메뉴 건너뛰기




Volumn 22, Issue 10, 2012, Pages 546-554

Resveratrol as a calorie restriction mimetic: Therapeutic implications

Author keywords

AMPK; Calorie restriction; Diabetes; PDE; Resveratrol; Sirt1

Indexed keywords

CYCLIC AMP; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; PHOSPHODIESTERASE; PHOSPHODIESTERASE INHIBITOR; RESVERATROL; ROLIPRAM; SIRTUIN 1;

EID: 84866880582     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2012.07.004     Document Type: Review
Times cited : (171)

References (104)
  • 1
    • 0002458132 scopus 로고
    • The effect of retarded growth upon the lebgth of life span and ultimate body size
    • McCay C.M., et al. The effect of retarded growth upon the lebgth of life span and ultimate body size. J. Nutr. 1935, 10:63-79.
    • (1935) J. Nutr. , vol.10 , pp. 63-79
    • McCay, C.M.1
  • 2
    • 67650439330 scopus 로고    scopus 로고
    • Caloric restriction delays disease onset and mortality in rhesus monkeys
    • Colman R.J., et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009, 325:201-204.
    • (2009) Science , vol.325 , pp. 201-204
    • Colman, R.J.1
  • 3
    • 77952549960 scopus 로고    scopus 로고
    • Resveratrol, sirtuins, and the promise of a DR mimetic
    • Baur J.A. Resveratrol, sirtuins, and the promise of a DR mimetic. Mech. Ageing Dev. 2010, 131:261-269.
    • (2010) Mech. Ageing Dev. , vol.131 , pp. 261-269
    • Baur, J.A.1
  • 4
    • 79958206937 scopus 로고    scopus 로고
    • Franklin H. Epstein Lecture: sirtuins, aging, and medicine
    • Guarente L. Franklin H. Epstein Lecture: sirtuins, aging, and medicine. N. Engl. J. Med. 2011, 364:2235-2244.
    • (2011) N. Engl. J. Med. , vol.364 , pp. 2235-2244
    • Guarente, L.1
  • 5
    • 0034703217 scopus 로고    scopus 로고
    • Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
    • Lin S.J., et al. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000, 289:2126-2128.
    • (2000) Science , vol.289 , pp. 2126-2128
    • Lin, S.J.1
  • 6
    • 28244475950 scopus 로고    scopus 로고
    • Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO
    • Wang Y., Tissenbaum H.A. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech. Ageing Dev. 2006, 127:48-56.
    • (2006) Mech. Ageing Dev. , vol.127 , pp. 48-56
    • Wang, Y.1    Tissenbaum, H.A.2
  • 7
    • 8644224064 scopus 로고    scopus 로고
    • Sir2 mediates longevity in the fly through a pathway related to calorie restriction
    • Rogina B., Helfand S.L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:15998-16003.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 15998-16003
    • Rogina, B.1    Helfand, S.L.2
  • 8
    • 19344374925 scopus 로고    scopus 로고
    • Sir2-independent life span extension by calorie restriction in yeast
    • Kaeberlein M., et al. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol. 2004, 2:e296.
    • (2004) PLoS Biol. , vol.2
    • Kaeberlein, M.1
  • 9
    • 80053168829 scopus 로고    scopus 로고
    • Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila
    • Burnett C., et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 2011, 477:482-485.
    • (2011) Nature , vol.477 , pp. 482-485
    • Burnett, C.1
  • 10
    • 80053134340 scopus 로고    scopus 로고
    • Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes
    • Viswanathan M., Guarente L. Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 2011, 477:E1-E2.
    • (2011) Nature , vol.477
    • Viswanathan, M.1    Guarente, L.2
  • 11
    • 78650758398 scopus 로고    scopus 로고
    • Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer
    • Herranz D., et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 2010, 1:1-8.
    • (2010) Nat. Commun. , vol.1 , pp. 1-8
    • Herranz, D.1
  • 12
    • 0141719702 scopus 로고    scopus 로고
    • Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
    • Howitz K.T., et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003, 425:191-196.
    • (2003) Nature , vol.425 , pp. 191-196
    • Howitz, K.T.1
  • 13
    • 3943071801 scopus 로고    scopus 로고
    • Sirtuin activators mimic caloric restriction and delay ageing in metazoans
    • Wood J.G., et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004, 430:686-689.
    • (2004) Nature , vol.430 , pp. 686-689
    • Wood, J.G.1
  • 14
    • 34848927457 scopus 로고    scopus 로고
    • Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans
    • Bass T.M., et al. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech. Ageing Dev. 2007, 128:546-552.
