메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation

Author keywords

[No Author keywords available]

Indexed keywords

PROTEIN BINDING; PROTEIN P53; RESVERATROL; SIRT1 PROTEIN, HUMAN; SIRTUIN 1; STILBENE DERIVATIVE;

EID: 84999670113     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep38186     Document Type: Article
Times cited : (74)

References (63)
  • 1
    • 84904751060 scopus 로고    scopus 로고
    • NAD(+ ) and sirtuins in aging and disease
    • Imai, S., Guarente, L. NAD(+ ) and sirtuins in aging and disease. Trends in Cell Biol. 24, 464-471 (2014).
    • (2014) Trends in Cell Biol. , vol.24 , pp. 464-471
    • Imai, S.1    Guarente, L.2
  • 2
    • 84891848670 scopus 로고    scopus 로고
    • Small-molecule allosteric activators of sirtuins
    • Sinclair, D. A., Guarente, L. Small-Molecule Allosteric Activators of Sirtuins. Annu. Rev. Pharmacol. 54, 363-380 (2014).
    • (2014) Annu. Rev. Pharmacol. , vol.54 , pp. 363-380
    • Sinclair, D.A.1    Guarente, L.2
  • 3
    • 84883490707 scopus 로고    scopus 로고
    • Sirtuins and ageing-new findings
    • Guarente, L. Sirtuins and ageing-new findings. EMBO Rep. 14, 750-750 (2013).
    • (2013) EMBO Rep. , vol.14 , pp. 750
    • Guarente, L.1
  • 4
    • 84896739647 scopus 로고    scopus 로고
    • Small molecule SIRT1 activators for the treatment of aging and age-related diseases
    • Hubbard, B. P., Sinclair, D. A. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol. Sci. 35, 146-154 (2014).
    • (2014) Trends Pharmacol. Sci. , vol.35 , pp. 146-154
    • Hubbard, B.P.1    Sinclair, D.A.2
  • 5
    • 84885355365 scopus 로고    scopus 로고
    • Calorie restriction and sirtuins revisited
    • Guarente, L. Calorie restriction and sirtuins revisited. Genes Dev. 27, 2072-2085 (2013).
    • (2013) Genes Dev. , vol.27 , pp. 2072-2085
    • Guarente, L.1
  • 6
    • 13944253348 scopus 로고    scopus 로고
    • Calorie restriction-the SIR2 connection
    • Guarente, L., Picard, F. Calorie restriction-the SIR2 connection. Cell 120, 473-482 (2005).
    • (2005) Cell , vol.120 , pp. 473-482
    • Guarente, L.1    Picard, F.2
  • 8
    • 28844469898 scopus 로고    scopus 로고
    • Increase in activity during calorie restriction requires Sirt1
    • Chen, D., Steele, A. D., Lindquist, S., Guarente, L. Increase in activity during calorie restriction requires Sirt1. Science 310, 1641-1641 (2005).
    • (2005) Science , vol.310 , pp. 1641
    • Chen, D.1    Steele, A.D.2    Lindquist, S.3    Guarente, L.4
  • 9
    • 52749091816 scopus 로고    scopus 로고
    • SirT1 gain of function increases energy efficiency and prevents diabetes in mice
    • Banks, A. S. et al. SirT1 Gain of Function Increases Energy Efficiency and Prevents Diabetes in Mice. Cell Metab. 8, 333-341 (2008).
    • (2008) Cell Metab. , vol.8 , pp. 333-341
    • Banks, A.S.1
  • 10
    • 36248975293 scopus 로고    scopus 로고
    • SIRT1 transgenic mice show phenotypes resembling calorie restriction
    • Bordone, L. et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6, 759-767 (2007).
