-
1
-
-
84970029044
-
Microbial production of specialty organic acids from renewable and waste materials
-
Alonso S., Rendueles M., Diaz M. Microbial production of specialty organic acids from renewable and waste materials. Crit Rev Biotechnol 2014, 10.3109/07388551.2014.904269.
-
(2014)
Crit Rev Biotechnol
-
-
Alonso, S.1
Rendueles, M.2
Diaz, M.3
-
2
-
-
84923868543
-
Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products
-
Becker J., Wittmann C. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem 2015, 54:3328-3350.
-
(2015)
Angew Chem
, vol.54
, pp. 3328-3350
-
-
Becker, J.1
Wittmann, C.2
-
3
-
-
84905366023
-
From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum
-
Kind S., Neubauer S., Becker J., Yamamoto M., Völkert M., Abendroth G.V., Zelder O., Wittmann C. From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab Eng 2014, 25:113-123.
-
(2014)
Metab Eng
, vol.25
, pp. 113-123
-
-
Kind, S.1
Neubauer, S.2
Becker, J.3
Yamamoto, M.4
Völkert, M.5
Abendroth, G.V.6
Zelder, O.7
Wittmann, C.8
-
4
-
-
84876471078
-
Metabolic engineering of industrial platform microorganisms for biorefinery applications - optimization of substrate spectrum and process robustness by rational and evolutive strategies
-
Buschke N., Schäfer R., Becker J., Wittmann C. Metabolic engineering of industrial platform microorganisms for biorefinery applications - optimization of substrate spectrum and process robustness by rational and evolutive strategies. Bioresour Technol 2013, 135:544-554.
-
(2013)
Bioresour Technol
, vol.135
, pp. 544-554
-
-
Buschke, N.1
Schäfer, R.2
Becker, J.3
Wittmann, C.4
-
5
-
-
84887624541
-
Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces
-
Liu L., Redden H., Alper H.S. Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces. Curr Opin Biotechnol 2013, 24:1023-1030.
-
(2013)
Curr Opin Biotechnol
, vol.24
, pp. 1023-1030
-
-
Liu, L.1
Redden, H.2
Alper, H.S.3
-
6
-
-
84882921508
-
Systems metabolic engineering of Escherichia coli for chemicals, materials, biofuels, and pharmaceuticals
-
Springer, C. Wittmann, S.Y. Lee (Eds.)
-
Na D., Park J.H., Jang Y.S., Lee J.W., Lee S.Y. Systems metabolic engineering of Escherichia coli for chemicals, materials, biofuels, and pharmaceuticals. Systems Metabolic Engineering 2012, 117-149. Springer. C. Wittmann, S.Y. Lee (Eds.).
-
(2012)
Systems Metabolic Engineering
, pp. 117-149
-
-
Na, D.1
Park, J.H.2
Jang, Y.S.3
Lee, J.W.4
Lee, S.Y.5
-
7
-
-
84884410620
-
Glycolic acid production in the engineered yeasts Saccharomyces cerevisiae and Kluyveromyces lactis
-
Koivistoinen O.M., Kuivanen J., Barth D., Turkia H., Pitkanen J.P., Penttila M., Richard P. Glycolic acid production in the engineered yeasts Saccharomyces cerevisiae and Kluyveromyces lactis. Microb Cell Factories 2013, 12:82.
-
(2013)
Microb Cell Factories
, vol.12
, pp. 82
-
-
Koivistoinen, O.M.1
Kuivanen, J.2
Barth, D.3
Turkia, H.4
Pitkanen, J.P.5
Penttila, M.6
Richard, P.7
-
8
-
-
84920258605
-
Enhanced bioconversion of ethylene glycol to glycolic acid by a newly isolated Burkholderia sp. EG13
-
Gao X., Ma Z., Yang L., Ma J. Enhanced bioconversion of ethylene glycol to glycolic acid by a newly isolated Burkholderia sp. EG13. Appl Biochem Biotechnol 2014, 174:1572-1580.