    • (2007) Mech. Ageing Dev. , vol.128 , pp. 546-552
    • Bass, T.M.1
  • 15
    • 20444431507 scopus 로고    scopus 로고
    • Substrate-specific activation of sirtuins by resveratrol
    • Kaeberlein M., et al. Substrate-specific activation of sirtuins by resveratrol. J. Biol. Chem. 2005, 280:17038-17045.
    • (2005) J. Biol. Chem. , vol.280 , pp. 17038-17045
    • Kaeberlein, M.1
  • 16
    • 31944450272 scopus 로고    scopus 로고
    • Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate
    • Valenzano D.R., et al. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr. Biol. 2006, 16:296-300.
    • (2006) Curr. Biol. , vol.16 , pp. 296-300
    • Valenzano, D.R.1
  • 17
    • 48349144852 scopus 로고    scopus 로고
    • Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span
    • Pearson K.J., et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008, 8:157-168.
    • (2008) Cell Metab. , vol.8 , pp. 157-168
    • Pearson, K.J.1
  • 18
    • 48349110303 scopus 로고    scopus 로고
    • A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice
    • Barger J.L., et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS ONE 2008, 3:e2264.
    • (2008) PLoS ONE , vol.3
    • Barger, J.L.1
  • 19
    • 65349192792 scopus 로고    scopus 로고
    • Resveratrol treatment in mice does not elicit the bradycardia and hypothermia associated with calorie restriction
    • Mayers J.R., et al. Resveratrol treatment in mice does not elicit the bradycardia and hypothermia associated with calorie restriction. FASEB J. 2009, 23:1032-1040.
    • (2009) FASEB J. , vol.23 , pp. 1032-1040
    • Mayers, J.R.1
  • 20
    • 33845399894 scopus 로고    scopus 로고
    • Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha
    • Lagouge M., et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127:1109-1122.
    • (2006) Cell , vol.127 , pp. 1109-1122
    • Lagouge, M.1
  • 21
    • 84863011114 scopus 로고    scopus 로고
    • Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases
    • Park S.J., et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 2012, 148:421-433.
    • (2012) Cell , vol.148 , pp. 421-433
    • Park, S.J.1
  • 22
    • 77950348878 scopus 로고    scopus 로고
    • AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol
    • Um J.H., et al. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 2010, 59:554-563.
    • (2010) Diabetes , vol.59 , pp. 554-563
    • Um, J.H.1
  • 23
    • 33751072349 scopus 로고    scopus 로고
    • Resveratrol improves health and survival of mice on a high-calorie diet
    • Baur J.A., et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444:337-342.
    • (2006) Nature , vol.444 , pp. 337-342
    • Baur, J.A.1
  • 24
    • 80052910300 scopus 로고    scopus 로고
    • Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients
    • Brasnyo P., et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br. J. Nutr. 2011, 106:383-389.
    • (2011) Br. J. Nutr. , vol.106 , pp. 383-389
    • Brasnyo, P.1
  • 25
    • 84860131782 scopus 로고    scopus 로고
    • Pilot study of resveratrol in older adults with impaired glucose tolerance
    • Crandall J.P., et al. Pilot study of resveratrol in older adults with impaired glucose tolerance. J. Gerontol. A: Biol. Sci. Med. Sci. 2012, 10.1093/gerona/glr235.
    • (2012) J. Gerontol. A: Biol. Sci. Med. Sci.
    • Crandall, J.P.1
  • 26
    • 80455143206 scopus 로고    scopus 로고
    • Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans
    • Timmers S., et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011, 14:612-622.
    • (2011) Cell Metab. , vol.14 , pp. 612-622
    • Timmers, S.1
  • 27
    • 77950246109 scopus 로고    scopus 로고
    • SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1
    • Pacholec M., et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem. 2010, 285:8340-8351.
    • (2010) J. Biol. Chem. , vol.285 , pp. 8340-8351
    • Pacholec, M.1
  • 28
    • 20444444649 scopus 로고    scopus 로고
    • Mechanism of human SIRT1 activation by resveratrol
    • Borra M.T., et al. Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem. 2005, 280:17187-17195.
    • (2005) J. Biol. Chem. , vol.280 , pp. 17187-17195
    • Borra, M.T.1
  • 29
    • 20444431507 scopus 로고    scopus 로고
    • Substrate-specific activation of sirtuins by resveratrol
    • Kaeberlein M., et al. Substrate-specific activation of sirtuins by resveratrol. J. Biol. Chem. 2005, 280:17038-17045.
