메뉴 건너뛰기




Volumn 36, Issue 1, 2015, Pages 30-39

Stromal infrastructure of the lymph node and coordination of immunity

Author keywords

[No Author keywords available]

Indexed keywords

ANTIGEN;

EID: 84919835281     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2014.11.003     Document Type: Review
Times cited : (128)

References (114)
  • 1
    • 0029833943 scopus 로고    scopus 로고
    • A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1)
    • Bleul C.C., et al. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J. Exp. Med. 1996, 184:1101-1109.
    • (1996) J. Exp. Med. , vol.184 , pp. 1101-1109
    • Bleul, C.C.1
  • 2
    • 0032545987 scopus 로고    scopus 로고
    • A B-cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1
    • Gunn M.D., et al. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1. Nature 1998, 391:799-803.
    • (1998) Nature , vol.391 , pp. 799-803
    • Gunn, M.D.1
  • 3
    • 0031892090 scopus 로고    scopus 로고
    • A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes
    • Gunn M.D., et al. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:258-263.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 258-263
    • Gunn, M.D.1
  • 4
    • 0032490628 scopus 로고    scopus 로고
    • Epstein-Barr virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells
    • Ngo V.N., et al. Epstein-Barr virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells. J. Exp. Med. 1998, 188:181-191.
    • (1998) J. Exp. Med. , vol.188 , pp. 181-191
    • Ngo, V.N.1
  • 5
    • 0033214348 scopus 로고    scopus 로고
    • CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs
    • Forster R., et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999, 99:23-33.
    • (1999) Cell , vol.99 , pp. 23-33
    • Forster, R.1
  • 6
    • 0027982876 scopus 로고
    • Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm
    • Springer T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994, 76:301-314.
    • (1994) Cell , vol.76 , pp. 301-314
    • Springer, T.A.1
  • 7
    • 0242551584 scopus 로고    scopus 로고
    • Homing and cellular traffic in lymph nodes
    • von Andrian U.H., et al. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 2003, 3:867-878.
    • (2003) Nat. Rev. Immunol. , vol.3 , pp. 867-878
    • von Andrian, U.H.1
  • 8
    • 84859385704 scopus 로고    scopus 로고
    • Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs
    • Cyster J.G., et al. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 2012, 30:69-94.
    • (2012) Annu. Rev. Immunol. , vol.30 , pp. 69-94
    • Cyster, J.G.1
  • 9
    • 82955207713 scopus 로고    scopus 로고
    • High endothelial venules as traffic control points maintaining lymphocyte population homeostasis in lymph nodes
    • Mionnet C., et al. High endothelial venules as traffic control points maintaining lymphocyte population homeostasis in lymph nodes. Blood 2011, 118:6115-6122.
    • (2011) Blood , vol.118 , pp. 6115-6122
    • Mionnet, C.1
  • 10
    • 84874284563 scopus 로고    scopus 로고
    • Constitutive lymphocyte transmigration across the basal lamina of high endothelial venules is regulated by the autotaxin/lysophosphatidic acid axis
    • Bai Z., et al. Constitutive lymphocyte transmigration across the basal lamina of high endothelial venules is regulated by the autotaxin/lysophosphatidic acid axis. J. Immunol. 2013, 190:2036-2048.
    • (2013) J. Immunol. , vol.190 , pp. 2036-2048
    • Bai, Z.1
  • 11
    • 55349095818 scopus 로고    scopus 로고
    • Involvement of the lysophosphatidic acid-generating enzyme autotaxin in lymphocyte-endothelial cell interactions
    • Nakasaki T., et al. Involvement of the lysophosphatidic acid-generating enzyme autotaxin in lymphocyte-endothelial cell interactions. Am. J. Pathol. 2008, 173:1566-1576.
    • (2008) Am. J. Pathol. , vol.173 , pp. 1566-1576
    • Nakasaki, T.1
  • 12
    • 81855203183 scopus 로고    scopus 로고
    • Dendritic cells control lymphocyte entry to lymph nodes through high endothelial venules
    • Moussion C., et al. Dendritic cells control lymphocyte entry to lymph nodes through high endothelial venules. Nature 2011, 479:542-546.
    • (2011) Nature , vol.479 , pp. 542-546
    • Moussion, C.1
  • 13
    • 84877586473 scopus 로고    scopus 로고
    • Endothelial cell-specific lymphotoxin-beta receptor signaling is critical for lymph node and high endothelial venule formation
    • Onder L., et al. Endothelial cell-specific lymphotoxin-beta receptor signaling is critical for lymph node and high endothelial venule formation. J. Exp. Med. 2013, 210:465-473.