-
(2014)
Appl Biochem Biotechnol
, vol.174
, pp. 1572-1580
-
-
Gao, X.1
Ma, Z.2
Yang, L.3
Ma, J.4
-
9
-
-
77949284598
-
Bioproduction of glycolic acid from glycolonitrile with a new bacterial isolate of Alcaligenes sp. ECU0401
-
He Y.C., Xu J.H., Su J.H., Zhou L. Bioproduction of glycolic acid from glycolonitrile with a new bacterial isolate of Alcaligenes sp. ECU0401. Appl Biochem Biotechnol 2010, 160:1428-1440.
-
(2010)
Appl Biochem Biotechnol
, vol.160
, pp. 1428-1440
-
-
He, Y.C.1
Xu, J.H.2
Su, J.H.3
Zhou, L.4
-
10
-
-
68349150312
-
High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production
-
Wei G., Yang X., Gan T., Zhou W., Lin J., Wei D. High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production. J Ind Microbiol Biotechnol 2009, 36:1029-1034.
-
(2009)
J Ind Microbiol Biotechnol
, vol.36
, pp. 1029-1034
-
-
Wei, G.1
Yang, X.2
Gan, T.3
Zhou, W.4
Lin, J.5
Wei, D.6
-
11
-
-
84938831453
-
Metabolic engineering of Corynebacterium glutamicum for glycolate production
-
Zahoor A., Otten A., Wendisch V.F. Metabolic engineering of Corynebacterium glutamicum for glycolate production. J Biotechnol 2014, 10.1016/j.jbiotec.2013.12.020.
-
(2014)
J Biotechnol
-
-
Zahoor, A.1
Otten, A.2
Wendisch, V.F.3
-
12
-
-
84873978248
-
Bio-based production of organic acids with Corynebacterium glutamicum
-
Wieschalka S., Blombach B., Bott M., Eikmanns B.J. Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol 2013, 6:87-102.
-
(2013)
Microb Biotechnol
, vol.6
, pp. 87-102
-
-
Wieschalka, S.1
Blombach, B.2
Bott, M.3
Eikmanns, B.J.4
-
14
-
-
55049095515
-
High glycolytic flux improves pyruvate production by a metabolically engineered Escherichia coli strain
-
Zhu Y., Eiteman M.A., Altman R., Altman E. High glycolytic flux improves pyruvate production by a metabolically engineered Escherichia coli strain. Appl Environ Microbiol 2008, 74:6649-6655.
-
(2008)
Appl Environ Microbiol
, vol.74
, pp. 6649-6655
-
-
Zhu, Y.1
Eiteman, M.A.2
Altman, R.3
Altman, E.4
-
15
-
-
0345869655
-
Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast
-
van Maris A.J., Geertman J.M., Vermeulen A., Groothuizen M.K., Winkler A.A., Piper M.D., van Dijken J.P., Pronk J.T. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl Environ Microbiol 2004, 70:159-166.
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 159-166
-
-
van Maris, A.J.1
Geertman, J.M.2
Vermeulen, A.3
Groothuizen, M.K.4
Winkler, A.A.5
Piper, M.D.6
van Dijken, J.P.7
Pronk, J.T.8
-
16
-
-
84923809316
-
Biorefineries for the production of top building block chemicals and their derivatives
-
Choi S., Song C.W., Shin J.H., Lee S.Y. Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 2015, 28:223-239.
-
(2015)
Metab Eng
, vol.28
, pp. 223-239
-
-
Choi, S.1
Song, C.W.2
Shin, J.H.3
Lee, S.Y.4
-
17
-
-
84890275446
-
Efficient production of l-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources
-
Xu K., Xu P. Efficient production of l-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources. Bioresour Technol 2014, 153:23-29.
-
(2014)
Bioresour Technol
, vol.153
, pp. 23-29
-
-
Xu, K.1
Xu, P.2
-
18
-
-
84869874625
-
Highly accumulative production of l(+)-lactate from glucose by crystallization fermentation with immobilized Rhizopus oryzae
-
Yamane T., Tanaka R. Highly accumulative production of l(+)-lactate from glucose by crystallization fermentation with immobilized Rhizopus oryzae. J Biosci Bioeng 2013, 115:90-95.