    • (2005) J. Biol. Chem. , vol.280 , pp. 17038-17045
    • Kaeberlein, M.1
  • 30
    • 70350524083 scopus 로고    scopus 로고
    • Resveratrol is not a direct activator of SIRT1 enzyme activity
    • Beher D., et al. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem. Biol. Drug Des. 2009, 74:619-624.
    • (2009) Chem. Biol. Drug Des. , vol.74 , pp. 619-624
    • Beher, D.1
  • 31
    • 47749148061 scopus 로고    scopus 로고
    • Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK
    • Breen D.M., et al. Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK. Biochem. Biophys. Res. Commun. 2008, 374:117-122.
    • (2008) Biochem. Biophys. Res. Commun. , vol.374 , pp. 117-122
    • Breen, D.M.1
  • 32
    • 67650091375 scopus 로고    scopus 로고
    • Resveratrol induces mitochondrial biogenesis in endothelial cells
    • Csiszar A., et al. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2009, 297:H13-H20.
    • (2009) Am. J. Physiol. Heart Circ. Physiol. , vol.297
    • Csiszar, A.1
  • 33
    • 84858782079 scopus 로고    scopus 로고
    • AMPK: a nutrient and energy sensor that maintains energy homeostasis
    • Hardie D.G., et al. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012, 13:251-262.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 251-262
    • Hardie, D.G.1
  • 34
    • 78649908644 scopus 로고    scopus 로고
    • Life-long caloric restriction elicits pronounced protection of the aged myocardium: a role for AMPK
    • Edwards A.G., et al. Life-long caloric restriction elicits pronounced protection of the aged myocardium: a role for AMPK. Mech. Ageing Dev. 2010, 131:739-742.
    • (2010) Mech. Ageing Dev. , vol.131 , pp. 739-742
    • Edwards, A.G.1
  • 35
    • 77952940043 scopus 로고    scopus 로고
    • Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle
    • Palacios O.M., et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging (Albany N. Y.) 2009, 1:771-783.
    • (2009) Aging (Albany N. Y.) , vol.1 , pp. 771-783
    • Palacios, O.M.1
  • 36
    • 0034773404 scopus 로고    scopus 로고
    • Role of AMP-activated protein kinase in mechanism of metformin action
    • Zhou G., et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 2001, 108:1167-1174.
    • (2001) J. Clin. Invest. , vol.108 , pp. 1167-1174
    • Zhou, G.1
  • 37
    • 34249846128 scopus 로고    scopus 로고
    • Resveratrol stimulates AMP kinase activity in neurons
    • Dasgupta B., Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:7217-7222.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 7217-7222
    • Dasgupta, B.1    Milbrandt, J.2
  • 38
    • 33749349202 scopus 로고    scopus 로고
    • Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice
    • Zang M., et al. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 2006, 55:2180-2191.
    • (2006) Diabetes , vol.55 , pp. 2180-2191
    • Zang, M.1
  • 39
    • 67349276169 scopus 로고    scopus 로고
    • AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
    • Canto C., et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009, 458:1056-1060.
    • (2009) Nature , vol.458 , pp. 1056-1060
    • Canto, C.1
  • 40
    • 43049121395 scopus 로고    scopus 로고
    • Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
    • Fulco M., et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev. Cell 2008, 14:661-673.
    • (2008) Dev. Cell , vol.14 , pp. 661-673
    • Fulco, M.1
  • 41
    • 77249156847 scopus 로고    scopus 로고
    • Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
    • Canto C., et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 2010, 11:213-219.
    • (2010) Cell Metab. , vol.11 , pp. 213-219
    • Canto, C.1
  • 42
    • 10044243554 scopus 로고    scopus 로고
    • Resveratrol-associated renal toxicity
    • Crowell J.A., et al. Resveratrol-associated renal toxicity. Toxicol. Sci. 2004, 82:614-619.
    • (2004) Toxicol. Sci. , vol.82 , pp. 614-619
    • Crowell, J.A.1
  • 43
    • 0033922250 scopus 로고    scopus 로고
    • Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals
    • Zheng J., Ramirez V.D. Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Br. J. Pharmacol. 2000, 130:1115-1123.
    • (2000) Br. J. Pharmacol. , vol.130 , pp. 1115-1123
    • Zheng, J.1    Ramirez, V.D.2
  • 44
    • 77956410464 scopus 로고    scopus 로고
    • Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation
    • Hawley S.A., et al. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 2010, 11:554-565.
