-
1
-
-
0002458132
-
The effect of retarded growth upon the lebgth of life span and ultimate body size
-
McCay C.M., et al. The effect of retarded growth upon the lebgth of life span and ultimate body size. J. Nutr. 1935, 10:63-79.
-
(1935)
J. Nutr.
, vol.10
, pp. 63-79
-
-
McCay, C.M.1
-
2
-
-
67650439330
-
Caloric restriction delays disease onset and mortality in rhesus monkeys
-
Colman R.J., et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009, 325:201-204.
-
(2009)
Science
, vol.325
, pp. 201-204
-
-
Colman, R.J.1
-
3
-
-
77952549960
-
Resveratrol, sirtuins, and the promise of a DR mimetic
-
Baur J.A. Resveratrol, sirtuins, and the promise of a DR mimetic. Mech. Ageing Dev. 2010, 131:261-269.
-
(2010)
Mech. Ageing Dev.
, vol.131
, pp. 261-269
-
-
Baur, J.A.1
-
4
-
-
79958206937
-
Franklin H. Epstein Lecture: sirtuins, aging, and medicine
-
Guarente L. Franklin H. Epstein Lecture: sirtuins, aging, and medicine. N. Engl. J. Med. 2011, 364:2235-2244.
-
(2011)
N. Engl. J. Med.
, vol.364
, pp. 2235-2244
-
-
Guarente, L.1
-
5
-
-
0034703217
-
Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
-
Lin S.J., et al. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000, 289:2126-2128.
-
(2000)
Science
, vol.289
, pp. 2126-2128
-
-
Lin, S.J.1
-
6
-
-
28244475950
-
Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO
-
Wang Y., Tissenbaum H.A. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech. Ageing Dev. 2006, 127:48-56.
-
(2006)
Mech. Ageing Dev.
, vol.127
, pp. 48-56
-
-
Wang, Y.1
Tissenbaum, H.A.2
-
7
-
-
8644224064
-
Sir2 mediates longevity in the fly through a pathway related to calorie restriction
-
Rogina B., Helfand S.L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:15998-16003.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 15998-16003
-
-
Rogina, B.1
Helfand, S.L.2
-
8
-
-
19344374925
-
Sir2-independent life span extension by calorie restriction in yeast
-
Kaeberlein M., et al. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol. 2004, 2:e296.
-
(2004)
PLoS Biol.
, vol.2
-
-
Kaeberlein, M.1
-
9
-
-
80053168829
-
Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila
-
Burnett C., et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 2011, 477:482-485.
-
(2011)
Nature
, vol.477
, pp. 482-485
-
-
Burnett, C.1
-
10
-
-
80053134340
-
Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes
-
Viswanathan M., Guarente L. Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 2011, 477:E1-E2.
-
(2011)
Nature
, vol.477
-
-
Viswanathan, M.1
Guarente, L.2
-
11
-
-
78650758398
-
Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer
-
Herranz D., et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 2010, 1:1-8.
-
(2010)
Nat. Commun.
, vol.1
, pp. 1-8
-
-
Herranz, D.1
-
12
-
-
0141719702
-
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
-
Howitz K.T., et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003, 425:191-196.
-
(2003)
Nature
, vol.425
, pp. 191-196
-
-
Howitz, K.T.1
-
13
-
-
3943071801
-
Sirtuin activators mimic caloric restriction and delay ageing in metazoans
-
Wood J.G., et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004, 430:686-689.
-
(2004)
Nature
, vol.430
, pp. 686-689
-
-
Wood, J.G.1
-
14
-
-
34848927457
-
Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans
-
Bass T.M., et al. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech. Ageing Dev. 2007, 128:546-552.
-
(2007)
Mech. Ageing Dev.
