
Koma D., Yamanaka H., Moriyoshi K., Ohmoto T., Sakai K. Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway. Appl. Environ. Microbiol. 2012, 78:6203-6216. 10.1128/AEM.01148-12.
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, pp. 6203-6216
-
-
Koma, D.1
Yamanaka, H.2
Moriyoshi, K.3
Ohmoto, T.4
Sakai, K.5
-
25
-
-
84923861016
-
Production of p-aminobenzoic acid by metabolically engineered escherichia coli
-
Koma D., Yamanaka H., Moriyoshi K., Sakai K., Masuda T., Sato Y., Toida K., Ohmoto T. Production of p-aminobenzoic acid by metabolically engineered escherichia coli. Biosci. Biotechnol. Biochem. 2014, 78:350-357. 10.1080/09168451.2014.878222.
-
(2014)
Biosci. Biotechnol. Biochem.
, vol.78
, pp. 350-357
-
-
Koma, D.1
Yamanaka, H.2
Moriyoshi, K.3
Sakai, K.4
Masuda, T.5
Sato, Y.6
Toida, K.7
Ohmoto, T.8
-
26
-
-
0032517277
-
Synthesis of vanillin from glucose
-
Li K., Frost W. Synthesis of vanillin from glucose. J. Am. Chem. Soc. 1998, 120:10545-10546.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 10545-10546
-
-
Li, K.1
Frost, W.2
-
27
-
-
84896139366
-
Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli
-
Lin Y., Sun X., Yuan Q., Yan Y. Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli. Metab. Eng. 2014, 62-69. 10.1016/j.ymben.2014.02.009.
-
(2014)
Metab. Eng.
, pp. 62-69
-
-
Lin, Y.1
Sun, X.2
Yuan, Q.3
Yan, Y.4
-
29
-
-
0023160457
-
Analysis of amino acids by gas-liquid chromatography as tert.-butyldimethylsilyl derivatives. Preparation of derivatives in a single reaction
-
MacKenzie S.L., Tenaschuk D., Fortier G. Analysis of amino acids by gas-liquid chromatography as tert.-butyldimethylsilyl derivatives. Preparation of derivatives in a single reaction. J. Chromatogr. 1987, 387:241-253.
-
(1987)
J. Chromatogr.
, vol.387
, pp. 241-253
-
-
MacKenzie, S.L.1
Tenaschuk, D.2
Fortier, G.3
-
30
-
-
0022635525
-
Analysis of amino acids as their tert.-butyldimethylsilyl derivatives by gas-liquid chromatography and mass spectrometry
-
Mawhinney T.P., Robinett R.S., Atalay A., Madson M.A. Analysis of amino acids as their tert.-butyldimethylsilyl derivatives by gas-liquid chromatography and mass spectrometry. J. Chromatogr. 1986, 358:231-242.
-
(1986)
J. Chromatogr.
, vol.358
, pp. 231-242
-
-
Mawhinney, T.P.1
Robinett, R.S.2
Atalay, A.3
Madson, M.A.4
-
31
-
-
80052027792
-
Styrene biosynthesis from glucose by engineered E. coli
-
McKenna R., Nielsen D.R. Styrene biosynthesis from glucose by engineered E. coli. Metab. Eng. 2011, 13:544-554. 10.1016/j.ymben.2011.06.005.
-
(2011)
Metab. Eng.
, vol.13
, pp. 544-554
-
-
McKenna, R.1
Nielsen, D.R.2
-
32
-
-
79957546214
-
A bacterial platform for fermentative production of plant alkaloids
-
Nakagawa A., Minami H., Kim J.S., Koyanagi T., Katayama T., Sato F., Kumagai H. A bacterial platform for fermentative production of plant alkaloids. Nat. Commun. 2011, 2:326. 10.1038/ncomms1327.
-
(2011)
Nat. Commun.
, vol.2
, pp. 326
-
-
Nakagawa, A.1
Minami, H.2
Kim, J.S.3
Koyanagi, T.4
Katayama, T.5
Sato, F.6
Kumagai, H.7
-
33
-
-
84878641167
-
Metabolic engineering of yeast for production of fuels and chemicals
-
Nielsen J., Larsson C., van Maris A., Pronk J. Metabolic engineering of yeast for production of fuels and chemicals. Curr. Opin. Biotechnol. 2013, 24:398-404. 10.1016/j.copbio.2013.03.023.
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, pp. 398-404
-
-
Nielsen, J.1
Larsson, C.2
van Maris, A.3
Pronk, J.4
-
35
-
-
84862202252
-
Benzoic acid fermentation from starch and cellulose via a plant-like β-oxidation pathway in Streptomyces maritimus
-
Noda S., Kitazono E., Tanaka T., Ogino C., Kondo A. Benzoic acid fermentation from starch and cellulose via a plant-like β-oxidation pathway in Streptomyces maritimus. Microb. Cell Fact. 2012, 11:49-58. 10.1186/1475-2859-11-49.