    • (2010) Cell Metab. , vol.11 , pp. 554-565
    • Hawley, S.A.1
  • 45
    • 84860477354 scopus 로고    scopus 로고
    • SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function
    • Price N.L., et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012, 15:675-690.
    • (2012) Cell Metab. , vol.15 , pp. 675-690
    • Price, N.L.1
  • 46
    • 57849131142 scopus 로고    scopus 로고
    • Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells
    • Suchankova G., et al. Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells. Biochem. Biophys. Res. Commun. 2009, 378:836-841.
    • (2009) Biochem. Biophys. Res. Commun. , vol.378 , pp. 836-841
    • Suchankova, G.1
  • 47
    • 77950575506 scopus 로고    scopus 로고
    • AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism
    • Vingtdeux V., et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J. Biol. Chem. 2010, 285:9100-9113.
    • (2010) J. Biol. Chem. , vol.285 , pp. 9100-9113
    • Vingtdeux, V.1
  • 48
    • 34247600642 scopus 로고    scopus 로고
    • Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase
    • Park C.E., et al. Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase. Exp. Mol. Med. 2007, 39:222-229.
    • (2007) Exp. Mol. Med. , vol.39 , pp. 222-229
    • Park, C.E.1
  • 49
    • 54849425547 scopus 로고    scopus 로고
    • Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
    • Feige J.N., et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 2008, 8:347-358.
    • (2008) Cell Metab. , vol.8 , pp. 347-358
    • Feige, J.N.1
  • 50
    • 77949538387 scopus 로고    scopus 로고
    • Epac: defining a new mechanism for cAMP action
    • Gloerich M., Bos J.L. Epac: defining a new mechanism for cAMP action. Annu. Rev. Pharmacol. Toxicol. 2010, 50:355-375.
    • (2010) Annu. Rev. Pharmacol. Toxicol. , vol.50 , pp. 355-375
    • Gloerich, M.1    Bos, J.L.2
  • 51
    • 34247478454 scopus 로고    scopus 로고
    • LKB1/STRAD promotes axon initiation during neuronal polarization
    • Shelly M., et al. LKB1/STRAD promotes axon initiation during neuronal polarization. Cell 2007, 129:565-577.
    • (2007) Cell , vol.129 , pp. 565-577
    • Shelly, M.1
  • 52
    • 58649116274 scopus 로고    scopus 로고
    • C-terminal phosphorylation of LKB1 is not required for regulation of AMP-activated protein kinase, BRSK1, BRSK2, or cell cycle arrest
    • Fogarty S., Hardie D.G. C-terminal phosphorylation of LKB1 is not required for regulation of AMP-activated protein kinase, BRSK1, BRSK2, or cell cycle arrest. J. Biol. Chem. 2009, 284:77-84.
    • (2009) J. Biol. Chem. , vol.284 , pp. 77-84
    • Fogarty, S.1    Hardie, D.G.2
  • 53
    • 75049085233 scopus 로고    scopus 로고
    • PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis
    • Djouder N., et al. PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis. EMBO J. 2010, 29:469-481.
    • (2010) EMBO J. , vol.29 , pp. 469-481
    • Djouder, N.1
  • 54
    • 34447265905 scopus 로고    scopus 로고
    • Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling
    • Conti M., Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu. Rev. Biochem. 2007, 76:481-511.
    • (2007) Annu. Rev. Biochem. , vol.76 , pp. 481-511
    • Conti, M.1    Beavo, J.2
  • 55
    • 60549083066 scopus 로고    scopus 로고
    • Regulation of AMP-activated protein kinase by cAMP in adipocytes: roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis
    • Omar B., et al. Regulation of AMP-activated protein kinase by cAMP in adipocytes: roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis. Cell. Signal. 2009, 21:760-766.
    • (2009) Cell. Signal. , vol.21 , pp. 760-766
    • Omar, B.1
  • 56
    • 51249111507 scopus 로고    scopus 로고
    • Phosphodiesterase 3 and 4 comprise the major cAMP metabolizing enzymes responsible for insulin secretion in INS-1 (832/13) cells and rat islets
    • Waddleton D., et al. Phosphodiesterase 3 and 4 comprise the major cAMP metabolizing enzymes responsible for insulin secretion in INS-1 (832/13) cells and rat islets. Biochem. Pharmacol. 2008, 76:884-893.