-
(2013)
J Biosci Bioeng
, vol.115
, pp. 90-95
-
-
Yamane, T.1
Tanaka, R.2
-
19
-
-
84937765407
-
Overexpression of the phosphofructokinase encoding gene is crucial for achieving high production of d-lactate in Corynebacterium glutamicum under oxygen deprivation
-
Tsuge Y., Yamamoto S., Kato N., Suda M., Vertes A.A., Yukawa H., Inui M. Overexpression of the phosphofructokinase encoding gene is crucial for achieving high production of d-lactate in Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 2015, 99:4679-4689.
-
(2015)
Appl Microbiol Biotechnol
, vol.99
, pp. 4679-4689
-
-
Tsuge, Y.1
Yamamoto, S.2
Kato, N.3
Suda, M.4
Vertes, A.A.5
Yukawa, H.6
Inui, M.7
-
20
-
-
84929180190
-
Enhancing the light-driven production of d-lactate by engineering cyanobacterium using a combinational strategy
-
Li C., Tao F., Ni J., Wang Y., Yao F., Xu P. Enhancing the light-driven production of d-lactate by engineering cyanobacterium using a combinational strategy. Sci Rep 2015, 5.
-
(2015)
Sci Rep
, vol.5
-
-
Li, C.1
Tao, F.2
Ni, J.3
Wang, Y.4
Yao, F.5
Xu, P.6
-
22
-
-
84876676068
-
Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical
-
Valdehuesa K.N., Liu H., Nisola G.M., Chung W.J., Lee S.H., Park S.J. Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical. Appl Microbiol Biotechnol 2013, 97:3309-3321.
-
(2013)
Appl Microbiol Biotechnol
, vol.97
, pp. 3309-3321
-
-
Valdehuesa, K.N.1
Liu, H.2
Nisola, G.M.3
Chung, W.J.4
Lee, S.H.5
Park, S.J.6
-
23
-
-
84893508699
-
Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli
-
Kim K., Kim S.K., Park Y.C., Seo J.H. Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli. Bioresour Technol 2014, 156:170-175.
-
(2014)
Bioresour Technol
, vol.156
, pp. 170-175
-
-
Kim, K.1
Kim, S.K.2
Park, Y.C.3
Seo, J.H.4
-
24
-
-
84920159889
-
Metabolic engineering of 3-hydroxypropionic acid biosynthesis in Escherichia coli
-
Chu H.S., Kim Y.S., Lee C.M., Lee J.H., Jung W.S., Ahn J.-H., Song S.H., Choi I.S., Cho K.M. Metabolic engineering of 3-hydroxypropionic acid biosynthesis in Escherichia coli. Biotechnol Bioeng 2015, 112:356-364.
-
(2015)
Biotechnol Bioeng
, vol.112
, pp. 356-364
-
-
Chu, H.S.1
Kim, Y.S.2
Lee, C.M.3
Lee, J.H.4
Jung, W.S.5
Ahn, J.-H.6
Song, S.H.7
Choi, I.S.8
Cho, K.M.9
-
25
-
-
70350497694
-
Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol
-
Rathnasingh C., Raj S.M., Jo J.E., Park S. Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol. Biotechnol Bioeng 2009, 104:729-739.
-
(2009)
Biotechnol Bioeng
, vol.104
, pp. 729-739
-
-
Rathnasingh, C.1
Raj, S.M.2
Jo, J.E.3
Park, S.4
-
26
-
-
84894635303
-
Methods for producing 3-hydroxypropionic acid and other products
-
Lynch MD, Gill RT, Lipscomb TEW: Methods for producing 3-hydroxypropionic acid and other products, US20140045231 A1. 2014.
-
(2014)
-
-
Lynch, M.D.1
Gill, R.T.2
Lipscomb, T.E.W.3
-
27
-
-
84909594451
-
Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via beta-alanine
-
Borodina I., Kildegaard K.R., Jensen N.B., Blicher T.H., Maury J., Sherstyk S., Schneider K., Lamosa P., Herrgard M.J., Rosenstand I., et al. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via beta-alanine. Metab Eng 2015, 27:57-64.
