-
1
-
-
76449098262
-
Phenix: A comprehensive Python-based system for macromolecular structure solution
-
Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-KunstleveRW, et al. 2010. Phenix: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66: 213-221.
-
(2010)
Acta Crystallogr D Biol Crystallogr
, vol.66
, pp. 213-221
-
-
Adams, P.D.1
Afonine, P.V.2
Bunkoczi, G.3
Chen, V.B.4
Davis, I.W.5
Echols, N.6
Headd, J.J.7
Hung, L.W.8
Kapral, G.J.9
Grosse-Kunstleve, R.W.10
-
2
-
-
0036753953
-
Structure of a Sir2 enzyme bound to an acetylated p53 peptide
-
Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C. 2002. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol Cell 10: 523-535.
-
(2002)
Mol Cell
, vol.10
, pp. 523-535
-
-
Avalos, J.L.1
Celic, I.2
Muhammad, S.3
Cosgrove, M.S.4
Boeke, J.D.5
Wolberger, C.6
-
3
-
-
77953480631
-
Biochemical effects of SIRT1 activators
-
Baur JA. 2010. Biochemical effects of SIRT1 activators. Biochim Biophys Acta 1804: 1626-1634.
-
(2010)
Biochim Biophys Acta
, vol.1804
, pp. 1626-1634
-
-
Baur, J.A.1
-
4
-
-
70350524083
-
Resveratrol is not a direct activator of SIRT1 enzyme activity
-
Beher D, Wu J, Cumine S, Kim KW, Lu SC, Atangan L, Wang M. 2009. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 74: 619-624.
-
(2009)
Chem Biol Drug Des
, vol.74
, pp. 619-624
-
-
Beher, D.1
Wu, J.2
Cumine, S.3
Kim, K.W.4
Lu, S.C.5
Atangan, L.6
Wang, M.7
-
5
-
-
63149150180
-
Discoveryof oxazolo[4,5-b] pyridines and related heterocyclic analogs as novel SIRT1 activators
-
Bemis JE, Vu CB, Xie R, Nunes JJ, Ng PY, Disch JS, Milne JC, Carney DP,LynchAV, Jin L, et al. 2009. Discoveryof oxazolo[4,5-b] pyridines and related heterocyclic analogs as novel SIRT1 activators. Bioorg Med Chem Lett 19: 2350-2353.
-
(2009)
Bioorg Med Chem Lett
, vol.19
, pp. 2350-2353
-
-
Bemis, J.E.1
Vu, C.B.2
Xie, R.3
Nunes, J.J.4
Ng, P.Y.5
Disch, J.S.6
Milne, J.C.7
Carney, D.P.8
Lynch, A.V.9
Jin, L.10
-
6
-
-
20444444649
-
Mechanism of human SIRT1 activation by resveratrol
-
Borra MT, Smith BC, Denu JM. 2005. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280: 17187-17195.
-
(2005)
J Biol Chem
, vol.280
, pp. 17187-17195
-
-
Borra, M.T.1
Smith, B.C.2
Denu, J.M.3
-
7
-
-
12144290563
-
Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
-
Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, et al. 2004. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011-2015.
-
(2004)
Science
, vol.303
, pp. 2011-2015
-
-
Brunet, A.1
Sweeney, L.B.2
Sturgill, J.F.3
Chua, K.F.4
Greer, P.L.5
Lin, Y.6
Tran, H.7
Ross, S.E.8
Mostoslavsky, R.9
Cohen, H.Y.10
-
8
-
-
77958488312
-
SIRT1 activation by small molecules: Kinetic and biophysical evidence for direct interaction of enzyme and activator
-
Dai H, Kustigian L, Carney D, Case A, Considine T, Hubbard BP, Perni RB, Riera TV, Szczepankiewicz B, Vlasuk GP, et al. 2010. SIRT1 activation by small molecules: kinetic and biophysical evidence for direct interaction of enzyme and activator. J Biol Chem 285: 32695-32703.
-
(2010)
J Biol Chem
, vol.285
, pp. 32695-32703
-
-
Dai, H.1
Kustigian, L.2
Carney, D.3
Case, A.4
Considine, T.5
Hubbard, B.P.6
Perni, R.B.7
Riera, T.V.8
Szczepankiewicz, B.9
Vlasuk, G.P.10
-
9
-
-
84892495970
-
Structural and functional analysis of human SIRT1
-
Davenport AM, Huber FM, Hoelz A. 2014. Structural and functional analysis of human SIRT1. J Mol Biol 426: 526-541.