    • (2007) Aging Cell , vol.6 , pp. 759-767
    • Bordone, L.1
  • 11
    • 84883476818 scopus 로고    scopus 로고
    • Sirt1 extends life span and delays aging in mice through the regulation of Nk2 Homeobox 1 in the DMH and LH
    • Satoh, A. et al. Sirt1 Extends Life Span and Delays Aging in Mice through the Regulation of Nk2 Homeobox 1 in the DMH and LH. Cell Metab. 18, 416-430 (2013).
    • (2013) Cell Metab. , vol.18 , pp. 416-430
    • Satoh, A.1
  • 12
    • 78650758398 scopus 로고    scopus 로고
    • Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer
    • Herranz, D. et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 1, 3 (2010).
    • (2010) Nat. Commun. , vol.1 , pp. 3
    • Herranz, D.1
  • 13
    • 84903610355 scopus 로고    scopus 로고
    • Systemic regulation of mammalian ageing and longevity by brain sirtuins
    • Satoh, A., Imai, S. I. Systemic regulation of mammalian ageing and longevity by brain sirtuins. Nat. Commun. 5, 4211 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 4211
    • Satoh, A.1    Imai, S.I.2
  • 14
    • 3142740860 scopus 로고    scopus 로고
    • Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
    • Cohen, H. Y. et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390-392 (2004).
    • (2004) Science , vol.305 , pp. 390-392
    • Cohen, H.Y.1
  • 15
    • 46249100836 scopus 로고    scopus 로고
    • Tissue-specific regulation of SIRT1 by calorie restriction
    • Chen, D. et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 22, 1753-1757 (2008).
    • (2008) Genes Dev. , vol.22 , pp. 1753-1757
    • Chen, D.1
  • 16
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1 alpha and SIRT1
    • Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1 alpha and SIRT1. Nature 434, 113-118 (2005).
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1
  • 17
    • 80555142897 scopus 로고    scopus 로고
    • Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction
    • Schenk, S. et al. Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J. Clin. Invest. 121, 4281-4288 (2011).
    • (2011) J. Clin. Invest. , vol.121 , pp. 4281-4288
    • Schenk, S.1
  • 18
    • 77951157657 scopus 로고    scopus 로고
    • Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney
    • Kume, S. et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest. 120, 1043-1055 (2010).
    • (2010) J. Clin. Invest. , vol.120 , pp. 1043-1055
    • Kume, S.1
  • 19
    • 33745962138 scopus 로고    scopus 로고
    • Therapeutic potential of resveratrol: The in vivo evidence
    • IBaur, J. A., Sinclair, D. A. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discovery 5, 493-506 (2006).
    • (2006) Nat. Rev. Drug Discovery , vol.5 , pp. 493-506
    • Ibaur, J.A.1    Sinclair, D.A.2
  • 20
    • 84955718745 scopus 로고    scopus 로고
    • Beneficial action of resveratrol: How and why?
    • Diaz-Gerevini, G. T. et al. Beneficial action of resveratrol: How and why? Nutrition 32, 174-178 (2016).
    • (2016) Nutrition , vol.32 , pp. 174-178
    • Diaz-Gerevini, G.T.1
  • 21
    • 84860477354 scopus 로고    scopus 로고
    • SIRT1 Is Required for AMPK Activation and the beneficial effects of resveratrol on mitochondrial function
    • Price, N. L. et al. SIRT1 Is Required for AMPK Activation and the Beneficial Effects of Resveratrol on Mitochondrial Function. Cell Metab. 15, 675-690 (2012).
    • (2012) Cell Metab. , vol.15 , pp. 675-690
    • Price, N.L.1
  • 22
    • 84856731505 scopus 로고    scopus 로고
    • Finding a target for resveratrol
    • Tennen, R. I., Michishita-Kioi, E., Chua, K. F. Finding a Target for Resveratrol. Cell 148, 387-389 (2012).