    • (2008) Biochem. Pharmacol. , vol.76 , pp. 884-893
    • Waddleton, D.1
  • 57
    • 34249666189 scopus 로고    scopus 로고
    • Beta-cell PDE3B regulates Ca2+-stimulated exocytosis of insulin
    • Walz H.A., et al. Beta-cell PDE3B regulates Ca2+-stimulated exocytosis of insulin. Cell. Signal. 2007, 19:1505-1513.
    • (2007) Cell. Signal. , vol.19 , pp. 1505-1513
    • Walz, H.A.1
  • 58
    • 33845348168 scopus 로고    scopus 로고
    • Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B-null mice
    • Choi Y.H., et al. Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B-null mice. J. Clin. Invest. 2006, 116:3240-3251.
    • (2006) J. Clin. Invest. , vol.116 , pp. 3240-3251
    • Choi, Y.H.1
  • 59
    • 70349898505 scopus 로고    scopus 로고
    • The role of the PDE4D cAMP phosphodiesterase in the regulation of glucagon-like peptide-1 release
    • Ong W.K., et al. The role of the PDE4D cAMP phosphodiesterase in the regulation of glucagon-like peptide-1 release. Br. J. Pharmacol. 2009, 157:633-644.
    • (2009) Br. J. Pharmacol. , vol.157 , pp. 633-644
    • Ong, W.K.1
  • 60
    • 67649667009 scopus 로고    scopus 로고
    • Reduced adiposity and high-fat diet-induced adipose inflammation in mice deficient for phosphodiesterase 4B
    • Zhang R., et al. Reduced adiposity and high-fat diet-induced adipose inflammation in mice deficient for phosphodiesterase 4B. Endocrinology 2009, 150:3076-3082.
    • (2009) Endocrinology , vol.150 , pp. 3076-3082
    • Zhang, R.1
  • 61
    • 0031914520 scopus 로고    scopus 로고
    • Phosphodiesterase isozymes: molecular targets for novel antiasthma agents
    • Torphy T.J. Phosphodiesterase isozymes: molecular targets for novel antiasthma agents. Am. J. Respir. Crit. Care Med. 1998, 157:351-370.
    • (1998) Am. J. Respir. Crit. Care Med. , vol.157 , pp. 351-370
    • Torphy, T.J.1
  • 62
    • 82255186382 scopus 로고    scopus 로고
    • Cyclic AMP: a selective modulator of NF-kappaB action
    • Gerlo S., et al. Cyclic AMP: a selective modulator of NF-kappaB action. Cell. Mol. Life Sci. 2011, 68:3823-3841.
    • (2011) Cell. Mol. Life Sci. , vol.68 , pp. 3823-3841
    • Gerlo, S.1
  • 63
    • 33845866857 scopus 로고    scopus 로고
    • Inflammation and metabolic disorders
    • Hotamisligil G.S. Inflammation and metabolic disorders. Nature 2006, 444:860-867.
    • (2006) Nature , vol.444 , pp. 860-867
    • Hotamisligil, G.S.1
  • 64
    • 80053456372 scopus 로고    scopus 로고
    • Calorie restriction and resveratrol in cardiovascular health and disease
    • Dolinsky V.W., Dyck J.R. Calorie restriction and resveratrol in cardiovascular health and disease. Biochim. Biophys. Acta 2011, 1812:1477-1489.
    • (2011) Biochim. Biophys. Acta , vol.1812 , pp. 1477-1489
    • Dolinsky, V.W.1    Dyck, J.R.2
  • 65
    • 80455143206 scopus 로고    scopus 로고
    • Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans
    • Timmers S., et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011, 14:612-622.
    • (2011) Cell Metab. , vol.14 , pp. 612-622
    • Timmers, S.1
  • 66
    • 33845447741 scopus 로고    scopus 로고
    • The red wine antioxidant resveratrol prevents cardiomyocyte injury following ischemia-reperfusion via multiple sites and mechanisms
    • Goh S.S., et al. The red wine antioxidant resveratrol prevents cardiomyocyte injury following ischemia-reperfusion via multiple sites and mechanisms. Antioxid. Redox Signal. 2007, 9:101-113.
    • (2007) Antioxid. Redox Signal. , vol.9 , pp. 101-113
    • Goh, S.S.1
  • 67
    • 60249098801 scopus 로고    scopus 로고
    • Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer's disease
    • Karuppagounder S.S., et al. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer's disease. Neurochem. Int. 2009, 54:111-118.
    • (2009) Neurochem. Int. , vol.54 , pp. 111-118
    • Karuppagounder, S.S.1
  • 68
    • 53049091294 scopus 로고    scopus 로고
    • Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt
    • Chan A.Y., et al. Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt. J. Biol. Chem. 2008, 283:24194-24201.
