-
1
-
-
0035496231
-
Lymphostromal interactions in thymic development and function
-
Anderson G, Jenkinson EJ. Lymphostromal interactions in thymic development and function. Nat Rev Immunol 2001; 1:31–40.
-
(2001)
Nat Rev Immunol
, vol.1
, pp. 31-40
-
-
Anderson, G.1
Jenkinson, E.J.2
-
2
-
-
52949090785
-
Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence
-
Junt T, Scandella E, Ludewig B. Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nat Rev Immunol 2008; 8:764–75.
-
(2008)
Nat Rev Immunol
, vol.8
, pp. 764-775
-
-
Junt, T.1
Scandella, E.2
Ludewig, B.3
-
3
-
-
84905756677
-
Hematopoietic stem cell niche maintenance during homeostasis and regeneration
-
Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med 2014; 20:833–46.
-
(2014)
Nat Med
, vol.20
, pp. 833-846
-
-
Mendelson, A.1
Frenette, P.S.2
-
4
-
-
33847640493
-
Immunosenescence: emerging challenges for an ageing population
-
Aw D, Silva AB, Palmer DB. Immunosenescence: emerging challenges for an ageing population. Immunology 2007; 120:435–46.
-
(2007)
Immunology
, vol.120
, pp. 435-446
-
-
Aw, D.1
Silva, A.B.2
Palmer, D.B.3
-
5
-
-
33744996006
-
Why aging T cells fail: implications for vaccination
-
Haynes L, Swain SL. Why aging T cells fail: implications for vaccination. Immunity 2006; 24:663–6.
-
(2006)
Immunity
, vol.24
, pp. 663-666
-
-
Haynes, L.1
Swain, S.L.2
-
6
-
-
20344396835
-
Human immunosenescence: is it infectious?
-
Pawelec G, Akbar A, Caruso C et al. Human immunosenescence: is it infectious? Immunol Rev 2005; 205:257–68.
-
(2005)
Immunol Rev
, vol.205
, pp. 257-268
-
-
Pawelec, G.1
Akbar, A.2
Caruso, C.3
-
7
-
-
67649393351
-
Vaccination in the elderly: an immunological perspective
-
Chen WH, Kozlovsky BF, Effros RB et al. Vaccination in the elderly: an immunological perspective. Trends Immunol 2009; 30:351–9.
-
(2009)
Trends Immunol
, vol.30
, pp. 351-359
-
-
Chen, W.H.1
Kozlovsky, B.F.2
Effros, R.B.3
-
8
-
-
67649397918
-
B cells and aging: molecules and mechanisms
-
Cancro MP, Hao Y, Scholz JL et al. B cells and aging: molecules and mechanisms. Trends Immunol 2009; 30:313–8.
-
(2009)
Trends Immunol
, vol.30
, pp. 313-318
-
-
Cancro, M.P.1
Hao, Y.2
Scholz, J.L.3
-
9
-
-
79953159005
-
Are senescence and exhaustion intertwined or unrelated processes that compromise immunity?
-
Akbar AN, Henson SM. Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat Rev Immunol 2011; 11:289–95.
-
(2011)
Nat Rev Immunol
, vol.11
, pp. 289-295
-
-
Akbar, A.N.1
Henson, S.M.2
-
10
-
-
84939881933
-
Innate immunosenescence: underlying mechanisms and clinical relevance
-
Hazeldine J, Lord JM. Innate immunosenescence: underlying mechanisms and clinical relevance. Biogerontology 2015; 16:187–201.
-
(2015)
Biogerontology
, vol.16
, pp. 187-201
-
-
Hazeldine, J.1
Lord, J.M.2
-
11
-
-
84884169197
-
Immunosenescence: a product of the environment?
-
Su DM, Aw D, Palmer DB. Immunosenescence: a product of the environment? Curr Opin Immunol 2013; 25:498–503.
-
(2013)
Curr Opin Immunol
, vol.25
, pp. 498-503
-
-
Su, D.M.1
Aw, D.2
Palmer, D.B.3
-
13
-
-
33749172559
-
Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a
-
Janzen V, Forkert R, Fleming HE et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 2006; 443:421–6.
-
(2006)
Nature
, vol.443
, pp. 421-426
-
-
Janzen, V.1
Forkert, R.2
Fleming, H.E.3
-
14
-
-
34250007142
-
Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age
-
Rossi DJ, Bryder D, Seita J et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 2007; 447:725–9.
-
(2007)
Nature
, vol.447
, pp. 725-729
-
-
Rossi, D.J.1
Bryder, D.2
Seita, J.3
-
15
-
-
84927170343
-
Aging of the hematopoietic stem cells niche
-
Nakamura-Ishizu A, Suda T. Aging of the hematopoietic stem cells niche. Int J Hematol 2014; 100:317–25.
-
(2014)
Int J Hematol
, vol.100
, pp. 317-325
-
-
Nakamura-Ishizu, A.1
Suda, T.2
-
16
-
-
23744439044
-
Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells
-
Liang Y, Van Zant G, Szilvassy SJ. Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 2005; 106:1479–87.
-
(2005)
Blood
, vol.106
, pp. 1479-1487
-
-
Liang, Y.1
Van Zant, G.2
Szilvassy, S.J.3
-
17
-
-
84872567134
-
Aging induced decline in T-lymphopoiesis is primarily dependent on status of progenitor niches in the bone marrow and thymus
-
Sun L, Brown R, Chen S et al. Aging induced decline in T-lymphopoiesis is primarily dependent on status of progenitor niches in the bone marrow and thymus. Aging (Albany NY) 2012; 4:606–19.
-
(2012)
Aging (Albany NY)
, vol.4
, pp. 606-619
-
-
Sun, L.1
Brown, R.2
Chen, S.3
-
18
-
-
84858649330
-
Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing
-
Ergen AV, Boles NC, Goodell MA. Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. Blood 2012; 119:2500–9.
-
(2012)
Blood
, vol.119
, pp. 2500-2509
-
-
Ergen, A.V.1
Boles, N.C.2
Goodell, M.A.3
-
19
-
-
84948798306
-
Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors
-
Henry CJ, Casas-Selves M, Kim J et al. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors. J Clin Invest 2015; 125:4666–80.