, vol.128
, pp. 546-552
-
-
Bass, T.M.1
-
15
-
-
20444431507
-
Substrate-specific activation of sirtuins by resveratrol
-
Kaeberlein M., et al. Substrate-specific activation of sirtuins by resveratrol. J. Biol. Chem. 2005, 280:17038-17045.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 17038-17045
-
-
Kaeberlein, M.1
-
16
-
-
31944450272
-
Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate
-
Valenzano D.R., et al. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr. Biol. 2006, 16:296-300.
-
(2006)
Curr. Biol.
, vol.16
, pp. 296-300
-
-
Valenzano, D.R.1
-
17
-
-
48349144852
-
Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span
-
Pearson K.J., et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008, 8:157-168.
-
(2008)
Cell Metab.
, vol.8
, pp. 157-168
-
-
Pearson, K.J.1
-
18
-
-
48349110303
-
A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice
-
Barger J.L., et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS ONE 2008, 3:e2264.
-
(2008)
PLoS ONE
, vol.3
-
-
Barger, J.L.1
-
19
-
-
65349192792
-
Resveratrol treatment in mice does not elicit the bradycardia and hypothermia associated with calorie restriction
-
Mayers J.R., et al. Resveratrol treatment in mice does not elicit the bradycardia and hypothermia associated with calorie restriction. FASEB J. 2009, 23:1032-1040.
-
(2009)
FASEB J.
, vol.23
, pp. 1032-1040
-
-
Mayers, J.R.1
-
20
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha
-
Lagouge M., et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127:1109-1122.
-
(2006)
Cell
, vol.127
, pp. 1109-1122
-
-
Lagouge, M.1
-
21
-
-
84863011114
-
Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases
-
Park S.J., et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 2012, 148:421-433.
-
(2012)
Cell
, vol.148
, pp. 421-433
-
-
Park, S.J.1
-
22
-
-
77950348878
-
AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol
-
Um J.H., et al. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 2010, 59:554-563.
-
(2010)
Diabetes
, vol.59
, pp. 554-563
-
-
Um, J.H.1
-
23
-
-
33751072349
-
Resveratrol improves health and survival of mice on a high-calorie diet
-
Baur J.A., et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444:337-342.
-
(2006)
Nature
, vol.444
, pp. 337-342
-
-
Baur, J.A.1
-
24
-
-
80052910300
-
Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients
-
Brasnyo P., et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br. J. Nutr. 2011, 106:383-389.
-
(2011)
Br. J. Nutr.
, vol.106
, pp. 383-389
-
-
Brasnyo, P.1
-
25
-
-
84860131782
-
Pilot study of resveratrol in older adults with impaired glucose tolerance
-
Crandall J.P., et al. Pilot study of resveratrol in older adults with impaired glucose tolerance. J. Gerontol. A: Biol. Sci. Med. Sci. 2012, 10.1093/gerona/glr235.
-
(2012)
J. Gerontol. A: Biol. Sci. Med. Sci.
-
-
Crandall, J.P.1
-
26
-
-
80455143206
-
Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans
-
Timmers S., et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011, 14:612-622.
-
(2011)
Cell Metab.
, vol.14
, pp. 612-622
-
-
Timmers, S.1
-
27
-
-
77950246109
-
SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1
-
Pacholec M., et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem. 2010, 285:8340-8351.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 8340-8351
-
-
Pacholec, M.1
-
28
-
-
20444444649
-
Mechanism of human SIRT1 activation by resveratrol
-
Borra M.T., et al. Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem. 2005, 280:17187-17195.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 17187-17195
-
-
Borra, M.T.1
-
29
-
-
20444431507
-
Substrate-specific activation of sirtuins by resveratrol
-
Kaeberlein M., et al. Substrate-specific activation of sirtuins by resveratrol. J. Biol. Chem. 2005, 280:17038-17045.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 17038-17045
-
-
Kaeberlein, M.1
-
30
-
-
70350524083
-
Resveratrol is not a direct activator of SIRT1 enzyme activity
-
Beher D., et al. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem. Biol. Drug Des. 2009, 74:619-624.