    • (2008) J. Biol. Chem. , vol.283 , pp. 24194-24201
    • Chan, A.Y.1
  • 69
    • 65249183838 scopus 로고    scopus 로고
    • Resveratrol prevents the prohypertrophic effects of oxidative stress on LKB1
    • Dolinsky V.W., et al. Resveratrol prevents the prohypertrophic effects of oxidative stress on LKB1. Circulation 2009, 119:1643-1652.
    • (2009) Circulation , vol.119 , pp. 1643-1652
    • Dolinsky, V.W.1
  • 70
    • 84859524897 scopus 로고    scopus 로고
    • The polyphenols resveratrol and s17834 prevent the structural and functional sequelae of diet-induced metabolic heart disease in mice
    • Qin F., et al. The polyphenols resveratrol and s17834 prevent the structural and functional sequelae of diet-induced metabolic heart disease in mice. Circulation 2012, 125:1757-1764.
    • (2012) Circulation , vol.125 , pp. 1757-1764
    • Qin, F.1
  • 71
    • 33845396682 scopus 로고    scopus 로고
    • SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity
    • Dai J.M., et al. SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity. J. Cell. Physiol. 2007, 210:161-166.
    • (2007) J. Cell. Physiol. , vol.210 , pp. 161-166
    • Dai, J.M.1
  • 72
    • 46249100836 scopus 로고    scopus 로고
    • Tissue-specific regulation of SIRT1 by calorie restriction
    • Chen D., et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008, 22:1753-1757.
    • (2008) Genes Dev. , vol.22 , pp. 1753-1757
    • Chen, D.1
  • 73
    • 39149137233 scopus 로고    scopus 로고
    • Protective mechanisms of resveratrol against ischemia-reperfusion-induced damage in hearts obtained from Zucker obese rats: the role of GLUT-4 and endothelin
    • Lekli I., et al. Protective mechanisms of resveratrol against ischemia-reperfusion-induced damage in hearts obtained from Zucker obese rats: the role of GLUT-4 and endothelin. Am. J. Physiol. Heart Circ. Physiol. 2008, 294:H859-H866.
    • (2008) Am. J. Physiol. Heart Circ. Physiol. , vol.294
    • Lekli, I.1
  • 74
    • 34547101726 scopus 로고    scopus 로고
    • Resveratrol alleviates cardiac dysfunction in streptozotocin-induced diabetes: role of nitric oxide, thioredoxin, and heme oxygenase
    • Thirunavukkarasu M., et al. Resveratrol alleviates cardiac dysfunction in streptozotocin-induced diabetes: role of nitric oxide, thioredoxin, and heme oxygenase. Free Radic. Biol. Med. 2007, 43:720-729.
    • (2007) Free Radic. Biol. Med. , vol.43 , pp. 720-729
    • Thirunavukkarasu, M.1
  • 75
    • 0034234237 scopus 로고    scopus 로고
    • CBP/p300 in cell growth, transformation, and development
    • Goodman R.H., Smolik S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 2000, 14:1553-1577.
    • (2000) Genes Dev. , vol.14 , pp. 1553-1577
    • Goodman, R.H.1    Smolik, S.2
  • 76
    • 0035914324 scopus 로고    scopus 로고
    • Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors
    • Yang W., et al. Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors. J. Biol. Chem. 2001, 276:38341-38344.
    • (2001) J. Biol. Chem. , vol.276 , pp. 38341-38344
    • Yang, W.1
  • 77
    • 84863622561 scopus 로고    scopus 로고
    • Role of deleted in breast cancer 1 (DBC1) in SIRT1 activation induced by protein kinase A and AMP activated protein kinase
    • Nin V., et al. Role of deleted in breast cancer 1 (DBC1) in SIRT1 activation induced by protein kinase A and AMP activated protein kinase. J. Biol. Chem. 2012, 287:23489-23501.
    • (2012) J. Biol. Chem. , vol.287 , pp. 23489-23501
    • Nin, V.1
  • 78
    • 0141814680 scopus 로고    scopus 로고
    • Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
    • Cheng H.L., et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:10794-10799.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 10794-10799
    • Cheng, H.L.1
  • 79
    • 0037207475 scopus 로고    scopus 로고
    • The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis
    • McBurney M.W., et al. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol. Cell. Biol. 2003, 23:38-54.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 38-54
    • McBurney, M.W.1
  • 80
    • 55549096745 scopus 로고    scopus 로고
    • SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation
    • Lan F., et al. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J. Biol. Chem. 2008, 283:27628-27635.
