-
1
-
-
84904751060
-
NAD(+ ) and sirtuins in aging and disease
-
Imai, S., Guarente, L. NAD(+ ) and sirtuins in aging and disease. Trends in Cell Biol. 24, 464-471 (2014).
-
(2014)
Trends in Cell Biol.
, vol.24
, pp. 464-471
-
-
Imai, S.1
Guarente, L.2
-
2
-
-
84891848670
-
Small-molecule allosteric activators of sirtuins
-
Sinclair, D. A., Guarente, L. Small-Molecule Allosteric Activators of Sirtuins. Annu. Rev. Pharmacol. 54, 363-380 (2014).
-
(2014)
Annu. Rev. Pharmacol.
, vol.54
, pp. 363-380
-
-
Sinclair, D.A.1
Guarente, L.2
-
3
-
-
84883490707
-
Sirtuins and ageing-new findings
-
Guarente, L. Sirtuins and ageing-new findings. EMBO Rep. 14, 750-750 (2013).
-
(2013)
EMBO Rep.
, vol.14
, pp. 750
-
-
Guarente, L.1
-
4
-
-
84896739647
-
Small molecule SIRT1 activators for the treatment of aging and age-related diseases
-
Hubbard, B. P., Sinclair, D. A. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol. Sci. 35, 146-154 (2014).
-
(2014)
Trends Pharmacol. Sci.
, vol.35
, pp. 146-154
-
-
Hubbard, B.P.1
Sinclair, D.A.2
-
5
-
-
84885355365
-
Calorie restriction and sirtuins revisited
-
Guarente, L. Calorie restriction and sirtuins revisited. Genes Dev. 27, 2072-2085 (2013).
-
(2013)
Genes Dev.
, vol.27
, pp. 2072-2085
-
-
Guarente, L.1
-
6
-
-
13944253348
-
Calorie restriction-the SIR2 connection
-
Guarente, L., Picard, F. Calorie restriction-the SIR2 connection. Cell 120, 473-482 (2005).
-
(2005)
Cell
, vol.120
, pp. 473-482
-
-
Guarente, L.1
Picard, F.2
-
7
-
-
84861852370
-
Are sirtuins viable targets for improving healthspan and lifespan?
-
Baur, J. A., Ungvari, Z., Minor, R. K., Le Couteur, D. G., de Cabo, R. Are sirtuins viable targets for improving healthspan and lifespan? Nat. Rev. Drug Discovery 11, 443-461 (2012).
-
(2012)
Nat. Rev. Drug Discovery
, vol.11
, pp. 443-461
-
-
Baur, J.A.1
Ungvari, Z.2
Minor, R.K.3
Le Couteur, D.G.4
De Cabo, R.5
-
8
-
-
28844469898
-
Increase in activity during calorie restriction requires Sirt1
-
Chen, D., Steele, A. D., Lindquist, S., Guarente, L. Increase in activity during calorie restriction requires Sirt1. Science 310, 1641-1641 (2005).
-
(2005)
Science
, vol.310
, pp. 1641
-
-
Chen, D.1
Steele, A.D.2
Lindquist, S.3
Guarente, L.4
-
9
-
-
52749091816
-
SirT1 gain of function increases energy efficiency and prevents diabetes in mice
-
Banks, A. S. et al. SirT1 Gain of Function Increases Energy Efficiency and Prevents Diabetes in Mice. Cell Metab. 8, 333-341 (2008).
-
(2008)
Cell Metab.
, vol.8
, pp. 333-341
-
-
Banks, A.S.1
-
10
-
-
36248975293
-
SIRT1 transgenic mice show phenotypes resembling calorie restriction
-
Bordone, L. et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6, 759-767 (2007).
-
(2007)
Aging Cell
, vol.6
, pp. 759-767
-
-
Bordone, L.1
-
11
-
-
84883476818
-
Sirt1 extends life span and delays aging in mice through the regulation of Nk2 Homeobox 1 in the DMH and LH
-
Satoh, A. et al. Sirt1 Extends Life Span and Delays Aging in Mice through the Regulation of Nk2 Homeobox 1 in the DMH and LH. Cell Metab. 18, 416-430 (2013).
-
(2013)
Cell Metab.
, vol.18
, pp. 416-430
-
-
Satoh, A.1
-
12
-
-
78650758398
-
Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer
-
Herranz, D. et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 1, 3 (2010).
-
(2010)
Nat. Commun.