-
(2009)
Chem. Biol. Drug Des.
, vol.74
, pp. 619-624
-
-
Beher, D.1
-
31
-
-
47749148061
-
Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK
-
Breen D.M., et al. Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK. Biochem. Biophys. Res. Commun. 2008, 374:117-122.
-
(2008)
Biochem. Biophys. Res. Commun.
, vol.374
, pp. 117-122
-
-
Breen, D.M.1
-
32
-
-
67650091375
-
Resveratrol induces mitochondrial biogenesis in endothelial cells
-
Csiszar A., et al. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2009, 297:H13-H20.
-
(2009)
Am. J. Physiol. Heart Circ. Physiol.
, vol.297
-
-
Csiszar, A.1
-
33
-
-
84858782079
-
AMPK: a nutrient and energy sensor that maintains energy homeostasis
-
Hardie D.G., et al. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012, 13:251-262.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
-
34
-
-
78649908644
-
Life-long caloric restriction elicits pronounced protection of the aged myocardium: a role for AMPK
-
Edwards A.G., et al. Life-long caloric restriction elicits pronounced protection of the aged myocardium: a role for AMPK. Mech. Ageing Dev. 2010, 131:739-742.
-
(2010)
Mech. Ageing Dev.
, vol.131
, pp. 739-742
-
-
Edwards, A.G.1
-
35
-
-
77952940043
-
Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle
-
Palacios O.M., et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging (Albany N. Y.) 2009, 1:771-783.
-
(2009)
Aging (Albany N. Y.)
, vol.1
, pp. 771-783
-
-
Palacios, O.M.1
-
36
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action
-
Zhou G., et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 2001, 108:1167-1174.
-
(2001)
J. Clin. Invest.
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
-
37
-
-
34249846128
-
Resveratrol stimulates AMP kinase activity in neurons
-
Dasgupta B., Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:7217-7222.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 7217-7222
-
-
Dasgupta, B.1
Milbrandt, J.2
-
38
-
-
33749349202
-
Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice
-
Zang M., et al. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 2006, 55:2180-2191.
-
(2006)
Diabetes
, vol.55
, pp. 2180-2191
-
-
Zang, M.1
-
39
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
-
Canto C., et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009, 458:1056-1060.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
-
40
-
-
43049121395
-
Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
-
Fulco M., et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev. Cell 2008, 14:661-673.
-
(2008)
Dev. Cell
, vol.14
, pp. 661-673
-
-
Fulco, M.1
-
41
-
-
77249156847
-
Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
-
Canto C., et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 2010, 11:213-219.
-
(2010)
Cell Metab.
, vol.11
, pp. 213-219
-
-
Canto, C.1
-
42
-
-
10044243554
-
Resveratrol-associated renal toxicity
-
Crowell J.A., et al. Resveratrol-associated renal toxicity. Toxicol. Sci. 2004, 82:614-619.
-
(2004)
Toxicol. Sci.
, vol.82
, pp. 614-619
-
-
Crowell, J.A.1
-
43
-
-
0033922250
-
Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals
-
Zheng J., Ramirez V.D. Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Br. J. Pharmacol. 2000, 130:1115-1123.
-
(2000)
Br. J. Pharmacol.
, vol.130
, pp. 1115-1123
-
-
Zheng, J.1
Ramirez, V.D.2
-
44
-
-
77956410464
-
Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation
-
Hawley S.A., et al. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 2010, 11:554-565.
-
(2010)
Cell Metab.
, vol.11
, pp. 554-565
-
-
Hawley, S.A.1
-
45
-
-
84860477354
-
SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function
-
Price N.L., et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012, 15:675-690.
-
(2012)
Cell Metab.
, vol.15
, pp. 675-690
-
-
Price, N.L.1
-
46
-
-
57849131142
-
Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells
-
Suchankova G., et al. Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells. Biochem. Biophys. Res. Commun. 2009, 378:836-841.