    • (2012) Cell , vol.148 , pp. 387-389
    • Tennen, R.I.1    Michishita-Kioi, E.2    Chua, K.F.3
  • 23
    • 84866880582 scopus 로고    scopus 로고
    • Resveratrol as a calorie restriction mimetic: Therapeutic implications
    • Chung, J. H., Manganiello, V., Dyck, J. R. B. Resveratrol as a calorie restriction mimetic: therapeutic implications. Trends in Cell Biol. 22, 546-554 (2012).
    • (2012) Trends in Cell Biol. , vol.22 , pp. 546-554
    • Chung, J.H.1    Manganiello, V.2    Dyck, J.R.B.3
  • 24
    • 0141719702 scopus 로고    scopus 로고
    • Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
    • Howitz, K. T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191-196 (2003).
    • (2003) Nature , vol.425 , pp. 191-196
    • Howitz, K.T.1
  • 25
    • 3943071801 scopus 로고    scopus 로고
    • Sirtuin activators mimic caloric restriction and delay ageing in metazoans
    • IWood, J. G. et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686-689 (2004).
    • (2004) Nature , vol.430 , pp. 686-689
    • IWood, J.G.1
  • 26
    • 33751072349 scopus 로고    scopus 로고
    • Resveratrol improves health and survival of mice on a high-calorie diet
    • Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337-342 (2006).
    • (2006) Nature , vol.444 , pp. 337-342
    • Baur, J.A.1
  • 27
    • 20444431507 scopus 로고    scopus 로고
    • Substrate-specific activation of sirtuins by resveratrol
    • Kaeberlein, M. et al. Substrate-specific activation of sirtuins by resveratrol. J. Biol. Chem. 280, 17038-17045 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 17038-17045
    • Kaeberlein, M.1
  • 28
    • 20444444649 scopus 로고    scopus 로고
    • Mechanism of human SIRT1 activation by resveratrol
    • Borra, M. T., Smith, B. C., Denu, J. M. Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem. 280, 17187-17195 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 17187-17195
    • Borra, M.T.1    Smith, B.C.2    Denu, J.M.3
  • 29
    • 77958488312 scopus 로고    scopus 로고
    • SIRT1 activation by small molecules: Kinetic and biophysical evidence for direct interaction of enzyme and activator
    • Dai, H. et al. SIRT1 activation by small molecules: kinetic and biophysical evidence for direct interaction of enzyme and activator. J. Biol. Chem. 285, 32695-32703 (2010).
    • (2010) J. Biol. Chem. , vol.285 , pp. 32695-32703
    • Dai, H.1
  • 30
    • 77950246109 scopus 로고    scopus 로고
    • SRT1720, SRT2183, SRT1460, and Resveratrol Are Not Direct Activators of SIRT1
    • Pacholec, M. et al. SRT1720, SRT2183, SRT1460, and Resveratrol Are Not Direct Activators of SIRT1. J. Biol. Chem. 285, 8340-8351 (2010).
    • (2010) J. Biol. Chem. , vol.285 , pp. 8340-8351
    • Pacholec, M.1
  • 31
    • 84933524839 scopus 로고    scopus 로고
    • Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol
    • Cao, D. F. et al. Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Genes Dev. 29, 1316-1325 (2015).
    • (2015) Genes Dev. , vol.29 , pp. 1316-1325
    • Cao, D.F.1
  • 32
    • 84961254101 scopus 로고    scopus 로고
    • Crystallographic structure of a small molecule SIRT1 activator-enzyme complex
    • Dai, H. et al. Crystallographic structure of a small molecule SIRT1 activator-enzyme complex. Nat. Commun. 6, 7645 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 7645
    • Dai, H.1
  • 33
    • 84877642979 scopus 로고    scopus 로고
    • Sirt1 activation by resveratrol is substrate sequence-selective
    • Lakshminarasimhan, M., Rauh, D., Schutkowski, M., Steegborn, C. Sirt1 activation by resveratrol is substrate sequence-selective. Aging 5, 151-154 (2013).