-
(2015)
J Clin Invest
, vol.125
, pp. 4666-4680
-
-
Henry, C.J.1
Casas-Selves, M.2
Kim, J.3
-
20
-
-
0031732988
-
In vitro secretion of cytokines by human bone marrow: effects of age and estrogen status
-
Cheleuitte D, Mizuno S, Glowacki J. In vitro secretion of cytokines by human bone marrow: effects of age and estrogen status. J Clin Endocrinol Metab 1998; 83:2043–51.
-
(1998)
J Clin Endocrinol Metab
, vol.83
, pp. 2043-2051
-
-
Cheleuitte, D.1
Mizuno, S.2
Glowacki, J.3
-
21
-
-
84924247757
-
Mesenchymal cell contributions to the stem cell niche
-
Kfoury Y, Scadden DT. Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell 2015; 16:239–53.
-
(2015)
Cell Stem Cell
, vol.16
, pp. 239-253
-
-
Kfoury, Y.1
Scadden, D.T.2
-
22
-
-
64249154184
-
Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss
-
Bellantuono I, Aldahmash A, Kassem M. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss. Biochim Biophys Acta 2009; 1792:364–70.
-
(2009)
Biochim Biophys Acta
, vol.1792
, pp. 364-370
-
-
Bellantuono, I.1
Aldahmash, A.2
Kassem, M.3
-
23
-
-
84918496767
-
Characterization of bone marrow-derived mesenchymal stem cells in aging
-
Baker N, Boyette LB, Tuan RS. Characterization of bone marrow-derived mesenchymal stem cells in aging. Bone 2015; 70:37–47.
-
(2015)
Bone
, vol.70
, pp. 37-47
-
-
Baker, N.1
Boyette, L.B.2
Tuan, R.S.3
-
24
-
-
84879484082
-
Age-related CXC chemokine receptor-4-deficiency impairs osteogenic differentiation potency of mouse bone marrow mesenchymal stromal stem cells
-
Guang LG, Boskey AL, Zhu W. Age-related CXC chemokine receptor-4-deficiency impairs osteogenic differentiation potency of mouse bone marrow mesenchymal stromal stem cells. Int J Biochem Cell Biol 2013; 45:1813–20.
-
(2013)
Int J Biochem Cell Biol
, vol.45
, pp. 1813-1820
-
-
Guang, L.G.1
Boskey, A.L.2
Zhu, W.3
-
25
-
-
79960663308
-
Conditional inactivation of the CXCR4 receptor in osteoprecursors reduces postnatal bone formation due to impaired osteoblast development
-
Zhu W, Liang G, Huang Z et al. Conditional inactivation of the CXCR4 receptor in osteoprecursors reduces postnatal bone formation due to impaired osteoblast development. J Biol Chem 2011; 286:26794–805.
-
(2011)
J Biol Chem
, vol.286
, pp. 26794-26805
-
-
Zhu, W.1
Liang, G.2
Huang, Z.3
-
26
-
-
80053903269
-
Changes in human bone marrow fat content associated with changes in hematopoietic stem cell numbers and cytokine levels with aging
-
Tuljapurkar SR, McGuire TR, Brusnahan SK et al. Changes in human bone marrow fat content associated with changes in hematopoietic stem cell numbers and cytokine levels with aging. J Anat 2011; 219:574–81.
-
(2011)
J Anat
, vol.219
, pp. 574-581
-
-
Tuljapurkar, S.R.1
McGuire, T.R.2
Brusnahan, S.K.3
-
27
-
-
67650504733
-
Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment
-
Naveiras O, Nardi V, Wenzel PL et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 2009; 460:259–63.
-
(2009)
Nature
, vol.460
, pp. 259-263
-
-
Naveiras, O.1
Nardi, V.2
Wenzel, P.L.3
-
28
-
-
84857390987
-
Contribution of an aged microenvironment to aging-associated myeloproliferative disease
-
Vas V, Wandhoff C, Dorr K et al. Contribution of an aged microenvironment to aging-associated myeloproliferative disease. PLoS One 2012; 7:e31523.
-
(2012)
PLoS One
, vol.7
-
-
Vas, V.1
Wandhoff, C.2
Dorr, K.3
-
29
-
-
84864648787
-
Aging of the microenvironment influences clonality in hematopoiesis
-
Vas V, Senger K, Dorr K et al. Aging of the microenvironment influences clonality in hematopoiesis. PLOS ONE 2012; 7:e42080.
-
(2012)
PLOS ONE
, vol.7
-
-
Vas, V.1
Senger, K.2
Dorr, K.3
-
30
-
-
84875329801
-
Evidences of early senescence in multiple myeloma bone marrow mesenchymal stromal cells
-
Andre T, Meuleman N, Stamatopoulos B et al. Evidences of early senescence in multiple myeloma bone marrow mesenchymal stromal cells. PLOS ONE 2013; 8:e59756.
-
(2013)
PLOS ONE
, vol.8
-
-
Andre, T.1
Meuleman, N.2
Stamatopoulos, B.3
-
31
-
-
84856015538
-
Multiple myeloma mesenchymal stem cells: characterization, origin, and tumor-promoting effects
-
Reagan MR, Ghobrial IM. Multiple myeloma mesenchymal stem cells: characterization, origin, and tumor-promoting effects. Clin Cancer Res 2012; 18:342–9.
-
(2012)
Clin Cancer Res
, vol.18
, pp. 342-349
-
-
Reagan, M.R.1
Ghobrial, I.M.2
-
32
-
-
45849119799
-
Abnormal cytokine production by bone marrow stromal cells of multiple myeloma patients in response to RPMI8226 myeloma cells
-
Zdzisinska B, Bojarska-Junak A, Dmoszynska A et al. Abnormal cytokine production by bone marrow stromal cells of multiple myeloma patients in response to RPMI8226 myeloma cells. Arch Immunol Ther Exp (Warsz) 2008; 56:207–21.
-
(2008)
Arch Immunol Ther Exp (Warsz)
, vol.56
, pp. 207-221
-
-
Zdzisinska, B.1
Bojarska-Junak, A.2
Dmoszynska, A.3
-
33
-
-
84919396604
-
Multiple myeloma mesenchymal stromal cells: contribution to myeloma bone disease and therapeutics
-
Garcia-Gomez A, Sanchez-Guijo F, Del Canizo MC et al. Multiple myeloma mesenchymal stromal cells: contribution to myeloma bone disease and therapeutics. World J Stem Cells 2014; 6:322–43.