-
(2014)
J Mol Biol
, vol.426
, pp. 526-541
-
-
Davenport, A.M.1
Huber, F.M.2
Hoelz, A.3
-
13
-
-
0033887456
-
Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
-
Frye RA. 2000. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273: 793-798.
-
(2000)
Biochem Biophys Res Commun
, vol.273
, pp. 793-798
-
-
Frye, R.A.1
-
14
-
-
35648935529
-
N-lysine propionylation controls the activity of propionyl-CoA synthetase
-
Garrity J, Gardner JG, Hawse W, Wolberger C, Escalante-Semerena JC. 2007. N-lysine propionylation controls the activity of propionyl-CoA synthetase. J Biol Chem 282: 30239-30245.
-
(2007)
J Biol Chem
, vol.282
, pp. 30239-30245
-
-
Garrity, J.1
Gardner, J.G.2
Hawse, W.3
Wolberger, C.4
Escalante-Semerena, J.C.5
-
15
-
-
84869816787
-
A molecular mechanism for direct sirtuin activation by resveratrol
-
Gertz M, Nguyen GT, Fischer F, Suenkel B, Schlicker C, Franzel B, Tomaschewski J, Aladini F, Becker C,Wolters D, et al. 2012. A molecular mechanism for direct sirtuin activation by resveratrol. PLoS One 7: e49761.
-
(2012)
PLoS One
, vol.7
-
-
Gertz, M.1
Nguyen, G.T.2
Fischer, F.3
Suenkel, B.4
Schlicker, C.5
Franzel, B.6
Tomaschewski, J.7
Aladini, F.8
Becker, C.9
Wolters, D.10
-
16
-
-
79958206937
-
Franklin H. Epstein lecture: Sirtuins, aging, and medicine
-
Guarente L. 2011. Franklin H. Epstein lecture: sirtuins, aging, and medicine. N Engl J Med 364: 2235-2244.
-
(2011)
N Engl J Med
, vol.364
, pp. 2235-2244
-
-
Guarente, L.1
-
17
-
-
0141719702
-
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
-
Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, et al. 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191-196.
-
(2003)
Nature
, vol.425
, pp. 191-196
-
-
Howitz, K.T.1
Bitterman, K.J.2
Cohen, H.Y.3
Lamming, D.W.4
Lavu, S.5
Wood, J.G.6
Zipkin, R.E.7
Chung, P.8
Kisielewski, A.9
Zhang, L.L.10
-
18
-
-
84872292628
-
Structural basis for allosteric stimulation of Sir2 activity by Sir4 binding
-
Hsu HC, Wang CL, Wang M, Yang N, Chen Z, Sternglanz R, Xu RM. 2013. Structural basis for allosteric stimulation of Sir2 activity by Sir4 binding. Genes Dev 27: 64-73.
-
(2013)
Genes Dev
, vol.27
, pp. 64-73
-
-
Hsu, H.C.1
Wang, C.L.2
Wang, M.3
Yang, N.4
Chen, Z.5
Sternglanz, R.6
Xu, R.M.7
-
19
-
-
84874721105
-
Evidence for a common mechanism of SIRT1 regulation by allosteric activators
-
Hubbard BP, Gomes AP, Dai H, Li J, Case AW, Considine T, Riera TV, Lee JE, Lamming DW, et al. 2013. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339: 1216-1219.
-
(2013)
Science
, vol.339
, pp. 1216-1219
-
-
Hubbard, B.P.1
Gomes, A.P.2
Dai, H.3
Li, J.4
Case, A.W.5
Considine, T.6
Riera, T.V.7
Lee, J.E.8
Lamming, D.W.9
-
20
-
-
0034677535
-
Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
-
Imai S, Armstrong CM, Kaeberlein M, Guarente L. 2000. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403: 795-800.
-
(2000)
Nature
, vol.403
, pp. 795-800
-
-
Imai, S.1
Armstrong, C.M.2
Kaeberlein, M.3
Guarente, L.4
-
21
-
-
69949151709
-
Crystal structures of human SIRT3 displaying substrate-induced conformational changes
-
Jin L,WeiW, Jiang Y, Peng H, Cai J, Mao C, Dai H, ChoyW, Bemis JE, Jirousek MR, et al. 2009. Crystal structures of human SIRT3 displaying substrate-induced conformational changes. J Biol Chem 284: 24394-24405.