, vol.1
, pp. 3
-
-
Herranz, D.1
-
13
-
-
84903610355
-
Systemic regulation of mammalian ageing and longevity by brain sirtuins
-
Satoh, A., Imai, S. I. Systemic regulation of mammalian ageing and longevity by brain sirtuins. Nat. Commun. 5, 4211 (2014).
-
(2014)
Nat. Commun.
, vol.5
, pp. 4211
-
-
Satoh, A.1
Imai, S.I.2
-
14
-
-
3142740860
-
Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
-
Cohen, H. Y. et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390-392 (2004).
-
(2004)
Science
, vol.305
, pp. 390-392
-
-
Cohen, H.Y.1
-
15
-
-
46249100836
-
Tissue-specific regulation of SIRT1 by calorie restriction
-
Chen, D. et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 22, 1753-1757 (2008).
-
(2008)
Genes Dev.
, vol.22
, pp. 1753-1757
-
-
Chen, D.1
-
16
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1 alpha and SIRT1
-
Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1 alpha and SIRT1. Nature 434, 113-118 (2005).
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
-
17
-
-
80555142897
-
Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction
-
Schenk, S. et al. Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J. Clin. Invest. 121, 4281-4288 (2011).
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 4281-4288
-
-
Schenk, S.1
-
18
-
-
77951157657
-
Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney
-
Kume, S. et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest. 120, 1043-1055 (2010).
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 1043-1055
-
-
Kume, S.1
-
19
-
-
33745962138
-
Therapeutic potential of resveratrol: The in vivo evidence
-
IBaur, J. A., Sinclair, D. A. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discovery 5, 493-506 (2006).
-
(2006)
Nat. Rev. Drug Discovery
, vol.5
, pp. 493-506
-
-
Ibaur, J.A.1
Sinclair, D.A.2
-
20
-
-
84955718745
-
Beneficial action of resveratrol: How and why?
-
Diaz-Gerevini, G. T. et al. Beneficial action of resveratrol: How and why? Nutrition 32, 174-178 (2016).
-
(2016)
Nutrition
, vol.32
, pp. 174-178
-
-
Diaz-Gerevini, G.T.1
-
21
-
-
84860477354
-
SIRT1 Is Required for AMPK Activation and the beneficial effects of resveratrol on mitochondrial function
-
Price, N. L. et al. SIRT1 Is Required for AMPK Activation and the Beneficial Effects of Resveratrol on Mitochondrial Function. Cell Metab. 15, 675-690 (2012).
-
(2012)
Cell Metab.
, vol.15
, pp. 675-690
-
-
Price, N.L.1
-
22
-
-
84856731505
-
Finding a target for resveratrol
-
Tennen, R. I., Michishita-Kioi, E., Chua, K. F. Finding a Target for Resveratrol. Cell 148, 387-389 (2012).
-
(2012)
Cell
, vol.148
, pp. 387-389
-
-
Tennen, R.I.1
Michishita-Kioi, E.2
Chua, K.F.3
-
23
-
-
84866880582
-
Resveratrol as a calorie restriction mimetic: Therapeutic implications
-
Chung, J. H., Manganiello, V., Dyck, J. R. B. Resveratrol as a calorie restriction mimetic: therapeutic implications. Trends in Cell Biol. 22, 546-554 (2012).
-
(2012)
Trends in Cell Biol.
, vol.22
, pp. 546-554
-
-
Chung, J.H.1
Manganiello, V.2
Dyck, J.R.B.3
-
24
-
-
0141719702
-
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
-
Howitz, K. T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191-196 (2003).
-
(2003)
Nature
, vol.425
, pp. 191-196
-
-
Howitz, K.T.1
-
25
-
-
3943071801
-
Sirtuin activators mimic caloric restriction and delay ageing in metazoans
-
IWood, J. G. et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686-689 (2004).
-
(2004)
Nature
, vol.430
, pp. 686-689
-
-
IWood, J.G.1
-
26
-
-
33751072349
-
Resveratrol improves health and survival of mice on a high-calorie diet
-
Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337-342 (2006).