    • (2008) J. Biol. Chem. , vol.283 , pp. 27628-27635
    • Lan, F.1
  • 81
    • 50649112638 scopus 로고    scopus 로고
    • SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase
    • Hou X., et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J. Biol. Chem. 2008, 283:20015-20026.
    • (2008) J. Biol. Chem. , vol.283 , pp. 20015-20026
    • Hou, X.1
  • 82
    • 15444377466 scopus 로고    scopus 로고
    • SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1
    • Bouras T., et al. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J. Biol. Chem. 2005, 280:10264-10276.
    • (2005) J. Biol. Chem. , vol.280 , pp. 10264-10276
    • Bouras, T.1
  • 83
    • 84863012559 scopus 로고    scopus 로고
    • Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK
    • Lin Y.Y., et al. Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK. Nature 2012, 482:251-255.
    • (2012) Nature , vol.482 , pp. 251-255
    • Lin, Y.Y.1
  • 84
    • 52749091816 scopus 로고    scopus 로고
    • SirT1 gain of function increases energy efficiency and prevents diabetes in mice
    • Banks A.S., et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 2008, 8:333-341.
    • (2008) Cell Metab. , vol.8 , pp. 333-341
    • Banks, A.S.1
  • 85
    • 76949083868 scopus 로고    scopus 로고
    • Mitochondria and diabetes mellitus: untangling a conflictive relationship?
    • Schiff M., et al. Mitochondria and diabetes mellitus: untangling a conflictive relationship?. J. Inherit. Metab. Dis. 2009, 32:684-698.
    • (2009) J. Inherit. Metab. Dis. , vol.32 , pp. 684-698
    • Schiff, M.1
  • 86
    • 58149401189 scopus 로고    scopus 로고
    • Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism
    • Choi C.S., et al. Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:19926-19931.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 19926-19931
    • Choi, C.S.1
  • 87
    • 73949099327 scopus 로고    scopus 로고
    • Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging
    • Wenz T., et al. Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:20405-20410.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 20405-20410
    • Wenz, T.1
  • 88
    • 1242336775 scopus 로고    scopus 로고
    • Urinary and plasma levels of resveratrol and quercetin in humans, mice, and rats after ingestion of pure compounds and grape juice
    • Meng X., et al. Urinary and plasma levels of resveratrol and quercetin in humans, mice, and rats after ingestion of pure compounds and grape juice. J. Agric. Food Chem. 2004, 52:935-942.
    • (2004) J. Agric. Food Chem. , vol.52 , pp. 935-942
    • Meng, X.1
  • 89
    • 0018073491 scopus 로고
    • Beta-Glucuronidase activity in trained red and white skeletal muscle of mice
    • Vihko V., et al. beta-Glucuronidase activity in trained red and white skeletal muscle of mice. Eur. J. Appl. Physiol. Occup. Physiol. 1978, 39:255-261.
    • (1978) Eur. J. Appl. Physiol. Occup. Physiol. , vol.39 , pp. 255-261
    • Vihko, V.1
  • 90
    • 1842847981 scopus 로고    scopus 로고
    • The type IV phosphodiesterase inhibitor rolipram induces expression of the cell cycle inhibitors p21(Cip1) and p27(Kip1), resulting in growth inhibition, increased differentiation, and subsequent apoptosis of malignant A-172 glioma cells
    • Chen T.C., et al. The type IV phosphodiesterase inhibitor rolipram induces expression of the cell cycle inhibitors p21(Cip1) and p27(Kip1), resulting in growth inhibition, increased differentiation, and subsequent apoptosis of malignant A-172 glioma cells. Cancer Biol. Ther. 2002, 1:268-276.
    • (2002) Cancer Biol. Ther. , vol.1 , pp. 268-276
    • Chen, T.C.1
  • 91
    • 2542445157 scopus 로고    scopus 로고
    • Resveratrol is a peroxidase-mediated inactivator of COX-1 but not COX-2: a mechanistic approach to the design of COX-1 selective agents
    • Szewczuk L.M., et al. Resveratrol is a peroxidase-mediated inactivator of COX-1 but not COX-2: a mechanistic approach to the design of COX-1 selective agents. J. Biol. Chem. 2004, 279:22727-22737.