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.378
, pp. 836-841
-
-
Suchankova, G.1
-
47
-
-
77950575506
-
AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism
-
Vingtdeux V., et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J. Biol. Chem. 2010, 285:9100-9113.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 9100-9113
-
-
Vingtdeux, V.1
-
48
-
-
34247600642
-
Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase
-
Park C.E., et al. Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase. Exp. Mol. Med. 2007, 39:222-229.
-
(2007)
Exp. Mol. Med.
, vol.39
, pp. 222-229
-
-
Park, C.E.1
-
49
-
-
54849425547
-
Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
-
Feige J.N., et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 2008, 8:347-358.
-
(2008)
Cell Metab.
, vol.8
, pp. 347-358
-
-
Feige, J.N.1
-
51
-
-
34247478454
-
LKB1/STRAD promotes axon initiation during neuronal polarization
-
Shelly M., et al. LKB1/STRAD promotes axon initiation during neuronal polarization. Cell 2007, 129:565-577.
-
(2007)
Cell
, vol.129
, pp. 565-577
-
-
Shelly, M.1
-
52
-
-
58649116274
-
C-terminal phosphorylation of LKB1 is not required for regulation of AMP-activated protein kinase, BRSK1, BRSK2, or cell cycle arrest
-
Fogarty S., Hardie D.G. C-terminal phosphorylation of LKB1 is not required for regulation of AMP-activated protein kinase, BRSK1, BRSK2, or cell cycle arrest. J. Biol. Chem. 2009, 284:77-84.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 77-84
-
-
Fogarty, S.1
Hardie, D.G.2
-
53
-
-
75049085233
-
PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis
-
Djouder N., et al. PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis. EMBO J. 2010, 29:469-481.
-
(2010)
EMBO J.
, vol.29
, pp. 469-481
-
-
Djouder, N.1
-
54
-
-
34447265905
-
Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling
-
Conti M., Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu. Rev. Biochem. 2007, 76:481-511.
-
(2007)
Annu. Rev. Biochem.
, vol.76
, pp. 481-511
-
-
Conti, M.1
Beavo, J.2
-
55
-
-
60549083066
-
Regulation of AMP-activated protein kinase by cAMP in adipocytes: roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis
-
Omar B., et al. Regulation of AMP-activated protein kinase by cAMP in adipocytes: roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis. Cell. Signal. 2009, 21:760-766.
-
(2009)
Cell. Signal.
, vol.21
, pp. 760-766
-
-
Omar, B.1
-
56
-
-
51249111507
-
Phosphodiesterase 3 and 4 comprise the major cAMP metabolizing enzymes responsible for insulin secretion in INS-1 (832/13) cells and rat islets
-
Waddleton D., et al. Phosphodiesterase 3 and 4 comprise the major cAMP metabolizing enzymes responsible for insulin secretion in INS-1 (832/13) cells and rat islets. Biochem. Pharmacol. 2008, 76:884-893.
-
(2008)
Biochem. Pharmacol.
, vol.76
, pp. 884-893
-
-
Waddleton, D.1
-
57
-
-
34249666189
-
Beta-cell PDE3B regulates Ca2+-stimulated exocytosis of insulin
-
Walz H.A., et al. Beta-cell PDE3B regulates Ca2+-stimulated exocytosis of insulin. Cell. Signal. 2007, 19:1505-1513.
-
(2007)
Cell. Signal.
, vol.19
, pp. 1505-1513
-
-
Walz, H.A.1
-
58
-
-
33845348168
-
Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B-null mice
-
Choi Y.H., et al. Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B-null mice. J. Clin. Invest. 2006, 116:3240-3251.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 3240-3251
-
-
Choi, Y.H.1
-
59
-
-
70349898505
-
The role of the PDE4D cAMP phosphodiesterase in the regulation of glucagon-like peptide-1 release
-
Ong W.K., et al. The role of the PDE4D cAMP phosphodiesterase in the regulation of glucagon-like peptide-1 release. Br. J. Pharmacol. 2009, 157:633-644.