-
(2015)
Metab Eng
, vol.27
, pp. 57-64
-
-
Borodina, I.1
Kildegaard, K.R.2
Jensen, N.B.3
Blicher, T.H.4
Maury, J.5
Sherstyk, S.6
Schneider, K.7
Lamosa, P.8
Herrgard, M.J.9
Rosenstand, I.10
-
28
-
-
54849433352
-
Succinic acid production by a newly isolated bacterium
-
Scholten E., Dägele D. Succinic acid production by a newly isolated bacterium. Biotechnol Lett 2008, 30:2143-2146.
-
(2008)
Biotechnol Lett
, vol.30
, pp. 2143-2146
-
-
Scholten, E.1
Dägele, D.2
-
29
-
-
77956402893
-
Fermentative Herstellung von Bernsteinsäure mit Basfia succiniciproducens DD1 in Serumflaschen
-
Stellmacher R., Hangebrauk J., von Abendroth G., Scholten E., Wittmann C. Fermentative Herstellung von Bernsteinsäure mit Basfia succiniciproducens DD1 in Serumflaschen. Chem Ing Tech 2010, 82:1223-1229.
-
(2010)
Chem Ing Tech
, vol.82
, pp. 1223-1229
-
-
Stellmacher, R.1
Hangebrauk, J.2
von Abendroth, G.3
Scholten, E.4
Wittmann, C.5
-
30
-
-
84905669535
-
Towards large scale fermentative production of succinic acid
-
Jansen M.L., van Gulik W.M. Towards large scale fermentative production of succinic acid. Curr Opin Biotechnol 2014, 30:190-197.
-
(2014)
Curr Opin Biotechnol
, vol.30
, pp. 190-197
-
-
Jansen, M.L.1
van Gulik, W.M.2
-
31
-
-
84893482649
-
Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value
-
Yan D., Wang C., Zhou J., Liu Y., Yang M., Xing J. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresour Technol 2014, 156:232-239.
-
(2014)
Bioresour Technol
, vol.156
, pp. 232-239
-
-
Yan, D.1
Wang, C.2
Zhou, J.3
Liu, Y.4
Yang, M.5
Xing, J.6
-
32
-
-
84898840473
-
Recent advances in production of succinic acid from lignocellulosic biomass
-
Akhtar J., Idris A., Abd Aziz R. Recent advances in production of succinic acid from lignocellulosic biomass. Appl Microbiol Biotechnol 2014, 98:987-1000.
-
(2014)
Appl Microbiol Biotechnol
, vol.98
, pp. 987-1000
-
-
Akhtar, J.1
Idris, A.2
Abd Aziz, R.3
-
33
-
-
84884531356
-
Systems-wide analysis and engineering of metabolic pathway fluxes in bio-succinate producing Basfia succiniciproducens
-
Becker J., Reinefeld J., Stellmacher R., Schäfer R., Lange A., Meyer H., Lalk M., Zelder O., von Abendroth G., Schröder H., et al. Systems-wide analysis and engineering of metabolic pathway fluxes in bio-succinate producing Basfia succiniciproducens. Biotechnol Bioeng 2013, 110:3013-3023.
-
(2013)
Biotechnol Bioeng
, vol.110
, pp. 3013-3023
-
-
Becker, J.1
Reinefeld, J.2
Stellmacher, R.3
Schäfer, R.4
Lange, A.5
Meyer, H.6
Lalk, M.7
Zelder, O.8
von Abendroth, G.9
Schröder, H.10
-
34
-
-
84925516067
-
Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources
-
Tsuge Y., Hasunuma T., Kondo A. Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources. J Ind Microbiol Biotechnol 2015, 42:375-389.
-
(2015)
J Ind Microbiol Biotechnol
, vol.42
, pp. 375-389
-
-
Tsuge, Y.1
Hasunuma, T.2
Kondo, A.3
-
35
-
-
84877271686
-
Improved succinate production by metabolic engineering
-
Cheng K.K., Wang G.Y., Zeng J., Zhang J.A. Improved succinate production by metabolic engineering. BioMed Res Int 2013, 2013:538790.
-
(2013)
BioMed Res Int
, vol.2013
, pp. 538790
-
-
Cheng, K.K.1
Wang, G.Y.2
Zeng, J.3
Zhang, J.A.4
-
36
-
-
84861139695
-
Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate
-
Litsanov B., Brocker M., Bott M. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl Environ Microbiol 2012, 78:3325-3337.