-
(2006)
Nature
, vol.444
, pp. 337-342
-
-
Baur, J.A.1
-
27
-
-
20444431507
-
Substrate-specific activation of sirtuins by resveratrol
-
Kaeberlein, M. et al. Substrate-specific activation of sirtuins by resveratrol. J. Biol. Chem. 280, 17038-17045 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 17038-17045
-
-
Kaeberlein, M.1
-
28
-
-
20444444649
-
Mechanism of human SIRT1 activation by resveratrol
-
Borra, M. T., Smith, B. C., Denu, J. M. Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem. 280, 17187-17195 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 17187-17195
-
-
Borra, M.T.1
Smith, B.C.2
Denu, J.M.3
-
29
-
-
77958488312
-
SIRT1 activation by small molecules: Kinetic and biophysical evidence for direct interaction of enzyme and activator
-
Dai, H. et al. SIRT1 activation by small molecules: kinetic and biophysical evidence for direct interaction of enzyme and activator. J. Biol. Chem. 285, 32695-32703 (2010).
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 32695-32703
-
-
Dai, H.1
-
30
-
-
77950246109
-
SRT1720, SRT2183, SRT1460, and Resveratrol Are Not Direct Activators of SIRT1
-
Pacholec, M. et al. SRT1720, SRT2183, SRT1460, and Resveratrol Are Not Direct Activators of SIRT1. J. Biol. Chem. 285, 8340-8351 (2010).
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 8340-8351
-
-
Pacholec, M.1
-
31
-
-
84933524839
-
Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol
-
Cao, D. F. et al. Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Genes Dev. 29, 1316-1325 (2015).
-
(2015)
Genes Dev.
, vol.29
, pp. 1316-1325
-
-
Cao, D.F.1
-
32
-
-
84961254101
-
Crystallographic structure of a small molecule SIRT1 activator-enzyme complex
-
Dai, H. et al. Crystallographic structure of a small molecule SIRT1 activator-enzyme complex. Nat. Commun. 6, 7645 (2015).
-
(2015)
Nat. Commun.
, vol.6
, pp. 7645
-
-
Dai, H.1
-
33
-
-
84877642979
-
Sirt1 activation by resveratrol is substrate sequence-selective
-
Lakshminarasimhan, M., Rauh, D., Schutkowski, M., Steegborn, C. Sirt1 activation by resveratrol is substrate sequence-selective. Aging 5, 151-154 (2013).
-
(2013)
Aging
, vol.5
, pp. 151-154
-
-
Lakshminarasimhan, M.1
Rauh, D.2
Schutkowski, M.3
Steegborn, C.4
-
34
-
-
84874721105
-
Evidence for a common mechanism of SIRT1 regulation by allosteric activators
-
Hubbard, B. P. et al. Evidence for a Common Mechanism of SIRT1 Regulation by Allosteric Activators. Science 339, 1216-1219 (2013).
-
(2013)
Science
, vol.339
, pp. 1216-1219
-
-
Hubbard, B.P.1
-
35
-
-
84940200063
-
Alpha space: Fragment-centric topographical mapping to target protein-protein interaction interfaces
-
Rooklin, D., Wang, C., Katigbak, J., Arora, P. S., Zhang, Y. AlphaSpace: Fragment-Centric Topographical Mapping To Target Protein-Protein Interaction Interfaces. J. Chem. Inf. Model. 55, 1585-1599 (2015).
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 1585-1599
-
-
Rooklin, D.1
Wang, C.2
Katigbak, J.3
Arora, P.S.4
Zhang, Y.5
-
36
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
Milne, J. C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712-716 (2007).
-
(2007)
Nature
, vol.450
, pp. 712-716
-
-
Milne, J.C.1
-
37
-
-
33745119442
-
The structural basis of sirtuin substrate affinity
-
Cosgrove, M. S. et al. The structural basis of sirtuin substrate affinity. Biochemistry 45, 7511-7521 (2006).
-
(2006)
Biochemistry
, vol.45
, pp. 7511-7521
-
-
Cosgrove, M.S.1
-
38
-
-
0036753953
-
Structure of a Sir2 enzyme bound to an acetylated p53 peptide
-
Avalos, J. L. et al. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol. Cell 10, 523-535 (2002).
-
(2002)
Mol. Cell
, vol.10
, pp. 523-535
-
-
Avalos, J.L.1
-
39
-
-
84877309874
-
Rejuvenating SIRT1 activators
-
Gut, P., Verdin, E. Rejuvenating SIRT1 Activators. Cell Metab. 17, 635-637 (2013).
-
(2013)
Cell Metab.
, vol.17
, pp. 635-637
-
-
Gut, P.1
Verdin, E.2
-
40
-
-
84870506099
-
Resveratrol Rescues SIRT1-Dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria
-
Liu, B. H. et al. Resveratrol Rescues SIRT1-Dependent Adult Stem Cell Decline and Alleviates Progeroid Features in Laminopathy-Based Progeria. Cell Metab. 16, 738-750 (2012).