-
(2009)
J Biol Chem
, vol.284
, pp. 24394-24405
-
-
Jin, L.1
Wei, W.2
Jiang, Y.3
Peng, H.4
Cai, J.5
Mao, C.6
Dai, H.7
Choy, W.8
Bemis, J.E.9
Jirousek, M.R.10
-
22
-
-
20444431507
-
Substrate-specific activation of sirtuins by resveratrol
-
Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD, Napper A, Curtis R, DiStefano PS, Fields S, et al. 2005. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 280: 17038-17045.
-
(2005)
J Biol Chem
, vol.280
, pp. 17038-17045
-
-
Kaeberlein, M.1
McDonagh, T.2
Heltweg, B.3
Hixon, J.4
Westman, E.A.5
Caldwell, S.D.6
Napper, A.7
Curtis, R.8
DiStefano, P.S.9
Fields, S.10
-
23
-
-
82455219091
-
Peptide switch is essential for Sirt1 deacetylase activity
-
Kang H, Suh JY, Jung YS, Jung JW, Kim MK, Chung JH. 2011. Peptide switch is essential for Sirt1 deacetylase activity. Mol Cell 44: 203-213.
-
(2011)
Mol Cell
, vol.44
, pp. 203-213
-
-
Kang, H.1
Suh, J.Y.2
Jung, Y.S.3
Jung, J.W.4
Kim, M.K.5
Chung, J.H.6
-
24
-
-
35349011726
-
Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity
-
Kim EJ, Kho JH, Kang MR,UmSJ. 2007. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell 28: 277-290.
-
(2007)
Mol Cell
, vol.28
, pp. 277-290
-
-
Kim, E.J.1
Kho, J.H.2
Kang, M.R.3
Um, S.J.4
-
26
-
-
0034705129
-
The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases
-
Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R. 2000. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci 97: 5807-5811.
-
(2000)
Proc Natl Acad Sci
, vol.97
, pp. 5807-5811
-
-
Landry, J.1
Sutton, A.2
Tafrov, S.T.3
Heller, R.C.4
Stebbins, J.5
Pillus, L.6
Sternglanz, R.7
-
27
-
-
84870506099
-
Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria
-
Liu B, Ghosh S, Yang X, Zheng H, Liu X,Wang Z, Jin G, Zheng B, Kennedy BK, Suh Y, et al. 2012. Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metab 16: 738-750.
-
(2012)
Cell Metab
, vol.16
, pp. 738-750
-
-
Liu, B.1
Ghosh, S.2
Yang, X.3
Zheng, H.4
Liu, X.5
Wang, Z.6
Jin, G.7
Zheng, B.8
Kennedy, B.K.9
Suh, Y.10
-
28
-
-
0035913911
-
Negative control of p53 by Sir2α promotes cell survival under stress
-
Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W. 2001. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107: 137-148.
-
(2001)
Cell
, vol.107
, pp. 137-148
-
-
Luo, J.1
Nikolaev, A.Y.2
Imai, S.3
Chen, D.4
Su, F.5
Shiloh, A.6
Guarente, L.7
Gu, W.8
-
29
-
-
34447508216
-
Phaser crystallographic software
-
McCoy AJ, Grosse-Kunstleve RW, Adams PD,Winn MD, Storoni LC, Read RJ. 2007. Phaser crystallographic software. J Appl Crystallogr 40: 658-674.
-
(2007)
J Appl Crystallogr
, vol.40
, pp. 658-674
-
-
McCoy, A.J.1
Grosse-Kunstleve, R.W.2
Adams, P.D.3
Winn, M.D.4
Storoni, L.C.5
Read, R.J.6
-
30
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, et al. 2007. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450: 712-716.
-
(2007)
Nature
, vol.450
, pp. 712-716
-
-
Milne, J.C.1
Lambert, P.D.2
Schenk, S.3
Carney, D.P.4
Smith, J.J.5
Gagne, D.J.6
Jin, L.7
Boss, O.8
Perni, R.B.9
Vu, C.B.10
-
31
-
-
0035917536
-
Crystal structure of a SIR2 homolog-NAD complex
-
Min J, Landry J, Sternglanz R, Xu RM. 2001. Crystal structure of a SIR2 homolog-NAD complex. Cell 105: 269-279.