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 3325-3337
-
-
Litsanov, B.1
Brocker, M.2
Bott, M.3
-
37
-
-
78650987469
-
Long-term continuous adaptation of Escherichia coli to high succinate stress and transcriptome analysis of the tolerant strain
-
Kwon Y.D., Kim S., Lee S.Y., Kim P. Long-term continuous adaptation of Escherichia coli to high succinate stress and transcriptome analysis of the tolerant strain. J Biosci Bioeng 2011, 111:26-30.
-
(2011)
J Biosci Bioeng
, vol.111
, pp. 26-30
-
-
Kwon, Y.D.1
Kim, S.2
Lee, S.Y.3
Kim, P.4
-
38
-
-
84892762012
-
Directed pathway evolution of the glyoxylate shunt in Escherichia coli for improved aerobic succinate production from glycerol
-
Li N., Zhang B., Chen T., Wang Z., Tang Y.-J., Zhao X. Directed pathway evolution of the glyoxylate shunt in Escherichia coli for improved aerobic succinate production from glycerol. J Ind Microbiol Biotechnol 2013, 40:1461-1475.
-
(2013)
J Ind Microbiol Biotechnol
, vol.40
, pp. 1461-1475
-
-
Li, N.1
Zhang, B.2
Chen, T.3
Wang, Z.4
Tang, Y.-J.5
Zhao, X.6
-
39
-
-
84891838191
-
Succinic acid production from corn stalk hydrolysate in an E. coli mutant generated by atmospheric and room-temperature plasmas and metabolic evolution strategies
-
Jiang M., Wan Q., Liu R., Liang L., Chen X., Wu M., Zhang H., Chen K., Ma J., Wei P., et al. Succinic acid production from corn stalk hydrolysate in an E. coli mutant generated by atmospheric and room-temperature plasmas and metabolic evolution strategies. J Ind Microbiol Biotechnol 2014, 41:115-123.
-
(2014)
J Ind Microbiol Biotechnol
, vol.41
, pp. 115-123
-
-
Jiang, M.1
Wan, Q.2
Liu, R.3
Liang, L.4
Chen, X.5
Wu, M.6
Zhang, H.7
Chen, K.8
Ma, J.9
Wei, P.10
-
40
-
-
84942551397
-
Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain
-
Huang X., Lu X., Li Y., Li X., Li J.J. Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain. Microb Cell Factories 2014, 13:119.
-
(2014)
Microb Cell Factories
, vol.13
, pp. 119
-
-
Huang, X.1
Lu, X.2
Li, Y.3
Li, X.4
Li, J.J.5
-
41
-
-
84916625236
-
Influence of the pH on the itaconic acid production with Aspergillus terreus
-
Hevekerl A., Kuenz A., Vorlop K.D. Influence of the pH on the itaconic acid production with Aspergillus terreus. Appl Microbiol Biotechnol 2014, 98:10005-10012.
-
(2014)
Appl Microbiol Biotechnol
, vol.98
, pp. 10005-10012
-
-
Hevekerl, A.1
Kuenz, A.2
Vorlop, K.D.3
-
42
-
-
84941215758
-
Itaconic acid production by microorganisms: a review
-
Hajian H., Yusoff W.M.W. Itaconic acid production by microorganisms: a review. Curr Res J Biol Sci 2015, 7:37-42.
-
(2015)
Curr Res J Biol Sci
, vol.7
, pp. 37-42
-
-
Hajian, H.1
Yusoff, W.M.W.2
-
43
-
-
84895929764
-
Influence of carbon and nitrogen concentration on itaconic acid production by the smut fungus Ustilago maydis
-
Maassen N., Panakova M., Wierckx N., Geiser E., Zimmermann M., Bölker M., Klinner U., Blank L.M. Influence of carbon and nitrogen concentration on itaconic acid production by the smut fungus Ustilago maydis. Eng Life Sci 2014, 14:129-134.