-
(2009)
Br. J. Pharmacol.
, vol.157
, pp. 633-644
-
-
Ong, W.K.1
-
60
-
-
67649667009
-
Reduced adiposity and high-fat diet-induced adipose inflammation in mice deficient for phosphodiesterase 4B
-
Zhang R., et al. Reduced adiposity and high-fat diet-induced adipose inflammation in mice deficient for phosphodiesterase 4B. Endocrinology 2009, 150:3076-3082.
-
(2009)
Endocrinology
, vol.150
, pp. 3076-3082
-
-
Zhang, R.1
-
61
-
-
0031914520
-
Phosphodiesterase isozymes: molecular targets for novel antiasthma agents
-
Torphy T.J. Phosphodiesterase isozymes: molecular targets for novel antiasthma agents. Am. J. Respir. Crit. Care Med. 1998, 157:351-370.
-
(1998)
Am. J. Respir. Crit. Care Med.
, vol.157
, pp. 351-370
-
-
Torphy, T.J.1
-
62
-
-
82255186382
-
Cyclic AMP: a selective modulator of NF-kappaB action
-
Gerlo S., et al. Cyclic AMP: a selective modulator of NF-kappaB action. Cell. Mol. Life Sci. 2011, 68:3823-3841.
-
(2011)
Cell. Mol. Life Sci.
, vol.68
, pp. 3823-3841
-
-
Gerlo, S.1
-
63
-
-
33845866857
-
Inflammation and metabolic disorders
-
Hotamisligil G.S. Inflammation and metabolic disorders. Nature 2006, 444:860-867.
-
(2006)
Nature
, vol.444
, pp. 860-867
-
-
Hotamisligil, G.S.1
-
64
-
-
80053456372
-
Calorie restriction and resveratrol in cardiovascular health and disease
-
Dolinsky V.W., Dyck J.R. Calorie restriction and resveratrol in cardiovascular health and disease. Biochim. Biophys. Acta 2011, 1812:1477-1489.
-
(2011)
Biochim. Biophys. Acta
, vol.1812
, pp. 1477-1489
-
-
Dolinsky, V.W.1
Dyck, J.R.2
-
65
-
-
80455143206
-
Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans
-
Timmers S., et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011, 14:612-622.
-
(2011)
Cell Metab.
, vol.14
, pp. 612-622
-
-
Timmers, S.1
-
66
-
-
33845447741
-
The red wine antioxidant resveratrol prevents cardiomyocyte injury following ischemia-reperfusion via multiple sites and mechanisms
-
Goh S.S., et al. The red wine antioxidant resveratrol prevents cardiomyocyte injury following ischemia-reperfusion via multiple sites and mechanisms. Antioxid. Redox Signal. 2007, 9:101-113.
-
(2007)
Antioxid. Redox Signal.
, vol.9
, pp. 101-113
-
-
Goh, S.S.1
-
67
-
-
60249098801
-
Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer's disease
-
Karuppagounder S.S., et al. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer's disease. Neurochem. Int. 2009, 54:111-118.
-
(2009)
Neurochem. Int.
, vol.54
, pp. 111-118
-
-
Karuppagounder, S.S.1
-
68
-
-
53049091294
-
Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt
-
Chan A.Y., et al. Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt. J. Biol. Chem. 2008, 283:24194-24201.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 24194-24201
-
-
Chan, A.Y.1
-
69
-
-
65249183838
-
Resveratrol prevents the prohypertrophic effects of oxidative stress on LKB1
-
Dolinsky V.W., et al. Resveratrol prevents the prohypertrophic effects of oxidative stress on LKB1. Circulation 2009, 119:1643-1652.