    • (2013) Aging , vol.5 , pp. 151-154
    • Lakshminarasimhan, M.1    Rauh, D.2    Schutkowski, M.3    Steegborn, C.4
  • 34
    • 84874721105 scopus 로고    scopus 로고
    • Evidence for a common mechanism of SIRT1 regulation by allosteric activators
    • Hubbard, B. P. et al. Evidence for a Common Mechanism of SIRT1 Regulation by Allosteric Activators. Science 339, 1216-1219 (2013).
    • (2013) Science , vol.339 , pp. 1216-1219
    • Hubbard, B.P.1
  • 35
    • 84940200063 scopus 로고    scopus 로고
    • Alpha space: Fragment-centric topographical mapping to target protein-protein interaction interfaces
    • Rooklin, D., Wang, C., Katigbak, J., Arora, P. S., Zhang, Y. AlphaSpace: Fragment-Centric Topographical Mapping To Target Protein-Protein Interaction Interfaces. J. Chem. Inf. Model. 55, 1585-1599 (2015).
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 1585-1599
    • Rooklin, D.1    Wang, C.2    Katigbak, J.3    Arora, P.S.4    Zhang, Y.5
  • 36
    • 36749087548 scopus 로고    scopus 로고
    • Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
    • Milne, J. C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712-716 (2007).
    • (2007) Nature , vol.450 , pp. 712-716
    • Milne, J.C.1
  • 37
    • 33745119442 scopus 로고    scopus 로고
    • The structural basis of sirtuin substrate affinity
    • Cosgrove, M. S. et al. The structural basis of sirtuin substrate affinity. Biochemistry 45, 7511-7521 (2006).
    • (2006) Biochemistry , vol.45 , pp. 7511-7521
    • Cosgrove, M.S.1
  • 38
    • 0036753953 scopus 로고    scopus 로고
    • Structure of a Sir2 enzyme bound to an acetylated p53 peptide
    • Avalos, J. L. et al. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol. Cell 10, 523-535 (2002).
    • (2002) Mol. Cell , vol.10 , pp. 523-535
    • Avalos, J.L.1
  • 39
    • 84877309874 scopus 로고    scopus 로고
    • Rejuvenating SIRT1 activators
    • Gut, P., Verdin, E. Rejuvenating SIRT1 Activators. Cell Metab. 17, 635-637 (2013).
    • (2013) Cell Metab. , vol.17 , pp. 635-637
    • Gut, P.1    Verdin, E.2
  • 40
    • 84870506099 scopus 로고    scopus 로고
    • Resveratrol Rescues SIRT1-Dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria
    • Liu, B. H. et al. Resveratrol Rescues SIRT1-Dependent Adult Stem Cell Decline and Alleviates Progeroid Features in Laminopathy-Based Progeria. Cell Metab. 16, 738-750 (2012).
    • (2012) Cell Metab. , vol.16 , pp. 738-750
    • Liu, B.H.1
  • 41
    • 35648934963 scopus 로고    scopus 로고
    • Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity
    • Kim, E. J., Kho, J. H., Kang, M. R., Um, S. J. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol. Cell 28, 513-513 (2007).
    • (2007) Mol. Cell , vol.28 , pp. 513
    • Kim, E.J.1    Kho, J.H.2    Kang, M.R.3    Um, S.J.4
  • 42
    • 84872292628 scopus 로고    scopus 로고
    • Structural basis for allosteric stimulation of Sir2 activity by Sir4 binding
    • Hsu, H. C. et al. Structural basis for allosteric stimulation of Sir2 activity by Sir4 binding. Genes Dev. 27, 64-73 (2013).
    • (2013) Genes Dev. , vol.27 , pp. 64-73
    • Hsu, H.C.1
  • 43
    • 84900451971 scopus 로고    scopus 로고
    • Small molecule modulators of protein-protein interactions: Selected case studies
    • Aeluri, M. et al. Small Molecule Modulators of Protein-Protein Interactions: Selected Case Studies. Chem. Rev. 114, 4640-4694 (2014).