-
(2014)
Eng Life Sci
, vol.14
, pp. 129-134
-
-
Maassen, N.1
Panakova, M.2
Wierckx, N.3
Geiser, E.4
Zimmermann, M.5
Bölker, M.6
Klinner, U.7
Blank, L.M.8
-
44
-
-
84931420611
-
Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli
-
Yu J.-L., Xia X.-X., Zhong J.-J., Qian Z.-G. Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli. Biotechnol Bioeng 2014, 111:2580-2586.
-
(2014)
Biotechnol Bioeng
, vol.111
, pp. 2580-2586
-
-
Yu, J.-L.1
Xia, X.-X.2
Zhong, J.-J.3
Qian, Z.-G.4
-
45
-
-
84881028723
-
Toward biotechnological production of adipic acid and precursors from biorenewables
-
Polen T., Spelberg M., Bott M. Toward biotechnological production of adipic acid and precursors from biorenewables. J Biotechnol 2013, 167:75-84.
-
(2013)
J Biotechnol
, vol.167
, pp. 75-84
-
-
Polen, T.1
Spelberg, M.2
Bott, M.3
-
46
-
-
84856577901
-
PH-stat fed-batch process to enhance the production of cis,cis-muconate from benzoate by Pseudomonas putida KT2440-JD1
-
van Duuren J.B., Wijte D., Karge B., dos Santos V.A., Yang Y., Mars A.E., Eggink G. pH-stat fed-batch process to enhance the production of cis,cis-muconate from benzoate by Pseudomonas putida KT2440-JD1. Biotechnol Progr 2012, 28:85-92.
-
(2012)
Biotechnol Progr
, vol.28
, pp. 85-92
-
-
van Duuren, J.B.1
Wijte, D.2
Karge, B.3
dos Santos, V.A.4
Yang, Y.5
Mars, A.E.6
Eggink, G.7
-
47
-
-
84900526615
-
Biotechnological production of muconic acid: current status and future prospects
-
Xie N.Z., Liang H., Huang R.B., Xu P. Biotechnological production of muconic acid: current status and future prospects. Biotechnol Adv 2014, 32:615-622.
-
(2014)
Biotechnol Adv
, vol.32
, pp. 615-622
-
-
Xie, N.Z.1
Liang, H.2
Huang, R.B.3
Xu, P.4
-
48
-
-
79952810842
-
High-yield production of cis,cis-muconic acid from catechol in aqueous solution by biocatalyst
-
Kaneko A., Ishii Y., Kirimura K. High-yield production of cis,cis-muconic acid from catechol in aqueous solution by biocatalyst. Chem Lett 2011, 40:381-383.
-
(2011)
Chem Lett
, vol.40
, pp. 381-383
-
-
Kaneko, A.1
Ishii, Y.2
Kirimura, K.3
-
49
-
-
84929401437
-
Adipic acid production from lignin
-
Vardon D.R., Franden M.A., Johnson C.W., Karp E.M., Guarnieri M.T., Linger J.G., Salm M.J., Strathmann T.J., Beckham G.T. Adipic acid production from lignin. Energy Environ Sci 2015, 8:617-628.
-
(2015)
Energy Environ Sci
, vol.8
, pp. 617-628
-
-
Vardon, D.R.1
Franden, M.A.2
Johnson, C.W.3
Karp, E.M.4
Guarnieri, M.T.5
Linger, J.G.6
Salm, M.J.7
Strathmann, T.J.8
Beckham, G.T.9
-
50
-
-
84879825132
-
A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate
-
Sun X., Lin Y., Huang Q., Yuan Q., Yan Y. A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate. Appl Environ Microbiol 2013, 79:4024-4030.
-
(2013)
Appl Environ Microbiol
, vol.79
, pp. 4024-4030
-
-
Sun, X.1
Lin, Y.2
Huang, Q.3
Yuan, Q.4
Yan, Y.5
-
51
-
-
84875265625
-
Metabolic engineering of muconic acid production in Saccharomyces cerevisiae
-
Curran K.A., Leavitt J.M., Karim A.S., Alper H.S. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng 2013, 15:55-66.
-
(2013)
Metab Eng
, vol.15
, pp. 55-66
-
-
Curran, K.A.1
Leavitt, J.M.2
Karim, A.S.3
Alper, H.S.4
-
52
-
-
84870834865
-
Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae
-
Weber C., Bruckner C., Weinreb S., Lehr C., Essl C., Boles E. Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Appl Environ Microbiol 2012, 78:8421-8430.