-
(2014)
World J Stem Cells
, vol.6
, pp. 322-343
-
-
Garcia-Gomez, A.1
Sanchez-Guijo, F.2
Del Canizo, M.C.3
-
34
-
-
84930392104
-
Checkpoints that control B cell development
-
Melchers F. Checkpoints that control B cell development. J Clin Invest 2015; 125:2203–10.
-
(2015)
J Clin Invest
, vol.125
, pp. 2203-2210
-
-
Melchers, F.1
-
35
-
-
0031985281
-
Impaired ability of bone marrow stromal cells to support B-lymphopoiesis with age
-
Stephan RP, Reilly CR, Witte PL. Impaired ability of bone marrow stromal cells to support B-lymphopoiesis with age. Blood 1998; 91:75–88.]
-
(1998)
Blood
, vol.91
, pp. 75-88
-
-
Stephan, R.P.1
Reilly, C.R.2
Witte, P.L.3
-
36
-
-
4344599559
-
Bone marrow microenvironmental changes underlie reduced RAG-mediated recombination and B cell generation in aged mice
-
3rd
-
Labrie JE 3rd, Sah AP, Allman DM et al. Bone marrow microenvironmental changes underlie reduced RAG-mediated recombination and B cell generation in aged mice. J Exp Med 2004; 200:411–23.
-
(2004)
J Exp Med
, vol.200
, pp. 411-423
-
-
Labrie, J.E.1
Sah, A.P.2
Allman, D.M.3
-
37
-
-
84867903834
-
Adipocyte-derived soluble factor(s) inhibits early stages of B lymphopoiesis
-
Bilwani FA, Knight KL. Adipocyte-derived soluble factor(s) inhibits early stages of B lymphopoiesis. J Immunol 2012; 189:4379–86.
-
(2012)
J Immunol
, vol.189
, pp. 4379-4386
-
-
Bilwani, F.A.1
Knight, K.L.2
-
38
-
-
84885969062
-
The host environment is responsible for aging-related functional NK cell deficiency
-
Chiu BC, Martin BE, Stolberg VR et al. The host environment is responsible for aging-related functional NK cell deficiency. J Immunol 2013; 191:4688–98.
-
(2013)
J Immunol
, vol.191
, pp. 4688-4698
-
-
Chiu, B.C.1
Martin, B.E.2
Stolberg, V.R.3
-
39
-
-
84924232977
-
The natural killer cell dysfunction of aged mice is due to the bone marrow stroma and is not restored by IL-15/IL-15Ralpha treatment
-
Nair S, Fang M, Sigal LJ. The natural killer cell dysfunction of aged mice is due to the bone marrow stroma and is not restored by IL-15/IL-15Ralpha treatment. Aging Cell 2015; 14:180–90.
-
(2015)
Aging Cell
, vol.14
, pp. 180-190
-
-
Nair, S.1
Fang, M.2
Sigal, L.J.3
-
40
-
-
84924263298
-
The aged nonhematopoietic environment impairs natural killer cell maturation and function
-
Shehata HM, Hoebe K, Chougnet CA. The aged nonhematopoietic environment impairs natural killer cell maturation and function. Aging Cell 2015; 14:191–9.
-
(2015)
Aging Cell
, vol.14
, pp. 191-199
-
-
Shehata, H.M.1
Hoebe, K.2
Chougnet, C.A.3
-
41
-
-
67649410701
-
An evolutionary perspective on the mechanisms of immunosenescence
-
Shanley DP, Aw D, Manley NR et al. An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol 2009; 30:374–81.
-
(2009)
Trends Immunol
, vol.30
, pp. 374-381
-
-
Shanley, D.P.1
Aw, D.2
Manley, N.R.3
-
42
-
-
23044433753
-
Homeostasis and the age-associated defect of CD4 T cells
-
Swain S, Clise-Dwyer K, Haynes L. Homeostasis and the age-associated defect of CD4 T cells. Semin Immunol 2005; 17:370–7.
-
(2005)
Semin Immunol
, vol.17
, pp. 370-377
-
-
Swain, S.1
Clise-Dwyer, K.2
Haynes, L.3
-
45
-
-
41149170727
-
Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus
-
Yager EJ, Ahmed M, Lanzer K et al. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med 2008; 205:711–23.
-
(2008)
J Exp Med
, vol.205
, pp. 711-723
-
-
Yager, E.J.1
Ahmed, M.2
Lanzer, K.3
-
46
-
-
84941254728
-
Thymic involution beyond T-cell insufficiency
-
Coder B, Su DM. Thymic involution beyond T-cell insufficiency. Oncotarget 2015; 6:21777–8.
-
(2015)
Oncotarget
, vol.6
, pp. 21777-21778
-
-
Coder, B.1
Su, D.M.2
-
48
-
-
84885402793
-
The effect of age on thymic function
-
Palmer DB. The effect of age on thymic function. Front Immunol 2013; 4:316.
-
(2013)
Front Immunol
, vol.4
, pp. 316
-
-
Palmer, D.B.1
-
49
-
-
0036311982
-
Molecular characterization of the mouse involuted thymus: aberrations in expression of transcription regulators in thymocyte and epithelial compartments
-
Ortman CL, Dittmar KA, Witte PL et al. Molecular characterization of the mouse involuted thymus: aberrations in expression of transcription regulators in thymocyte and epithelial compartments. Int Immunol 2002; 14:813–22.
-
(2002)
Int Immunol
, vol.14
, pp. 813-822
-
-
Ortman, C.L.1
Dittmar, K.A.2
Witte, P.L.3
-
50
-
-
84855862448
-
Persistent degenerative changes in thymic organ function revealed by an inducible model of organ regrowth
-
Griffith AV, Fallahi M, Venables T et al. Persistent degenerative changes in thymic organ function revealed by an inducible model of organ regrowth. Aging Cell 2012; 11:169–77.
-
(2012)
Aging Cell
, vol.11
, pp. 169-177
-
-
Griffith, A.V.1
Fallahi, M.2
Venables, T.3
-
51
-
-
0037012030
-
Age-associated thymic atrophy is linked to a decline in IL-7 production
-
Andrew D, Aspinall R. Age-associated thymic atrophy is linked to a decline in IL-7 production. Exp Gerontol 2002; 37:455–63.