-
(2012)
Microb. Cell Fact.
, vol.11
, pp. 49-58
-
-
Noda, S.1
Kitazono, E.2
Tanaka, T.3
Ogino, C.4
Kondo, A.5
-
36
-
-
0037066717
-
Global expression profiling of acetate-grown Escherichia coli
-
Oh M.K., Rohlin L., Kao K.C., Liao J.C. Global expression profiling of acetate-grown Escherichia coli. J. Biol. Chem. 2002, 277:13175-13183.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 13175-13183
-
-
Oh, M.K.1
Rohlin, L.2
Kao, K.C.3
Liao, J.C.4
-
37
-
-
34249934691
-
Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation
-
Park J.H., Lee K.H., Kim T.Y., Lee S.Y. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc. Natl. Acad. Sci. USA. 2007, 104:7797-7802.
-
(2007)
Proc. Natl. Acad. Sci. USA.
, vol.104
, pp. 7797-7802
-
-
Park, J.H.1
Lee, K.H.2
Kim, T.Y.3
Lee, S.Y.4
-
38
-
-
84907362164
-
Metabolic engineering of Corynebacterium glutamicum for L-arginine production
-
Park S.H., Kim H.U., Kim T.Y., Park J.S., Kim S.S., Lee S.Y. Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat. Commun. 2014, 5:4618. 10.1038/ncomms5618.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4618
-
-
Park, S.H.1
Kim, H.U.2
Kim, T.Y.3
Park, J.S.4
Kim, S.S.5
Lee, S.Y.6
-
39
-
-
0028036558
-
Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield
-
Patnaik R., Liao J.C. Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl. Environ. Microbiol. 1994, 60:3903-3908.
-
(1994)
Appl. Environ. Microbiol.
, vol.60
, pp. 3903-3908
-
-
Patnaik, R.1
Liao, J.C.2
-
40
-
-
84865142847
-
Microbial engineering for the production of advanced biofuels
-
2012
-
Peralta-Yahya P.P., Zhang F., del Cardayre S.B., Keasling J.D. Microbial engineering for the production of advanced biofuels. Nature 2012, 488:320-328. 2012. 10.1038/nature11478.
-
(2012)
Nature
, vol.488
, pp. 320-328
-
-
Peralta-Yahya, P.P.1
Zhang, F.2
del Cardayre, S.B.3
Keasling, J.D.4
-
41
-
-
84923921660
-
Metabolic engineering strategies for microbial synthesis of oleochemicals
-
Pfleger B.F., Gossing M., Nielsen J. Metabolic engineering strategies for microbial synthesis of oleochemicals. Metab. Eng. 2015, 29:1-11. 10.1016/j.ymben.2015.01.009.
-
(2015)
Metab. Eng.
, vol.29
, pp. 1-11
-
-
Pfleger, B.F.1
Gossing, M.2
Nielsen, J.3
-
42
-
-
29544436058
-
An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems
-
Pharkya P., Maranas C.D. An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab. Eng. 2006, 8:1-13.
-
(2006)
Metab. Eng.
, vol.8
, pp. 1-13
-
-
Pharkya, P.1
Maranas, C.D.2
-
43
-
-
34249686497
-
Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene
-
Qi W.W., Vannelli T., Breinig S., Ben-Bassat A., Gatenby A.A., Haynie S.L., Sariaslani F.S. Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene. Metab. Eng. 2007, 9:268-276.
-
(2007)
Metab. Eng.
, vol.9
, pp. 268-276
-
-
Qi, W.W.1
Vannelli, T.2
Breinig, S.3
Ben-Bassat, A.4
Gatenby, A.A.5
Haynie, S.L.6
Sariaslani, F.S.7
-
44
-
-
84884693506
-
Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF
-
Rodriguez A., Martinez J.A., Baez-Viveros J.L., Flores N., Hernandez-Chavez G., Ramirez O.T., Gosset G., Bolivar F. Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF. Microb. Cell Fact. 2013, 12:86-101. 10.1186/1475-2859-12-86.
-
(2013)
Microb. Cell Fact.
, vol.12
, pp. 86-101
-
-
Rodriguez, A.1
Martinez, J.A.2
Baez-Viveros, J.L.3
Flores, N.4
Hernandez-Chavez, G.5
Ramirez, O.T.6
Gosset, G.7
Bolivar, F.8
-
45
-
-
84865281539
-
Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli
-
Santos C.N., Xiao W., Stephanopoulos G. Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli. Proc. Natl. Acad. Sci. USA. 2012, 109:13538-13543. 10.1073/pnas.1206346109.
-
(2012)
Proc. Natl. Acad. Sci. USA.