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 8421-8430
-
-
Weber, C.1
Bruckner, C.2
Weinreb, S.3
Lehr, C.4
Essl, C.5
Boles, E.6
-
53
-
-
84939989309
-
Muconic acid production from glucose using enterobactin precursors in Escherichia coli
-
Wang J., Zheng P. Muconic acid production from glucose using enterobactin precursors in Escherichia coli. J Ind Microbiol Biotechnol 2015, 42:701-709.
-
(2015)
J Ind Microbiol Biotechnol
, vol.42
, pp. 701-709
-
-
Wang, J.1
Zheng, P.2
-
54
-
-
0026636011
-
Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids
-
Picataggio S., Rohrer T., Deanda K., Lanning D., Reynolds R., Mielenz J., Eirich L.D. Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Bio/Technology 1992, 10:894-898.
-
(1992)
Bio/Technology
, vol.10
, pp. 894-898
-
-
Picataggio, S.1
Rohrer, T.2
Deanda, K.3
Lanning, D.4
Reynolds, R.5
Mielenz, J.6
Eirich, L.D.7
-
55
-
-
84867209510
-
Systems and synthetic metabolic engineering for amino acid production - the heartbeat of industrial strain development
-
Becker J., Wittmann C. Systems and synthetic metabolic engineering for amino acid production - the heartbeat of industrial strain development. Curr Opin Biotechnol 2012, 23:718-726.
-
(2012)
Curr Opin Biotechnol
, vol.23
, pp. 718-726
-
-
Becker, J.1
Wittmann, C.2
-
56
-
-
84864801619
-
Bio-based production of chemicals, materials and fuels - Corynebacterium glutamicum as versatile cell factory
-
Becker J., Wittmann C. Bio-based production of chemicals, materials and fuels - Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 2012, 23:631-640.
-
(2012)
Curr Opin Biotechnol
, vol.23
, pp. 631-640
-
-
Becker, J.1
Wittmann, C.2
-
57
-
-
84940783214
-
Method for producing high amount of glycolic acid by fermentation
-
US 13/258, 366
-
Dischert W, Soucaille P, Method for producing high amount of glycolic acid by fermentation, US 13/258, 366. 2015.
-
(2015)
-
-
Dischert, W.1
Soucaille, P.2
-
58
-
-
84870155643
-
Co-production of 3-hydroxypropionic acid and 1,3-propanediol by Klebseilla pneumoniae expressing aldH under microaerobic conditions
-
Huang Y., Li Z., Shimizu K., Ye Q. Co-production of 3-hydroxypropionic acid and 1,3-propanediol by Klebseilla pneumoniae expressing aldH under microaerobic conditions. Bioresour Technol 2013, 128:505-512.
-
(2013)
Bioresour Technol
, vol.128
, pp. 505-512
-
-
Huang, Y.1
Li, Z.2
Shimizu, K.3
Ye, Q.4
-
60
-
-
84899569751
-
Simultaneous saccharification and fermentation of cassava to succinic acid by Escherichia coli NZN111
-
Chen C., Ding S., Wang D., Li Z., Ye Q. Simultaneous saccharification and fermentation of cassava to succinic acid by Escherichia coli NZN111. Bioresour Technol 2014, 163:100-105.
-
(2014)
Bioresour Technol
, vol.163
, pp. 100-105
-
-
Chen, C.1
Ding, S.2
Wang, D.3
Li, Z.4
Ye, Q.5
-
61
-
-
84925183205
-
Production of itaconic acid using metabolically engineered Escherichia coli
-
Okamoto S., Chin T., Hiratsuka K., Aso Y., Tanaka Y., Takahashi T., Ohara H. Production of itaconic acid using metabolically engineered Escherichia coli. J Gen Appl Microbiol 2014, 60:191-197.
-
(2014)
J Gen Appl Microbiol
, vol.60
, pp. 191-197
-
-
Okamoto, S.1
Chin, T.2
Hiratsuka, K.3
Aso, Y.4
Tanaka, Y.5
Takahashi, T.6
Ohara, H.7
|