-
(2002)
Exp Gerontol
, vol.37
, pp. 455-463
-
-
Andrew, D.1
Aspinall, R.2
-
52
-
-
67349171030
-
Phenotypical and morphological changes in the thymic microenvironment from ageing mice
-
Aw D, Taylor-Brown F, Cooper K et al. Phenotypical and morphological changes in the thymic microenvironment from ageing mice. Biogerontology 2009; 10:311–22.
-
(2009)
Biogerontology
, vol.10
, pp. 311-322
-
-
Aw, D.1
Taylor-Brown, F.2
Cooper, K.3
-
53
-
-
0032718690
-
Analysis of the human thymic perivascular space during aging
-
Flores KG, Li J, Sempowski GD et al. Analysis of the human thymic perivascular space during aging. J Clin Invest 1999; 104:1031–9.
-
(1999)
J Clin Invest
, vol.104
, pp. 1031-1039
-
-
Flores, K.G.1
Li, J.2
Sempowski, G.D.3
-
54
-
-
34848922760
-
The aged thymus shows normal recruitment of lymphohematopoietic progenitors but has defects in thymic epithelial cells
-
Gui J, Zhu X, Dohkan J et al. The aged thymus shows normal recruitment of lymphohematopoietic progenitors but has defects in thymic epithelial cells. Int Immunol 2007; 19:1201–11.
-
(2007)
Int Immunol
, vol.19
, pp. 1201-1211
-
-
Gui, J.1
Zhu, X.2
Dohkan, J.3
-
55
-
-
0031869628
-
Thymic function in young/old chimeras: substantial thymic T cell regenerative capacity despite irreversible age-associated thymic involution
-
Mackall CL, Punt JA, Morgan P et al. Thymic function in young/old chimeras: substantial thymic T cell regenerative capacity despite irreversible age-associated thymic involution. Eur J Immunol 1998; 28:1886–93.
-
(1998)
Eur J Immunol
, vol.28
, pp. 1886-1893
-
-
Mackall, C.L.1
Punt, J.A.2
Morgan, P.3
-
56
-
-
34548637281
-
Lymphohematopoietic progenitors do not have a synchronized defect with age-related thymic involution
-
Zhu X, Gui J, Dohkan J et al. Lymphohematopoietic progenitors do not have a synchronized defect with age-related thymic involution. Aging Cell 2007; 6:663–72.
-
(2007)
Aging Cell
, vol.6
, pp. 663-672
-
-
Zhu, X.1
Gui, J.2
Dohkan, J.3
-
57
-
-
2942700206
-
Reduction in the developmental potential of intrathymic T cell progenitors with age
-
Min H, Montecino-Rodriguez E, Dorshkind K. Reduction in the developmental potential of intrathymic T cell progenitors with age. J Immunol 2004; 173:245–50.
-
(2004)
J Immunol
, vol.173
, pp. 245-250
-
-
Min, H.1
Montecino-Rodriguez, E.2
Dorshkind, K.3
-
58
-
-
84875427488
-
Regulatory T cells: recommendations to simplify the nomenclature
-
Abbas AK, Benoist C, Bluestone JA et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol 2013; 14:307–8.
-
(2013)
Nat Immunol
, vol.14
, pp. 307-308
-
-
Abbas, A.K.1
Benoist, C.2
Bluestone, J.A.3
-
59
-
-
75149138278
-
Control of central self-tolerance induction by autoreactive CD4+ thymocytes
-
Irla M, Hollander G, Reith W. Control of central self-tolerance induction by autoreactive CD4+ thymocytes. Trends Immunol 2010; 31:71–9.
-
(2010)
Trends Immunol
, vol.31
, pp. 71-79
-
-
Irla, M.1
Hollander, G.2
Reith, W.3
-
61
-
-
20444490383
-
Regulation of immunity by self-reactive T cells
-
Kronenberg M, Rudensky A. Regulation of immunity by self-reactive T cells. Nature 2005; 435:598–604.
-
(2005)
Nature
, vol.435
, pp. 598-604
-
-
Kronenberg, M.1
Rudensky, A.2
-
62
-
-
33746342994
-
Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease
-
Sakaguchi S, Ono M, Setoguchi R et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 2006; 212:8–27.
-
(2006)
Immunol Rev
, vol.212
, pp. 8-27
-
-
Sakaguchi, S.1
Ono, M.2
Setoguchi, R.3
-
63
-
-
78651091811
-
Regulatory T-cell differentiation versus clonal deletion of autoreactive thymocytes
-
Wirnsberger G, Hinterberger M, Klein L. Regulatory T-cell differentiation versus clonal deletion of autoreactive thymocytes. Immunol Cell Biol 2011; 89:45–53.
-
(2011)
Immunol Cell Biol
, vol.89
, pp. 45-53
-
-
Wirnsberger, G.1
Hinterberger, M.2
Klein, L.3
-
64
-
-
23844558032
-
The cellular mechanism of Aire control of T cell tolerance
-
Anderson MS, Venanzi ES, Chen Z et al. The cellular mechanism of Aire control of T cell tolerance. Immunity 2005; 23:227–39.
-
(2005)
Immunity
, vol.23
, pp. 227-239
-
-
Anderson, M.S.1
Venanzi, E.S.2
Chen, Z.3
-
65
-
-
0037112047
-
Projection of an immunological self shadow within the thymus by the aire protein
-
Anderson MS, Venanzi ES, Klein L et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 2002; 298:1395–401.
-
(2002)
Science
, vol.298
, pp. 1395-1401
-
-
Anderson, M.S.1
Venanzi, E.S.2
Klein, L.3
-
66
-
-
84867525959
-
Age-related disruption of steady-state thymic medulla provokes autoimmune phenotype via perturbing negative selection
-
Xia J, Wang H, Guo J et al. Age-related disruption of steady-state thymic medulla provokes autoimmune phenotype via perturbing negative selection. Aging Dis 2012; 3:248–59.
-
(2012)
Aging Dis
, vol.3
, pp. 248-259
-
-
Xia, J.1
Wang, H.2
Guo, J.3
-
67
-
-
84929944502
-
Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors
-
Thiault N, Darrigues J, Adoue V et al. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat Immunol 2015; 16:628–34.