, vol.109
, pp. 13538-13543
-
-
Santos, C.N.1
Xiao, W.2
Stephanopoulos, G.3
-
46
-
-
0031020825
-
Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa
-
Serino L., Reimmann C., Visca P., Beyeler M., Chiesa V.D., Haas D. Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa. J. Bacteriol. 1997, 179:248-257.
-
(1997)
J. Bacteriol.
, vol.179
, pp. 248-257
-
-
Serino, L.1
Reimmann, C.2
Visca, P.3
Beyeler, M.4
Chiesa, V.D.5
Haas, D.6
-
47
-
-
0030017232
-
Synthetic modification of the Escherichia coli chromosome: enhancing the biocatalytic conversion of glucose into aromatic chemicals
-
Snell K.D., Draths K.M., Frost.J.W. Synthetic modification of the Escherichia coli chromosome: enhancing the biocatalytic conversion of glucose into aromatic chemicals. J. Am. Chem. Soc. 1996, 118(5605):5614. 10.1021/ja9538041.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, Issue.5605
, pp. 5614
-
-
Snell, K.D.1
Draths, K.M.2
Frost, J.W.3
-
48
-
-
84878409603
-
Metabolic engineering of Escherichia coli for the production of fumaric acid
-
Song C.W., Kim D.I., Choi S., Jang J.W., Lee S.Y. Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnol. Bioeng. 2013, 110:2025-2034. 10.1002/bit.24868.
-
(2013)
Biotechnol. Bioeng.
, vol.110
, pp. 2025-2034
-
-
Song, C.W.1
Kim, D.I.2
Choi, S.3
Jang, J.W.4
Lee, S.Y.5
-
49
-
-
84879825132
-
A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate
-
Sun X., Lin Y., Huang Q., Yuan Q., Yan Y. A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate. Appl. Environ. Microbiol. 2013, 79:4024-4030. 10.1128/AEM.00859-13.
-
(2013)
Appl. Environ. Microbiol.
, vol.79
, pp. 4024-4030
-
-
Sun, X.1
Lin, Y.2
Huang, Q.3
Yuan, Q.4
Yan, Y.5
-
50
-
-
29144524991
-
Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose
-
Wierckx N.J., Ballerstedt H., de Bont J.A., Wery J. Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl. Environ. Microbiol. 2005, 71:8221-8227.
-
(2005)
Appl. Environ. Microbiol.
, vol.71
, pp. 8221-8227
-
-
Wierckx, N.J.1
Ballerstedt, H.2
de Bont, J.A.3
Wery, J.4
-
51
-
-
84859776222
-
The future of metabolic engineering and synthetic biology: towards a systematic practice
-
Yadav V.G., De Mey M., Lim C.G., Ajikumar P.K., Stephanopoulos G. The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab. Eng. 2012, 14:233-241.
-
(2012)
Metab. Eng.
, vol.14
, pp. 233-241
-
-
Yadav, V.G.1
De Mey, M.2
Lim, C.G.3
Ajikumar, P.K.4
Stephanopoulos, G.5
-
52
-
-
84936803078
-
Engineering Escherichia coli coculture systems for the production of biochemical products
-
Zhang H., Pereira B., Li Z., Stephanopoulos G. Engineering Escherichia coli coculture systems for the production of biochemical products. Proc. Natl. Acad. Sci. USA. 2015, 112:8266-8271. 10.1073/pnas.1506781112.
-
(2015)
Proc. Natl. Acad. Sci. USA.
, vol.112
, pp. 8266-8271
-
-
Zhang, H.1
Pereira, B.2
Li, Z.3
Stephanopoulos, G.4
-
53
-
-
84876676603
-
Engineering E. coli for caffeic acid biosynthesis from renewable sugars
-
Zhang H., Stephanopoulos G. Engineering E. coli for caffeic acid biosynthesis from renewable sugars. Appl. Microbiol. Biotechnol. 2013, 97:3333-3341. 10.1007/s00253-012-4544-8.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, pp. 3333-3341
-
-
Zhang, H.1
Stephanopoulos, G.2
-
54
-
-
79551490770
-
L-malate production by metabolically engineered Escherichia coli
-
Zhang X., Wang X., Shanmugam K.T., Ingram L.O. L-malate production by metabolically engineered Escherichia coli. Appl. Environ. Microbiol. 2011, 77:427-434. 10.1128/AEM.01971-10.
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, pp. 427-434
-
-
Zhang, X.1
Wang, X.2
Shanmugam, K.T.3
Ingram, L.O.4
-
55
-
-
15244361841
-
Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for D-lactate production under microaerobic condition
-
Zhu J., Shimizu K. Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for D-lactate production under microaerobic condition. Metab. Eng. 2005, 7:104-115.
-
(2005)
Metab. Eng.
, vol.7
, pp. 104-115
-
-
Zhu, J.1
Shimizu, K.2
|