-
(2001)
Cell
, vol.105
, pp. 269-279
-
-
Min, J.1
Landry, J.2
Sternglanz, R.3
Xu, R.M.4
-
32
-
-
1342264308
-
Mammalian SIRT1 represses forkhead transcription factors
-
Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L. 2004. Mammalian SIRT1 represses forkhead transcription factors. Cell 116: 551-563.
-
(2004)
Cell
, vol.116
, pp. 551-563
-
-
Motta, M.C.1
Divecha, N.2
Lemieux, M.3
Kamel, C.4
Chen, D.5
Gu, W.6
Bultsma, Y.7
McBurney, M.8
Guarente, L.9
-
34
-
-
84888306269
-
Crystal structures of Sirt3 complexes with 4′-bromo-resveratrol reveal binding sites and inhibition mechanism
-
Nguyen GT, Gertz M, Steegborn C. 2013. Crystal structures of Sirt3 complexes with 4′-bromo-resveratrol reveal binding sites and inhibition mechanism. Chem Biol 20: 1375-1385.
-
(2013)
Chem Biol
, vol.20
, pp. 1375-1385
-
-
Nguyen, G.T.1
Gertz, M.2
Steegborn, C.3
-
35
-
-
0031059866
-
Processing of X-ray diffraction data collected in oscillation mode
-
Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276: 307-326.
-
(1997)
Methods Enzymol
, vol.276
, pp. 307-326
-
-
Otwinowski, Z.1
Minor, W.2
-
36
-
-
77950246109
-
SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1
-
Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, Griffith D, Griffor M, Loulakis P, Pabst B, et al. 2010. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 285: 8340-8351.
-
(2010)
J Biol Chem
, vol.285
, pp. 8340-8351
-
-
Pacholec, M.1
Bleasdale, J.E.2
Chrunyk, B.3
Cunningham, D.4
Flynn, D.5
Garofalo, R.S.6
Griffith, D.7
Griffor, M.8
Loulakis, P.9
Pabst, B.10
-
37
-
-
79954581231
-
Structure and biochemical functions of SIRT6
-
Pan PW, Feldman JL, Devries MK, Dong A, Edwards AM, Denu JM. 2011. Structure and biochemical functions of SIRT6. J Biol Chem 286: 14575-14587.
-
(2011)
J Biol Chem
, vol.286
, pp. 14575-14587
-
-
Pan, P.W.1
Feldman, J.L.2
Devries, M.K.3
Dong, A.4
Edwards, A.M.5
Denu, J.M.6
-
38
-
-
84856076413
-
SIRT1 contains N-and C-terminal regions that potentiate deacetylase activity
-
Pan M, Yuan H, Brent M, Ding EC, Marmorstein R. 2012. SIRT1 contains N-and C-terminal regions that potentiate deacetylase activity. J Biol Chem 287: 2468-2476.
-
(2012)
J Biol Chem
, vol.287
, pp. 2468-2476
-
-
Pan, M.1
Yuan, H.2
Brent, M.3
Ding, E.C.4
Marmorstein, R.5
-
39
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
-
Rodgers JT, Lerin C, HaasW, Gygi SP, Spiegelman BM, Puigserver P. 2005. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434: 113-118.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
40
-
-
77953289094
-
Structural basis for sirtuin function: What we know and what we don't
-
Sanders BD, Jackson B, Marmorstein R. 2010. Structural basis for sirtuin function: what we know and what we don't. Biochim Biophys Acta 1804: 1604-1616.
-
(2010)
Biochim Biophys Acta
, vol.1804
, pp. 1604-1616
-
-
Sanders, B.D.1
Jackson, B.2
Marmorstein, R.3
-
41
-
-
0035951072
-
Chemistry of gene silencing: The mechanism of NAD+-dependent deacetylation reactions
-
Sauve AA, Celic I, Avalos J, Deng H, Boeke JD, Schramm VL. 2001. Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions. Biochemistry 40: 15456-15463.
-
(2001)
Biochemistry
, vol.40
, pp. 15456-15463
-
-
Sauve, A.A.1
Celic, I.2
Avalos, J.3
Deng, H.4
Boeke, J.D.5
Schramm, V.L.6
-
42
-
-
13944258164
-
Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition
-
Sauve AA, Moir RD, Schramm VL,Willis IM. 2005. Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition. Mol Cell 17: 595-601.
-
(2005)
Mol Cell
, vol.17
, pp. 595-601
-
-
Sauve, A.A.1
Moir, R.D.2
Schramm, V.L.3
Willis, I.M.4
-
44
-
-
33847635635
-
+-dependent deacetylase SIRT5 by suramin
-
+-dependent deacetylase SIRT5 by suramin. Structure 15: 377-389.