-
(2015)
Nat Immunol
, vol.16
, pp. 628-634
-
-
Thiault, N.1
Darrigues, J.2
Adoue, V.3
-
69
-
-
29444460806
-
Reassessing the role of growth hormone and sex steroids in thymic involution
-
Min H, Montecino-Rodriguez E, Dorshkind K. Reassessing the role of growth hormone and sex steroids in thymic involution. Clin Immunol 2006; 118:117–23.]
-
(2006)
Clin Immunol
, vol.118
, pp. 117-123
-
-
Min, H.1
Montecino-Rodriguez, E.2
Dorshkind, K.3
-
70
-
-
0022377731
-
The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study
-
Steinmann GG, Klaus B, Muller-Hermelink HK. The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand J Immunol 1985; 22:563–75.
-
(1985)
Scand J Immunol
, vol.22
, pp. 563-575
-
-
Steinmann, G.G.1
Klaus, B.2
Muller-Hermelink, H.K.3
-
71
-
-
84858640647
-
It's not all equal: a multiphasic theory of thymic involution
-
Aw D, Palmer DB. It's not all equal: a multiphasic theory of thymic involution. Biogerontology 2012; 13:77–81.
-
(2012)
Biogerontology
, vol.13
, pp. 77-81
-
-
Aw, D.1
Palmer, D.B.2
-
72
-
-
0035098105
-
Androgen receptors in thymic epithelium modulate thymus size and thymocyte development
-
Olsen NJ, Olson G, Viselli SM et al. Androgen receptors in thymic epithelium modulate thymus size and thymocyte development. Endocrinology 2001; 142:1278–83.
-
(2001)
Endocrinology
, vol.142
, pp. 1278-1283
-
-
Olsen, N.J.1
Olson, G.2
Viselli, S.M.3
-
73
-
-
84941025173
-
Metabolic damage and premature thymus aging caused by stromal catalase deficiency
-
Griffith AV, Venables T, Shi J et al. Metabolic damage and premature thymus aging caused by stromal catalase deficiency. Cell Rep 2015; 12:1071–9.
-
(2015)
Cell Rep
, vol.12
, pp. 1071-1079
-
-
Griffith, A.V.1
Venables, T.2
Shi, J.3
-
74
-
-
84899139699
-
Greater organ involution in highly proliferative tissues associated with the early onset and acceleration of ageing in humans
-
Richardson RB, Allan DS, Le Y. Greater organ involution in highly proliferative tissues associated with the early onset and acceleration of ageing in humans. Exp Gerontol 2014; 55:80–91.
-
(2014)
Exp Gerontol
, vol.55
, pp. 80-91
-
-
Richardson, R.B.1
Allan, D.S.2
Le, Y.3
-
75
-
-
0028000121
-
New member of the winged-helix protein family disrupted in mouse and rat nude mutations
-
Nehls M, Pfeifer D, Schorpp M et al. New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 1994; 372:103–7.
-
(1994)
Nature
, vol.372
, pp. 103-107
-
-
Nehls, M.1
Pfeifer, D.2
Schorpp, M.3
-
76
-
-
84945960728
-
Decline of FOXN1 gene expression in human thymus correlates with age: possible epigenetic regulation
-
Reis MD, Csomos K, Dias LP et al. Decline of FOXN1 gene expression in human thymus correlates with age: possible epigenetic regulation. Immun Ageing 2015; 12:18.
-
(2015)
Immun Ageing
, vol.12
, pp. 18
-
-
Reis, M.D.1
Csomos, K.2
Dias, L.P.3
-
77
-
-
84979018713
-
Foxn1 Is dynamically regulated in thymic epithelial cells during embryogenesis and at the onset of thymic involution
-
O'Neill KE, Bredenkamp N, Tischner C et al. Foxn1 Is dynamically regulated in thymic epithelial cells during embryogenesis and at the onset of thymic involution. PLOS ONE 2016; 11:e0151666.
-
(2016)
PLOS ONE
, vol.11
-
-
O'Neill, K.E.1
Bredenkamp, N.2
Tischner, C.3
-
78
-
-
60249092412
-
Foxn1 is required to maintain the postnatal thymic microenvironment in a dosage-sensitive manner
-
Chen L, Xiao S, Manley NR. Foxn1 is required to maintain the postnatal thymic microenvironment in a dosage-sensitive manner. Blood 2009; 113:567–74.
-
(2009)
Blood
, vol.113
, pp. 567-574
-
-
Chen, L.1
Xiao, S.2
Manley, N.R.3
-
79
-
-
77949312399
-
Postnatal tissue-specific disruption of transcription factor FoxN1 triggers acute thymic atrophy
-
Cheng L, Guo J, Sun L et al. Postnatal tissue-specific disruption of transcription factor FoxN1 triggers acute thymic atrophy. J Biol Chem 2010; 285:5836–47.
-
(2010)
J Biol Chem
, vol.285
, pp. 5836-5847
-
-
Cheng, L.1
Guo, J.2
Sun, L.3
-
80
-
-
77956688908
-
Declining expression of a single epithelial cell-autonomous gene accelerates age-related thymic involution
-
Sun L, Guo J, Brown R et al. Declining expression of a single epithelial cell-autonomous gene accelerates age-related thymic involution. Aging Cell 2010; 9:347–57.
-
(2010)
Aging Cell
, vol.9
, pp. 347-357
-
-
Sun, L.1
Guo, J.2
Brown, R.3
-
81
-
-
82155201761
-
Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells
-
Zook EC, Krishack PA, Zhang S et al. Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells. Blood 2011; 118:5723–31.
-
(2011)
Blood
, vol.118
, pp. 5723-5731
-
-
Zook, E.C.1
Krishack, P.A.2
Zhang, S.3
-
82
-
-
84898727454
-
Regeneration of the aged thymus by a single transcription factor
-
Bredenkamp N, Nowell CS, Blackburn CC. Regeneration of the aged thymus by a single transcription factor. Development 2014; 141:1627–37.