-
(2009)
Circulation
, vol.119
, pp. 1643-1652
-
-
Dolinsky, V.W.1
-
70
-
-
84859524897
-
The polyphenols resveratrol and s17834 prevent the structural and functional sequelae of diet-induced metabolic heart disease in mice
-
Qin F., et al. The polyphenols resveratrol and s17834 prevent the structural and functional sequelae of diet-induced metabolic heart disease in mice. Circulation 2012, 125:1757-1764.
-
(2012)
Circulation
, vol.125
, pp. 1757-1764
-
-
Qin, F.1
-
71
-
-
33845396682
-
SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity
-
Dai J.M., et al. SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity. J. Cell. Physiol. 2007, 210:161-166.
-
(2007)
J. Cell. Physiol.
, vol.210
, pp. 161-166
-
-
Dai, J.M.1
-
72
-
-
46249100836
-
Tissue-specific regulation of SIRT1 by calorie restriction
-
Chen D., et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008, 22:1753-1757.
-
(2008)
Genes Dev.
, vol.22
, pp. 1753-1757
-
-
Chen, D.1
-
73
-
-
39149137233
-
Protective mechanisms of resveratrol against ischemia-reperfusion-induced damage in hearts obtained from Zucker obese rats: the role of GLUT-4 and endothelin
-
Lekli I., et al. Protective mechanisms of resveratrol against ischemia-reperfusion-induced damage in hearts obtained from Zucker obese rats: the role of GLUT-4 and endothelin. Am. J. Physiol. Heart Circ. Physiol. 2008, 294:H859-H866.
-
(2008)
Am. J. Physiol. Heart Circ. Physiol.
, vol.294
-
-
Lekli, I.1
-
74
-
-
34547101726
-
Resveratrol alleviates cardiac dysfunction in streptozotocin-induced diabetes: role of nitric oxide, thioredoxin, and heme oxygenase
-
Thirunavukkarasu M., et al. Resveratrol alleviates cardiac dysfunction in streptozotocin-induced diabetes: role of nitric oxide, thioredoxin, and heme oxygenase. Free Radic. Biol. Med. 2007, 43:720-729.
-
(2007)
Free Radic. Biol. Med.
, vol.43
, pp. 720-729
-
-
Thirunavukkarasu, M.1
-
75
-
-
0034234237
-
CBP/p300 in cell growth, transformation, and development
-
Goodman R.H., Smolik S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 2000, 14:1553-1577.
-
(2000)
Genes Dev.
, vol.14
, pp. 1553-1577
-
-
Goodman, R.H.1
Smolik, S.2
-
76
-
-
0035914324
-
Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors
-
Yang W., et al. Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors. J. Biol. Chem. 2001, 276:38341-38344.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 38341-38344
-
-
Yang, W.1
-
77
-
-
84863622561
-
Role of deleted in breast cancer 1 (DBC1) in SIRT1 activation induced by protein kinase A and AMP activated protein kinase
-
Nin V., et al. Role of deleted in breast cancer 1 (DBC1) in SIRT1 activation induced by protein kinase A and AMP activated protein kinase. J. Biol. Chem. 2012, 287:23489-23501.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 23489-23501
-
-
Nin, V.1
-
78
-
-
0141814680
-
Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
-
Cheng H.L., et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:10794-10799.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 10794-10799
-
-
Cheng, H.L.1
-
79
-
-
0037207475
-
The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis
-
McBurney M.W., et al. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol. Cell. Biol. 2003, 23:38-54.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 38-54
-
-
McBurney, M.W.1
-
80
-
-
55549096745
-
SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation
-
Lan F., et al. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J. Biol. Chem. 2008, 283:27628-27635.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 27628-27635
-
-
Lan, F.1
-
81
-
-
50649112638
-
SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase
-
Hou X., et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J. Biol. Chem. 2008, 283:20015-20026.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 20015-20026
-
-
Hou, X.1
-
82
-
-
15444377466
-
SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1
-
Bouras T., et al. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J. Biol. Chem. 2005, 280:10264-10276.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 10264-10276
-
-
Bouras, T.1
-
83
-
-
84863012559
-
Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK
-
Lin Y.Y., et al. Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK. Nature 2012, 482:251-255.