-
(2012)
Cell Metab.
, vol.16
, pp. 738-750
-
-
Liu, B.H.1
-
41
-
-
35648934963
-
Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity
-
Kim, E. J., Kho, J. H., Kang, M. R., Um, S. J. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol. Cell 28, 513-513 (2007).
-
(2007)
Mol. Cell
, vol.28
, pp. 513
-
-
Kim, E.J.1
Kho, J.H.2
Kang, M.R.3
Um, S.J.4
-
42
-
-
84872292628
-
Structural basis for allosteric stimulation of Sir2 activity by Sir4 binding
-
Hsu, H. C. et al. Structural basis for allosteric stimulation of Sir2 activity by Sir4 binding. Genes Dev. 27, 64-73 (2013).
-
(2013)
Genes Dev.
, vol.27
, pp. 64-73
-
-
Hsu, H.C.1
-
43
-
-
84900451971
-
Small molecule modulators of protein-protein interactions: Selected case studies
-
Aeluri, M. et al. Small Molecule Modulators of Protein-Protein Interactions: Selected Case Studies. Chem. Rev. 114, 4640-4694 (2014).
-
(2014)
Chem. Rev.
, vol.114
, pp. 4640-4694
-
-
Aeluri, M.1
-
44
-
-
84900433934
-
Modulators of protein-protein interactions
-
Milroy, L. G., Grossmann, T. N., Hennig, S., Brunsveld, L., Ottmann, C. Modulators of Protein-Protein Interactions. Chem. Rev. 114, 4695-4748 (2014).
-
(2014)
Chem. Rev.
, vol.114
, pp. 4695-4748
-
-
Milroy, L.G.1
Grossmann, T.N.2
Hennig, S.3
Brunsveld, L.4
Ottmann, C.5
-
45
-
-
84910596652
-
Stabilization of protein-protein interactions by small molecules
-
Giordanetto, F., Schafer, A., Ottmann, C. Stabilization of protein-protein interactions by small molecules. Drug Discovery Today 19, 1812-1821 (2014).
-
(2014)
Drug Discovery Today
, vol.19
, pp. 1812-1821
-
-
Giordanetto, F.1
Schafer, A.2
Ottmann, C.3
-
46
-
-
0029842109
-
Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP
-
Choi, J. W., Chen, J., Schreiber, S. L., Clardy, J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273, 239-242 (1996).
-
(1996)
Science
, vol.273
, pp. 239-242
-
-
Choi, J.W.1
Chen, J.2
Schreiber, S.L.3
Clardy, J.4
-
47
-
-
13044309479
-
Refined structure of the FKBP12-rapamycin-FRB ternary complex at 2. 2 angstrom resolution
-
Liang, J., Choi, J., Clardy, J. Refined structure of the FKBP12-rapamycin-FRB ternary complex at 2. 2 angstrom resolution. Acta Crystallogr. 55, 736-744 (1999).
-
(1999)
Acta Crystallogr.
, vol.55
, pp. 736-744
-
-
Liang, J.1
Choi, J.2
Clardy, J.3
-
48
-
-
84877761058
-
MTOR kinase structure, mechanism and regulation
-
Yang, H. J. et al. mTOR kinase structure, mechanism and regulation. Nature 497, 217-223 (2013).
-
(2013)
Nature
, vol.497
, pp. 217-223
-
-
Yang, H.J.1
-
49
-
-
84952950121
-
Structural biology architecture of human mTOR complex 1
-
Aylett, C. H. S. et al. Structural Biology Architecture of human mTOR complex 1. Science 351, 48-52 (2016).
-
(2016)
Science
, vol.351
, pp. 48-52
-
-
Aylett, C.H.S.1
-
50
-
-
3242886771
-
PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations
-
Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., Baker, N. A. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665-W667 (2004).
-
(2004)
Nucleic Acids Res.
, vol.32
, pp. W665-W667
-
-
Dolinsky, T.J.1
Nielsen, J.E.2
McCammon, J.A.3
Baker, N.A.4
-
51
-
-
84873434826
-
Sirtuin deacetylation mechanism and catalytic role of the dynamic cofactor binding loop
-
Shi, Y. W., Zhou, Y. Z., Wang, S. L., Zhang, Y. K. Sirtuin Deacetylation Mechanism and Catalytic Role of the Dynamic Cofactor Binding Loop. J. Phys. Chem. Lett. 4, 491-495 (2013).