-
(2014)
Development
, vol.141
, pp. 1627-1637
-
-
Bredenkamp, N.1
Nowell, C.S.2
Blackburn, C.C.3
-
83
-
-
84880646691
-
Inactivation of the RB family prevents thymus involution and promotes thymic function by direct control of Foxn1 expression
-
Garfin PM, Min D, Bryson JL et al. Inactivation of the RB family prevents thymus involution and promotes thymic function by direct control of Foxn1 expression. J Exp Med 2013; 210:1087–97.
-
(2013)
J Exp Med
, vol.210
, pp. 1087-1097
-
-
Garfin, P.M.1
Min, D.2
Bryson, J.L.3
-
84
-
-
70349231092
-
Inhibition of thymic adipogenesis by caloric restriction is coupled with reduction in age-related thymic involution
-
Yang H, Youm YH, Dixit VD. Inhibition of thymic adipogenesis by caloric restriction is coupled with reduction in age-related thymic involution. J Immunol 2009; 183:3040–52.
-
(2009)
J Immunol
, vol.183
, pp. 3040-3052
-
-
Yang, H.1
Youm, Y.H.2
Dixit, V.D.3
-
85
-
-
40549126634
-
Architectural changes in the thymus of aging mice
-
Aw D, Silva AB, Maddick M et al. Architectural changes in the thymus of aging mice. Aging Cell 2008; 7:158–67.
-
(2008)
Aging Cell
, vol.7
, pp. 158-167
-
-
Aw, D.1
Silva, A.B.2
Maddick, M.3
-
86
-
-
65449128145
-
Deficient ghrelin receptor-mediated signaling compromises thymic stromal cell microenvironment by accelerating thymic adiposity
-
Youm YH, Yang H, Sun Y et al. Deficient ghrelin receptor-mediated signaling compromises thymic stromal cell microenvironment by accelerating thymic adiposity. J Biol Chem 2009; 284:7068–77.
-
(2009)
J Biol Chem
, vol.284
, pp. 7068-7077
-
-
Youm, Y.H.1
Yang, H.2
Sun, Y.3
-
87
-
-
70449701826
-
Obesity accelerates thymic aging
-
Yang H, Youm YH, Vandanmagsar B et al. Obesity accelerates thymic aging. Blood 2009; 114:3803–12.
-
(2009)
Blood
, vol.114
, pp. 3803-3812
-
-
Yang, H.1
Youm, Y.H.2
Vandanmagsar, B.3
-
88
-
-
84955481171
-
Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution
-
Youm YH, Horvath TL, Mangelsdorf DJ et al. Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution. Proc Natl Acad Sci USA 2016; 113:1026–31.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. 1026-1031
-
-
Youm, Y.H.1
Horvath, T.L.2
Mangelsdorf, D.J.3
-
89
-
-
0034651657
-
Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy
-
Sempowski GD, Hale LP, Sundy JS et al. Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy. J Immunol 2000; 164:2180–7.
-
(2000)
J Immunol
, vol.164
, pp. 2180-2187
-
-
Sempowski, G.D.1
Hale, L.P.2
Sundy, J.S.3
-
90
-
-
80855128461
-
Cellular senescence: a link between cancer and age-related degenerative disease?
-
Campisi J, Andersen JK, Kapahi P et al. Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol 2011; 21:354–9.
-
(2011)
Semin Cancer Biol
, vol.21
, pp. 354-359
-
-
Campisi, J.1
Andersen, J.K.2
Kapahi, P.3
-
91
-
-
84901288438
-
The role of senescent cells in ageing
-
van Deursen JM. The role of senescent cells in ageing. Nature 2014; 509:439–46.
-
(2014)
Nature
, vol.509
, pp. 439-446
-
-
van Deursen, J.M.1
-
92
-
-
33947413409
-
Old rhesus macaques treated with interleukin-7 show increased TREC levels and respond well to influenza vaccination
-
Aspinall R, Pido-Lopez J, Imami N et al. Old rhesus macaques treated with interleukin-7 show increased TREC levels and respond well to influenza vaccination. Rejuvenation Res 2007; 10:5–17.
-
(2007)
Rejuvenation Res
, vol.10
, pp. 5-17
-
-
Aspinall, R.1
Pido-Lopez, J.2
Imami, N.3
-
93
-
-
33947192136
-
Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging
-
Min D, Panoskaltsis-Mortari A, Kuro OM, et al. Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood 2007; 109:2529–37.
-
(2007)
Blood
, vol.109
, pp. 2529-2537
-
-
Min, D.1
Panoskaltsis-Mortari, A.2
Kuro, O.M.3
-
94
-
-
84859497086
-
Interleukin-22 drives endogenous thymic regeneration in mice
-
Dudakov JA, Hanash AM, Jenq RR et al. Interleukin-22 drives endogenous thymic regeneration in mice. Science 2012; 336:91–5.
-
(2012)
Science
, vol.336
, pp. 91-95
-
-
Dudakov, J.A.1
Hanash, A.M.2
Jenq, R.R.3
-
95
-
-
34948853362
-
Ghrelin promotes thymopoiesis during aging
-
Dixit VD, Yang H, Sun Y et al. Ghrelin promotes thymopoiesis during aging. J Clin Invest 2007; 117:2778–90.
-
(2007)
J Clin Invest
, vol.117
, pp. 2778-2790
-
-
Dixit, V.D.1
Yang, H.2
Sun, Y.3
-
96
-
-
84960981969
-
Disorganization of the splenic microanatomy in ageing mice
-
Aw D, Hilliard L, Nishikawa Y et al. Disorganization of the splenic microanatomy in ageing mice. Immunology 2016; 148:92–101.
-
(2016)
Immunology
, vol.148
, pp. 92-101
-
-
Aw, D.1
Hilliard, L.2
Nishikawa, Y.3
-
97
-
-
84866451471
-
The aged microenvironment contributes to the age-related functional defects of CD4 T cells in mice
-
Lefebvre JS, Maue AC, Eaton SM et al. The aged microenvironment contributes to the age-related functional defects of CD4 T cells in mice. Aging Cell 2012; 11:732–40.
-
(2012)
Aging Cell
, vol.11
, pp. 732-740
-
-
Lefebvre, J.S.1
Maue, A.C.2
Eaton, S.M.3
-
98
-
-
73949104748
-
Migration of immature and mature B cells in the aged microenvironment
-
Wols HA, Johnson KM, Ippolito JA et al. Migration of immature and mature B cells in the aged microenvironment. Immunology 2010; 129:278–90.