-
(2012)
Nature
, vol.482
, pp. 251-255
-
-
Lin, Y.Y.1
-
84
-
-
52749091816
-
SirT1 gain of function increases energy efficiency and prevents diabetes in mice
-
Banks A.S., et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 2008, 8:333-341.
-
(2008)
Cell Metab.
, vol.8
, pp. 333-341
-
-
Banks, A.S.1
-
85
-
-
76949083868
-
Mitochondria and diabetes mellitus: untangling a conflictive relationship?
-
Schiff M., et al. Mitochondria and diabetes mellitus: untangling a conflictive relationship?. J. Inherit. Metab. Dis. 2009, 32:684-698.
-
(2009)
J. Inherit. Metab. Dis.
, vol.32
, pp. 684-698
-
-
Schiff, M.1
-
86
-
-
58149401189
-
Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism
-
Choi C.S., et al. Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:19926-19931.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 19926-19931
-
-
Choi, C.S.1
-
87
-
-
73949099327
-
Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging
-
Wenz T., et al. Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:20405-20410.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 20405-20410
-
-
Wenz, T.1
-
88
-
-
1242336775
-
Urinary and plasma levels of resveratrol and quercetin in humans, mice, and rats after ingestion of pure compounds and grape juice
-
Meng X., et al. Urinary and plasma levels of resveratrol and quercetin in humans, mice, and rats after ingestion of pure compounds and grape juice. J. Agric. Food Chem. 2004, 52:935-942.
-
(2004)
J. Agric. Food Chem.
, vol.52
, pp. 935-942
-
-
Meng, X.1
-
89
-
-
0018073491
-
Beta-Glucuronidase activity in trained red and white skeletal muscle of mice
-
Vihko V., et al. beta-Glucuronidase activity in trained red and white skeletal muscle of mice. Eur. J. Appl. Physiol. Occup. Physiol. 1978, 39:255-261.
-
(1978)
Eur. J. Appl. Physiol. Occup. Physiol.
, vol.39
, pp. 255-261
-
-
Vihko, V.1
-
90
-
-
1842847981
-
The type IV phosphodiesterase inhibitor rolipram induces expression of the cell cycle inhibitors p21(Cip1) and p27(Kip1), resulting in growth inhibition, increased differentiation, and subsequent apoptosis of malignant A-172 glioma cells
-
Chen T.C., et al. The type IV phosphodiesterase inhibitor rolipram induces expression of the cell cycle inhibitors p21(Cip1) and p27(Kip1), resulting in growth inhibition, increased differentiation, and subsequent apoptosis of malignant A-172 glioma cells. Cancer Biol. Ther. 2002, 1:268-276.
-
(2002)
Cancer Biol. Ther.
, vol.1
, pp. 268-276
-
-
Chen, T.C.1
-
91
-
-
2542445157
-
Resveratrol is a peroxidase-mediated inactivator of COX-1 but not COX-2: a mechanistic approach to the design of COX-1 selective agents
-
Szewczuk L.M., et al. Resveratrol is a peroxidase-mediated inactivator of COX-1 but not COX-2: a mechanistic approach to the design of COX-1 selective agents. J. Biol. Chem. 2004, 279:22727-22737.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 22727-22737
-
-
Szewczuk, L.M.1
-
92
-
-
52649086870
-
Resveratrol directly targets COX-2 to inhibit carcinogenesis
-
Zykova T.A., et al. Resveratrol directly targets COX-2 to inhibit carcinogenesis. Mol. Carcinog. 2008, 47:797-805.