    • (2004) J. Biol. Chem. , vol.279 , pp. 22727-22737
    • Szewczuk, L.M.1
  • 92
    • 52649086870 scopus 로고    scopus 로고
    • Resveratrol directly targets COX-2 to inhibit carcinogenesis
    • Zykova T.A., et al. Resveratrol directly targets COX-2 to inhibit carcinogenesis. Mol. Carcinog. 2008, 47:797-805.
    • (2008) Mol. Carcinog. , vol.47 , pp. 797-805
    • Zykova, T.A.1
  • 93
    • 84866148535 scopus 로고    scopus 로고
    • Effect of the phosphodiesterase 4 inhibitor roflumilast on glucose metabolism in patients with treatment-naive, newly diagnosed type 2 diabetes mellitus
    • Wouters E.F., et al. Effect of the phosphodiesterase 4 inhibitor roflumilast on glucose metabolism in patients with treatment-naive, newly diagnosed type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 2012, 97:E1720-E1725.
    • (2012) J. Clin. Endocrinol. Metab. , vol.97
    • Wouters, E.F.1
  • 94
    • 47749128879 scopus 로고    scopus 로고
    • Sirt1 protects against high-fat diet-induced metabolic damage
    • Pfluger P.T., et al. Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:9793-9798.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 9793-9798
    • Pfluger, P.T.1
  • 95
    • 82955169641 scopus 로고    scopus 로고
    • Proatherogenic abnormalities of lipid metabolism in SirT1 transgenic mice are mediated through Creb deacetylation
    • Qiang L., et al. Proatherogenic abnormalities of lipid metabolism in SirT1 transgenic mice are mediated through Creb deacetylation. Cell Metab. 2011, 14:758-767.
    • (2011) Cell Metab. , vol.14 , pp. 758-767
    • Qiang, L.1
  • 96
    • 36248975293 scopus 로고    scopus 로고
    • SIRT1 transgenic mice show phenotypes resembling calorie restriction
    • Bordone L., et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 2007, 6:759-767.
    • (2007) Aging Cell , vol.6 , pp. 759-767
    • Bordone, L.1
  • 97
    • 3042681042 scopus 로고    scopus 로고
    • Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma
    • Picard F., et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004, 429:771-776.
    • (2004) Nature , vol.429 , pp. 771-776
    • Picard, F.1
  • 98
    • 0035855905 scopus 로고    scopus 로고
    • CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
    • Herzig S., et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001, 413:179-183.
    • (2001) Nature , vol.413 , pp. 179-183
    • Herzig, S.1
  • 99
    • 80053564714 scopus 로고    scopus 로고
    • CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability
    • Noriega L.G., et al. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep. 2011, 12:1069-1076.
    • (2011) EMBO Rep. , vol.12 , pp. 1069-1076
    • Noriega, L.G.1
  • 100
    • 78650929972 scopus 로고    scopus 로고
    • Up-regulation of adiponectin by resveratrol: the essential roles of the Akt/FOXO1 and AMP-activated protein kinase signaling pathways and DsbA-L
    • Wang A., et al. Up-regulation of adiponectin by resveratrol: the essential roles of the Akt/FOXO1 and AMP-activated protein kinase signaling pathways and DsbA-L. J. Biol. Chem. 2011, 286:60-66.
    • (2011) J. Biol. Chem. , vol.286 , pp. 60-66
    • Wang, A.1
  • 101
    • 79953755370 scopus 로고    scopus 로고
    • AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice
    • Li Y., et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011, 13:376-388.
    • (2011) Cell Metab. , vol.13 , pp. 376-388
    • Li, Y.1
  • 102
    • 0036251153 scopus 로고    scopus 로고
    • SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
    • Horton J.D., et al. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 2002, 109:1125-1131.
    • (2002) J. Clin. Invest. , vol.109 , pp. 1125-1131
    • Horton, J.D.1
  • 103
    • 33745107554 scopus 로고    scopus 로고
    • Mechanisms of disease: hepatic steatosis in type 2 diabetes--pathogenesis and clinical relevance
    • Roden M. Mechanisms of disease: hepatic steatosis in type 2 diabetes--pathogenesis and clinical relevance. Nat. Clin. Pract. Endocrinol. Metab. 2006, 2:335-348.
    • (2006) Nat. Clin. Pract. Endocrinol. Metab. , vol.2 , pp. 335-348
    • Roden, M.1
  • 104
    • 77954488637 scopus 로고    scopus 로고
    • Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP
    • Walker A.K., et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 2010, 24:1403-1417.
    • (2010) Genes Dev. , vol.24 , pp. 1403-1417
    • Walker, A.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.