-
(2010)
Immunology
, vol.129
, pp. 278-290
-
-
Wols, H.A.1
Johnson, K.M.2
Ippolito, J.A.3
-
100
-
-
84919835281
-
Stromal infrastructure of the lymph node and coordination of immunity
-
Chang JE, Turley SJ. Stromal infrastructure of the lymph node and coordination of immunity. Trends Immunol 2015; 36:30–9.
-
(2015)
Trends Immunol
, vol.36
, pp. 30-39
-
-
Chang, J.E.1
Turley, S.J.2
-
101
-
-
84867900263
-
HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes
-
Girard JP, Moussion C, Forster R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol 2012; 12:762–73.
-
(2012)
Nat Rev Immunol
, vol.12
, pp. 762-773
-
-
Girard, J.P.1
Moussion, C.2
Forster, R.3
-
102
-
-
84963538247
-
The lymphatic vasculature: development and role in shaping immunity
-
Betterman KL, Harvey NL. The lymphatic vasculature: development and role in shaping immunity. Immunol Rev 2016; 271:276–92.
-
(2016)
Immunol Rev
, vol.271
, pp. 276-292
-
-
Betterman, K.L.1
Harvey, N.L.2
-
104
-
-
0029796638
-
Lymphatic absorption of retinol in young, mature, and old rats: influence of dietary restriction
-
Chevalier S, Ferland G, Tuchweber B. Lymphatic absorption of retinol in young, mature, and old rats: influence of dietary restriction. FASEB J 1996; 10:1085–90.
-
(1996)
FASEB J
, vol.10
, pp. 1085-1090
-
-
Chevalier, S.1
Ferland, G.2
Tuchweber, B.3
-
105
-
-
84929439729
-
Aging-related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance
-
Zolla V, Nizamutdinova IT, Scharf B et al. Aging-related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance. Aging Cell 2015; 14:582–94.
-
(2015)
Aging Cell
, vol.14
, pp. 582-594
-
-
Zolla, V.1
Nizamutdinova, I.T.2
Scharf, B.3
-
106
-
-
84938777751
-
Age-dependent cell trafficking defects in draining lymph nodes impair adaptive immunity and control of West Nile virus infection
-
Richner JM, Gmyrek GB, Govero J et al. Age-dependent cell trafficking defects in draining lymph nodes impair adaptive immunity and control of West Nile virus infection. PLOS Pathog 2015; 11:e1005027.
-
(2015)
PLOS Pathog
, vol.11
-
-
Richner, J.M.1
Gmyrek, G.B.2
Govero, J.3
-
107
-
-
84979704188
-
Impact of aging on endurance and neuromuscular physical performance: the role of vascular senescence
-
Mendonca GV, Pezarat-Correia P, Vaz JR et al. Impact of aging on endurance and neuromuscular physical performance: the role of vascular senescence. Sports Med 2016; DOI:10.1007/s40279-016-0596-8.
-
(2016)
Sports Med
-
-
Mendonca, G.V.1
Pezarat-Correia, P.2
Vaz, J.R.3
-
108
-
-
84859926294
-
Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks
-
Malhotra D, Fletcher AL, Astarita J et al. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat Immunol 2012; 13:499–510.
-
(2012)
Nat Immunol
, vol.13
, pp. 499-510
-
-
Malhotra, D.1
Fletcher, A.L.2
Astarita, J.3
-
109
-
-
84922014960
-
B cell homeostasis and follicle confines are governed by fibroblastic reticular cells
-
Cremasco V, Woodruff MC, Onder L et al. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat Immunol 2014; 15:973–81.
-
(2014)
Nat Immunol
, vol.15
, pp. 973-981
-
-
Cremasco, V.1
Woodruff, M.C.2
Onder, L.3
-
110
-
-
0033748035
-
Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse
-
Luther SA, Tang HL, Hyman PL et al. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc Natl Acad Sci USA 2000; 97:12694–9.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 12694-12699
-
-
Luther, S.A.1
Tang, H.L.2
Hyman, P.L.3
-
111
-
-
77953158169
-
Age-dependent histoarchitectural changes in human lymph nodes: an underestimated process with clinical relevance?
-
Hadamitzky C, Spohr H, Debertin AS et al. Age-dependent histoarchitectural changes in human lymph nodes: an underestimated process with clinical relevance? J Anat 2010; 216:556–62.
-
(2010)
J Anat
, vol.216
, pp. 556-562
-
-
Hadamitzky, C.1
Spohr, H.2
Debertin, A.S.3
-
113
-
-
35548975191
-
Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells
-
Link A, Vogt TK, Favre S et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol 2007; 8:1255–65.
-
(2007)
Nat Immunol
, vol.8
, pp. 1255-1265
-
-
Link, A.1
Vogt, T.K.2
Favre, S.3
-
114
-
-
23444437972
-
Structure and function of the spleen
-
Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol 2005; 5:606–16.
-
(2005)
Nat Rev Immunol
, vol.5
, pp. 606-616
-
-
Mebius, R.E.1
Kraal, G.2
-
115
-
-
56149116904
-
Fibroblastic reticular cells guide T lymphocyte entry into and migration within the splenic T cell zone
-
Bajenoff M, Glaichenhaus N, Germain RN. Fibroblastic reticular cells guide T lymphocyte entry into and migration within the splenic T cell zone. J Immunol 2008; 181:3947–54.
-
(2008)
J Immunol
, vol.181
, pp. 3947-3954
-
-
Bajenoff, M.1
Glaichenhaus, N.2
Germain, R.N.3
-
116
-
-
84930211068
-
Spatiotemporal basis of innate and adaptive immunity in secondary lymphoid tissue
-
Qi H, Kastenmuller W, Germain RN. Spatiotemporal basis of innate and adaptive immunity in secondary lymphoid tissue. Annu Rev Cell Dev Biol 2014; 30:141–67.
-
(2014)
Annu Rev Cell Dev Biol
, vol.30
, pp. 141-167
-
-
Qi, H.1
Kastenmuller, W.2
Germain, R.N.3
-
117
-
-
79953225865
-
Alterations in marginal zone macrophages and marginal zone B cells in old mice
-
Birjandi SZ, Ippolito JA, Ramadorai AK et al. Alterations in marginal zone macrophages and marginal zone B cells in old mice. J Immunol 2011; 186:3441–51.