-
(2008)
Mol. Carcinog.
, vol.47
, pp. 797-805
-
-
Zykova, T.A.1
-
93
-
-
84866148535
-
Effect of the phosphodiesterase 4 inhibitor roflumilast on glucose metabolism in patients with treatment-naive, newly diagnosed type 2 diabetes mellitus
-
Wouters E.F., et al. Effect of the phosphodiesterase 4 inhibitor roflumilast on glucose metabolism in patients with treatment-naive, newly diagnosed type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 2012, 97:E1720-E1725.
-
(2012)
J. Clin. Endocrinol. Metab.
, vol.97
-
-
Wouters, E.F.1
-
94
-
-
47749128879
-
Sirt1 protects against high-fat diet-induced metabolic damage
-
Pfluger P.T., et al. Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:9793-9798.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 9793-9798
-
-
Pfluger, P.T.1
-
95
-
-
82955169641
-
Proatherogenic abnormalities of lipid metabolism in SirT1 transgenic mice are mediated through Creb deacetylation
-
Qiang L., et al. Proatherogenic abnormalities of lipid metabolism in SirT1 transgenic mice are mediated through Creb deacetylation. Cell Metab. 2011, 14:758-767.
-
(2011)
Cell Metab.
, vol.14
, pp. 758-767
-
-
Qiang, L.1
-
96
-
-
36248975293
-
SIRT1 transgenic mice show phenotypes resembling calorie restriction
-
Bordone L., et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 2007, 6:759-767.
-
(2007)
Aging Cell
, vol.6
, pp. 759-767
-
-
Bordone, L.1
-
97
-
-
3042681042
-
Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma
-
Picard F., et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004, 429:771-776.
-
(2004)
Nature
, vol.429
, pp. 771-776
-
-
Picard, F.1
-
98
-
-
0035855905
-
CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
-
Herzig S., et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001, 413:179-183.
-
(2001)
Nature
, vol.413
, pp. 179-183
-
-
Herzig, S.1
-
99
-
-
80053564714
-
CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability
-
Noriega L.G., et al. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep. 2011, 12:1069-1076.
-
(2011)
EMBO Rep.
, vol.12
, pp. 1069-1076
-
-
Noriega, L.G.1
-
100
-
-
78650929972
-
Up-regulation of adiponectin by resveratrol: the essential roles of the Akt/FOXO1 and AMP-activated protein kinase signaling pathways and DsbA-L
-
Wang A., et al. Up-regulation of adiponectin by resveratrol: the essential roles of the Akt/FOXO1 and AMP-activated protein kinase signaling pathways and DsbA-L. J. Biol. Chem. 2011, 286:60-66.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 60-66
-
-
Wang, A.1
-
101
-
-
79953755370
-
AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice
-
Li Y., et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011, 13:376-388.
-
(2011)
Cell Metab.
, vol.13
, pp. 376-388
-
-
Li, Y.1
-
102
-
-
0036251153
-
SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
-
Horton J.D., et al. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 2002, 109:1125-1131.
-
(2002)
J. Clin. Invest.
, vol.109
, pp. 1125-1131
-
-
Horton, J.D.1
-
103
-
-
33745107554
-
Mechanisms of disease: hepatic steatosis in type 2 diabetes--pathogenesis and clinical relevance
-
Roden M. Mechanisms of disease: hepatic steatosis in type 2 diabetes--pathogenesis and clinical relevance. Nat. Clin. Pract. Endocrinol. Metab. 2006, 2:335-348.
-
(2006)
Nat. Clin. Pract. Endocrinol. Metab.
, vol.2
, pp. 335-348
-
-
Roden, M.1
-
104
-
-
77954488637
-
Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP
-
Walker A.K., et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 2010, 24:1403-1417.
-
(2010)
Genes Dev.
, vol.24
, pp. 1403-1417
-
-
Walker, A.K.1
|