-
(2007)
Structure
, vol.15
, pp. 377-389
-
-
Schuetz, A.1
Min, J.2
Antoshenko, T.3
Wang, C.L.4
Allali-Hassani, A.5
Dong, A.6
Loppnau, P.7
Vedadi, M.8
Bochkarev, A.9
Sternglanz, R.10
-
46
-
-
12944283150
-
+-dependent protein deacetylase activity in the Sir2 protein family
-
+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci 97: 6658-6663.
-
(2000)
Proc Natl Acad Sci
, vol.97
, pp. 6658-6663
-
-
Smith, J.S.1
Brachmann, C.B.2
Celic, I.3
Kenna, M.A.4
Muhammad, S.5
Starai, V.J.6
Avalos, J.L.7
Escalante-Semerena, J.C.8
Grubmeyer, C.9
Wolberger, C.10
-
47
-
-
69249206539
-
A continuous microplate assay for sirtuins and nicotinamide-producing enzymes
-
Smith BC, Hallows WC, Denu JM. 2009. A continuous microplate assay for sirtuins and nicotinamide-producing enzymes. Anal Biochem 394: 101-109.
-
(2009)
Anal Biochem
, vol.394
, pp. 101-109
-
-
Smith, B.C.1
Hallows, W.C.2
Denu, J.M.3
-
48
-
-
0034687694
-
Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose
-
Tanner KG, Landry J, Sternglanz R, Denu JM. 2000. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci 97: 14178-14182.
-
(2000)
Proc Natl Acad Sci
, vol.97
, pp. 14178-14182
-
-
Tanner, K.G.1
Landry, J.2
Sternglanz, R.3
Denu, J.M.4
-
49
-
-
0035895275
-
Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: Evidence for acetyl transfer from substrate to an NAD breakdown product
-
Tanny JC, Moazed D. 2001. Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: evidence for acetyl transfer from substrate to an NAD breakdown product. Proc Natl Acad Sci 98: 415-420.
-
(2001)
Proc Natl Acad Sci
, vol.98
, pp. 415-420
-
-
Tanny, J.C.1
Moazed, D.2
-
50
-
-
3543038804
-
Budding yeast silencing complexes and regulation of Sir2 activity by protein-protein interactions
-
Tanny JC, Kirkpatrick DS, Gerber SA, Gygi SP, Moazed D. 2004. Budding yeast silencing complexes and regulation of Sir2 activity by protein-protein interactions. Mol Cell Biol 24: 6931-6946.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 6931-6946
-
-
Tanny, J.C.1
Kirkpatrick, D.S.2
Gerber, S.A.3
Gygi, S.P.4
Moazed, D.5
-
51
-
-
4944245398
-
Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin
-
Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. 2004. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 16: 93-105.
-
(2004)
Mol Cell
, vol.16
, pp. 93-105
-
-
Vaquero, A.1
Scher, M.2
Lee, D.3
Erdjument-Bromage, H.4
Tempst, P.5
Reinberg, D.6
-
52
-
-
0035913903
-
hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase
-
Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA. 2001. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107: 149-159.
-
(2001)
Cell
, vol.107
, pp. 149-159
-
-
Vaziri, H.1
Dessain, S.K.2
Ng Eaton, E.3
Imai, S.I.4
Frye, R.A.5
Pandita, T.K.6
Guarente, L.7
Weinberg, R.A.8
-
53
-
-
0242626891
-
Structure of the yeast Hst2 protein deacetylase in ternary complex with 2′-Oacetyl ADP ribose and histone peptide
-
Zhao K, Chai X, Marmorstein R. 2003. Structure of the yeast Hst2 protein deacetylase in ternary complex with 2′-Oacetyl ADP ribose and histone peptide. Structure 11: 1403-1411.
-
(2003)
Structure
, vol.11
, pp. 1403-1411
-
-
Zhao, K.1
Chai, X.2
Marmorstein, R.3
-
54
-
-
84873929641
-
+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition
-
+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition. J Med Chem 56: 963-969.
-
(2013)
J Med Chem
, vol.56
, pp. 963-969
-
-
Zhao, X.1
Allison, D.2
Condon, B.3
Zhang, F.4
Gheyi, T.5
Zhang, A.6
Ashok, S.7
Russell, M.8
McEwan, I.9
Qian, Y.10
|