    • (2014) Chem. Rev. , vol.114 , pp. 4640-4694
    • Aeluri, M.1
  • 45
    • 84910596652 scopus 로고    scopus 로고
    • Stabilization of protein-protein interactions by small molecules
    • Giordanetto, F., Schafer, A., Ottmann, C. Stabilization of protein-protein interactions by small molecules. Drug Discovery Today 19, 1812-1821 (2014).
    • (2014) Drug Discovery Today , vol.19 , pp. 1812-1821
    • Giordanetto, F.1    Schafer, A.2    Ottmann, C.3
  • 46
    • 0029842109 scopus 로고    scopus 로고
    • Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP
    • Choi, J. W., Chen, J., Schreiber, S. L., Clardy, J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273, 239-242 (1996).
    • (1996) Science , vol.273 , pp. 239-242
    • Choi, J.W.1    Chen, J.2    Schreiber, S.L.3    Clardy, J.4
  • 47
    • 13044309479 scopus 로고    scopus 로고
    • Refined structure of the FKBP12-rapamycin-FRB ternary complex at 2. 2 angstrom resolution
    • Liang, J., Choi, J., Clardy, J. Refined structure of the FKBP12-rapamycin-FRB ternary complex at 2. 2 angstrom resolution. Acta Crystallogr. 55, 736-744 (1999).
    • (1999) Acta Crystallogr. , vol.55 , pp. 736-744
    • Liang, J.1    Choi, J.2    Clardy, J.3
  • 48
    • 84877761058 scopus 로고    scopus 로고
    • MTOR kinase structure, mechanism and regulation
    • Yang, H. J. et al. mTOR kinase structure, mechanism and regulation. Nature 497, 217-223 (2013).
    • (2013) Nature , vol.497 , pp. 217-223
    • Yang, H.J.1
  • 49
    • 84952950121 scopus 로고    scopus 로고
    • Structural biology architecture of human mTOR complex 1
    • Aylett, C. H. S. et al. Structural Biology Architecture of human mTOR complex 1. Science 351, 48-52 (2016).
    • (2016) Science , vol.351 , pp. 48-52
    • Aylett, C.H.S.1
  • 50
    • 3242886771 scopus 로고    scopus 로고
    • PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations
    • Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., Baker, N. A. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665-W667 (2004).
    • (2004) Nucleic Acids Res. , vol.32 , pp. W665-W667
    • Dolinsky, T.J.1    Nielsen, J.E.2    McCammon, J.A.3    Baker, N.A.4
  • 51
    • 84873434826 scopus 로고    scopus 로고
    • Sirtuin deacetylation mechanism and catalytic role of the dynamic cofactor binding loop
    • Shi, Y. W., Zhou, Y. Z., Wang, S. L., Zhang, Y. K. Sirtuin Deacetylation Mechanism and Catalytic Role of the Dynamic Cofactor Binding Loop. J. Phys. Chem. Lett. 4, 491-495 (2013).
    • (2013) J. Phys. Chem. Lett. , vol.4 , pp. 491-495
    • Shi, Y.W.1    Zhou, Y.Z.2    Wang, S.L.3    Zhang, Y.K.4
  • 52
    • 84921063481 scopus 로고    scopus 로고
    • University of California San Francisco
    • Case, D. A. et al. AMBER 14, University of California, San Francisco, http://ambermd. org/(2014).
    • (2014) AMBER , vol.14
    • Case, D.A.1
  • 53
    • 84938930908 scopus 로고    scopus 로고
    • Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB
    • Maier, J. A. et al. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 11, 3696-3713 (2015).