-
(2011)
J Immunol
, vol.186
, pp. 3441-3451
-
-
Birjandi, S.Z.1
Ippolito, J.A.2
Ramadorai, A.K.3
-
118
-
-
0842303113
-
Follicular dendritic cells in aging, a ‘bottle-neck’ in the humoral immune response
-
Aydar Y, Balogh P, Tew JG et al. Follicular dendritic cells in aging, a ‘bottle-neck’ in the humoral immune response. Ageing Res Rev 2004; 3:15–29.
-
(2004)
Ageing Res Rev
, vol.3
, pp. 15-29
-
-
Aydar, Y.1
Balogh, P.2
Tew, J.G.3
-
120
-
-
70249085585
-
Stromal cell contributions to the homeostasis and functionality of the immune system
-
Mueller SN, Germain RN. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol 2009; 9:618–29.
-
(2009)
Nat Rev Immunol
, vol.9
, pp. 618-629
-
-
Mueller, S.N.1
Germain, R.N.2
-
121
-
-
33845455093
-
Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes
-
Bajenoff M, Egen JG, Koo LY et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 2006; 25:989–1001.
-
(2006)
Immunity
, vol.25
, pp. 989-1001
-
-
Bajenoff, M.1
Egen, J.G.2
Koo, L.Y.3
-
122
-
-
0042624814
-
A conduit system distributes chemokines and small blood-borne molecules through the splenic white pulp
-
Nolte MA, Belien JA, Schadee-Eestermans I et al. A conduit system distributes chemokines and small blood-borne molecules through the splenic white pulp. J Exp Med 2003; 198:505–12.
-
(2003)
J Exp Med
, vol.198
, pp. 505-512
-
-
Nolte, M.A.1
Belien, J.A.2
Schadee-Eestermans, I.3
-
123
-
-
84896934419
-
Splenic stromal cells from aged mice produce higher levels of IL-6 compared to young mice
-
Park J, Miyakawa T, Shiokawa A et al. Splenic stromal cells from aged mice produce higher levels of IL-6 compared to young mice. Mediat Inflamm 2014; 2014:826987.
-
(2014)
Mediat Inflamm
, vol.2014
, pp. 826987
-
-
Park, J.1
Miyakawa, T.2
Shiokawa, A.3
-
124
-
-
84872592932
-
Functional morphology of conjunctive tissue stroma of spleen in the age aspect
-
Al'fonsova EV. Functional morphology of conjunctive tissue stroma of spleen in the age aspect. Adv Gerontol 2012; 25:415–21.
-
(2012)
Adv Gerontol
, vol.25
, pp. 415-421
-
-
Al'fonsova, E.V.1
-
125
-
-
0033022936
-
Age-related changes in the elastic fiber network of the human splenic capsule
-
Rodrigues CJ, Sacchetti JC, Rodrigues AJ Jr. Age-related changes in the elastic fiber network of the human splenic capsule. Lymphology 1999; 32:64–9.
-
(1999)
Lymphology
, vol.32
, pp. 64-69
-
-
Rodrigues, C.J.1
Sacchetti, J.C.2
Rodrigues, A.J.3
-
126
-
-
66149167336
-
DNA damage response and cellular senescence in tissues of aging mice
-
Wang C, Jurk D, Maddick M et al. DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 2009; 8:311–23.
-
(2009)
Aging Cell
, vol.8
, pp. 311-323
-
-
Wang, C.1
Jurk, D.2
Maddick, M.3
-
127
-
-
84862908273
-
Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers
-
Wang X, Cho B, Suzuki K et al. Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. J Exp Med 2011; 208:2497–510.
-
(2011)
J Exp Med
, vol.208
, pp. 2497-2510
-
-
Wang, X.1
Cho, B.2
Suzuki, K.3
-
129
-
-
79960984193
-
Quantity, not quality, of antibody response decreased in the elderly
-
Blomberg BB, Frasca D. Quantity, not quality, of antibody response decreased in the elderly. J Clin Invest 2011; 121:2981–3.
-
(2011)
J Clin Invest
, vol.121
, pp. 2981-2983
-
-
Blomberg, B.B.1
Frasca, D.2
-
130
-
-
84937516776
-
Defective TFH cell function and increased TFR cells contribute to defective antibody production in aging
-
Sage PT, Tan CL, Freeman GJ et al. Defective TFH cell function and increased TFR cells contribute to defective antibody production in aging. Cell Rep 2015; 12:163–71.
-
(2015)
Cell Rep
, vol.12
, pp. 163-171
-
-
Sage, P.T.1
Tan, C.L.2
Freeman, G.J.3
-
131
-
-
0034691531
-
A chemokine-driven positive feedback loop organizes lymphoid follicles
-
Ansel KM, Ngo VN, Hyman PL et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 2000; 406:309–14.
-
(2000)
Nature
, vol.406
, pp. 309-314
-
-
Ansel, K.M.1
Ngo, V.N.2
Hyman, P.L.3
-
132
-
-
0036772765
-
Age-related depression of FDC accessory functions and CD21 ligand-mediated repair of co-stimulation
-
Aydar Y, Balogh P, Tew JG et al. Age-related depression of FDC accessory functions and CD21 ligand-mediated repair of co-stimulation. Eur J Immunol 2002; 32:2817–26.
-
(2002)
Eur J Immunol
, vol.32
, pp. 2817-2826
-
-
Aydar, Y.1
Balogh, P.2
Tew, J.G.3
-
133
-
-
0345016411
-
Altered regulation of Fc gamma RII on aged follicular dendritic cells correlates with immunoreceptor tyrosine-based inhibition motif signaling in B cells and reduced germinal center formation
-
Aydar Y, Balogh P, Tew JG et al. Altered regulation of Fc gamma RII on aged follicular dendritic cells correlates with immunoreceptor tyrosine-based inhibition motif signaling in B cells and reduced germinal center formation. J Immunol 2003; 171:5975–87.
-
(2003)
J Immunol
, vol.171
, pp. 5975-5987
-
-
Aydar, Y.1
Balogh, P.2
Tew, J.G.3
|