-
(2013)
J. Phys. Chem. Lett.
, vol.4
, pp. 491-495
-
-
Shi, Y.W.1
Zhou, Y.Z.2
Wang, S.L.3
Zhang, Y.K.4
-
52
-
-
84921063481
-
-
University of California San Francisco
-
Case, D. A. et al. AMBER 14, University of California, San Francisco, http://ambermd. org/(2014).
-
(2014)
AMBER
, vol.14
-
-
Case, D.A.1
-
53
-
-
84938930908
-
Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB
-
Maier, J. A. et al. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 11, 3696-3713 (2015).
-
(2015)
J. Chem. Theory Comput.
, vol.11
, pp. 3696-3713
-
-
Maier, J.A.1
-
54
-
-
77956608400
-
Structural survey of zinc-containing proteins and development of the Zinc AMBER Force Field (ZAFF)
-
Peters, M. B. et al. Structural Survey of Zinc-Containing Proteins and Development of the Zinc AMBER Force Field (ZAFF). J. Chem. Theory Comput. 6, 2935-2947 (2010).
-
(2010)
J. Chem. Theory Comput.
, vol.6
, pp. 2935-2947
-
-
Peters, M.B.1
-
55
-
-
84859882285
-
Structural Role of RKS motifs in chromatin interactions: A Molecular dynamics study of HP1 bound to a variably modified histone tail
-
Papamokos, G. V. et al. Structural Role of RKS Motifs in Chromatin Interactions: A Molecular Dynamics Study of HP1 Bound to a Variably Modified Histone Tail. Biophys. J. 102, 1926-1933 (2012).
-
(2012)
Biophys. J.
, vol.102
, pp. 1926-1933
-
-
Papamokos, G.V.1
-
56
-
-
0029033663
-
On the role of glu-68 in alcohol-dehydrogenase
-
Ryde, U. On the Role of Glu-68 in Alcohol-Dehydrogenase. Protein Sci. 4, 1124-1132 (1995).
-
(1995)
Protein Sci.
, vol.4
, pp. 1124-1132
-
-
Ryde, U.1
-
57
-
-
70450206724
-
-
(Gaussian, Inc., Wallingford, CT, USA
-
Frisch, M. J. et al. Gaussian 09. (Gaussian, Inc., Wallingford, CT, USA, 2009).
-
(2009)
Gaussian 09
-
-
Frisch, M.J.1
-
58
-
-
84986516411
-
Application of the multimolecule and multiconformational resp methodology to biopolymers-charge derivation for DNA, RNA, and Proteins
-
Cieplak, P., Cornell, W. D., Bayly, C., Kollman, P. A. Application of the Multimolecule and Multiconformational Resp Methodology to Biopolymers-Charge Derivation for DNA, Rna, and Proteins. J. Comput. Chem. 16, 1357-1377 (1995).
-
(1995)
J. Comput. Chem.
, vol.16
, pp. 1357-1377
-
-
Cieplak, P.1
Cornell, W.D.2
Bayly, C.3
Kollman, P.A.4
-
59
-
-
3042524904
-
A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges-the resp model
-
Bayly, C. I., Cieplak, P., Cornell, W. D., Kollman, P. A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges-the Resp Model. J Phys. Chem. 97, 10269-10280 (1993).
-
(1993)
J Phys. Chem.
, vol.97
, pp. 10269-10280
-
-
Bayly, C.I.1
Cieplak, P.2
Cornell, W.D.3
Kollman, P.A.4
-
60
-
-
84884192184
-
Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle Mesh Ewald
-
Salomon-Ferrer, R., Gotz, A. W., Poole, D., Le Grand, S., Walker, R. C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. J. Chem. Theory Comput. 9, 3878-3888 (2013).
-
(2013)
J. Chem. Theory Comput.
, vol.9
, pp. 3878-3888
-
-
Salomon-Ferrer, R.1
Gotz, A.W.2
Poole, D.3
Le Grand, S.4
Walker, R.C.5
-
61
-
-
84860767348
-
Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born
-
Gotz, A. W. et al. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 8, 1542-1555 (2012).
-
(2012)
J. Chem. Theory Comput.
, vol.8
, pp. 1542-1555
-
-
Gotz, A.W.1
-
63
-
-
4444221565
-
UCSF Chimera-a visualization system for exploratory research and analysis
-
Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612 (2004).
-
(2004)
J. Comput. Chem.
, vol.25
, pp. 1605-1612
-
-
Pettersen, E.F.1
|