    • (2015) J. Chem. Theory Comput. , vol.11 , pp. 3696-3713
    • Maier, J.A.1
  • 54
    • 77956608400 scopus 로고    scopus 로고
    • Structural survey of zinc-containing proteins and development of the Zinc AMBER Force Field (ZAFF)
    • Peters, M. B. et al. Structural Survey of Zinc-Containing Proteins and Development of the Zinc AMBER Force Field (ZAFF). J. Chem. Theory Comput. 6, 2935-2947 (2010).
    • (2010) J. Chem. Theory Comput. , vol.6 , pp. 2935-2947
    • Peters, M.B.1
  • 55
    • 84859882285 scopus 로고    scopus 로고
    • Structural Role of RKS motifs in chromatin interactions: A Molecular dynamics study of HP1 bound to a variably modified histone tail
    • Papamokos, G. V. et al. Structural Role of RKS Motifs in Chromatin Interactions: A Molecular Dynamics Study of HP1 Bound to a Variably Modified Histone Tail. Biophys. J. 102, 1926-1933 (2012).
    • (2012) Biophys. J. , vol.102 , pp. 1926-1933
    • Papamokos, G.V.1
  • 56
    • 0029033663 scopus 로고
    • On the role of glu-68 in alcohol-dehydrogenase
    • Ryde, U. On the Role of Glu-68 in Alcohol-Dehydrogenase. Protein Sci. 4, 1124-1132 (1995).
    • (1995) Protein Sci. , vol.4 , pp. 1124-1132
    • Ryde, U.1
  • 57
    • 70450206724 scopus 로고    scopus 로고
    • (Gaussian, Inc., Wallingford, CT, USA
    • Frisch, M. J. et al. Gaussian 09. (Gaussian, Inc., Wallingford, CT, USA, 2009).
    • (2009) Gaussian 09
    • Frisch, M.J.1
  • 58
    • 84986516411 scopus 로고
    • Application of the multimolecule and multiconformational resp methodology to biopolymers-charge derivation for DNA, RNA, and Proteins
    • Cieplak, P., Cornell, W. D., Bayly, C., Kollman, P. A. Application of the Multimolecule and Multiconformational Resp Methodology to Biopolymers-Charge Derivation for DNA, Rna, and Proteins. J. Comput. Chem. 16, 1357-1377 (1995).
    • (1995) J. Comput. Chem. , vol.16 , pp. 1357-1377
    • Cieplak, P.1    Cornell, W.D.2    Bayly, C.3    Kollman, P.A.4
  • 59
    • 3042524904 scopus 로고
    • A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges-the resp model
    • Bayly, C. I., Cieplak, P., Cornell, W. D., Kollman, P. A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges-the Resp Model. J Phys. Chem. 97, 10269-10280 (1993).
    • (1993) J Phys. Chem. , vol.97 , pp. 10269-10280
    • Bayly, C.I.1    Cieplak, P.2    Cornell, W.D.3    Kollman, P.A.4
  • 60
    • 84884192184 scopus 로고    scopus 로고
    • Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle Mesh Ewald
    • Salomon-Ferrer, R., Gotz, A. W., Poole, D., Le Grand, S., Walker, R. C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. J. Chem. Theory Comput. 9, 3878-3888 (2013).
    • (2013) J. Chem. Theory Comput. , vol.9 , pp. 3878-3888
    • Salomon-Ferrer, R.1    Gotz, A.W.2    Poole, D.3    Le Grand, S.4    Walker, R.C.5
  • 61
    • 84860767348 scopus 로고    scopus 로고
    • Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born
    • Gotz, A. W. et al. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 8, 1542-1555 (2012).
    • (2012) J. Chem. Theory Comput. , vol.8 , pp. 1542-1555
    • Gotz, A.W.1
  • 63
    • 4444221565 scopus 로고    scopus 로고
    • UCSF Chimera-a visualization system for exploratory research and analysis
    • Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612 (2004).
    • (2004) J. Comput. Chem. , vol.25 , pp. 1605-1612
    • Pettersen, E.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.