    • (2013) J. Exp. Med. , vol.210 , pp. 465-473
    • Onder, L.1
  • 14
    • 84885624688 scopus 로고    scopus 로고
    • Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2
    • Herzog B.H., et al. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature 2013, 502:105-109.
    • (2013) Nature , vol.502 , pp. 105-109
    • Herzog, B.H.1
  • 15
    • 78650542647 scopus 로고    scopus 로고
    • Lymph node cortical sinus organization and relationship to lymphocyte egress dynamics and antigen exposure
    • Grigorova I.L., et al. Lymph node cortical sinus organization and relationship to lymphocyte egress dynamics and antigen exposure. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:20447-20452.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 20447-20452
    • Grigorova, I.L.1
  • 16
    • 57849108019 scopus 로고    scopus 로고
    • Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells
    • Grigorova I.L., et al. Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells. Nat. Immunol. 2009, 10:58-65.
    • (2009) Nat. Immunol. , vol.10 , pp. 58-65
    • Grigorova, I.L.1
  • 17
    • 1642580757 scopus 로고    scopus 로고
    • Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1
    • Matloubian M., et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 2004, 427:355-360.
    • (2004) Nature , vol.427 , pp. 355-360
    • Matloubian, M.1
  • 18
    • 37849033437 scopus 로고    scopus 로고
    • S1P1 receptor signaling overrides retention mediated by G alpha i-coupled receptors to promote T cell egress
    • Pham T.H., et al. S1P1 receptor signaling overrides retention mediated by G alpha i-coupled receptors to promote T cell egress. Immunity 2008, 28:122-133.
    • (2008) Immunity , vol.28 , pp. 122-133
    • Pham, T.H.1
  • 19
    • 24644469502 scopus 로고    scopus 로고
    • Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients
    • Schwab S.R., et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 2005, 309:1735-1739.
    • (2005) Science , vol.309 , pp. 1735-1739
    • Schwab, S.R.1
  • 20
    • 34247379074 scopus 로고    scopus 로고
    • Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate
    • Pappu R., et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 2007, 316:295-298.
    • (2007) Science , vol.316 , pp. 295-298
    • Pappu, R.1
  • 21
    • 76149126108 scopus 로고    scopus 로고
    • Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning
    • Pham T.H., et al. Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J. Exp. Med. 2010, 207:17-27.
    • (2010) J. Exp. Med. , vol.207 , pp. 17-27
    • Pham, T.H.1
  • 22
    • 0032489574 scopus 로고    scopus 로고
    • Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1
    • Lee M.J., et al. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 1998, 279:1552-1555.
    • (1998) Science , vol.279 , pp. 1552-1555
    • Lee, M.J.1
  • 23
    • 13244270031 scopus 로고    scopus 로고
    • Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit
    • Lo C.G., et al. Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit. J. Exp. Med. 2005, 201:291-301.
    • (2005) J. Exp. Med. , vol.201 , pp. 291-301
    • Lo, C.G.1
  • 24
    • 49449102376 scopus 로고    scopus 로고
    • Monitoring cellular movement in vivo with photoconvertible fluorescence protein 'Kaede' transgenic mice
    • Tomura M., et al. Monitoring cellular movement in vivo with photoconvertible fluorescence protein 'Kaede' transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:10871-10876.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 10871-10876
    • Tomura, M.1
  • 25
    • 0001677280 scopus 로고
    • The immediate effect of antigens on the cell output of a lymph node
    • Hall J.G., et al. The immediate effect of antigens on the cell output of a lymph node. Br. J. Exp. Pathol. 1965, 46:450-454.
    • (1965) Br. J. Exp. Pathol. , vol.46 , pp. 450-454
    • Hall, J.G.1
  • 26
    • 0035821218 scopus 로고    scopus 로고
    • The CCR7 ligand elc (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment
    • Baekkevold E.S., et al. The CCR7 ligand elc (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. J. Exp. Med. 2001, 193:1105-1112.
    • (2001) J. Exp. Med. , vol.193 , pp. 1105-1112
    • Baekkevold, E.S.1
  • 27
    • 0035158575 scopus 로고    scopus 로고
    • Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues
    • Palframan R.T., et al. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J. Exp. Med. 2001, 194:1361-1373.
    • (2001) J. Exp. Med. , vol.194 , pp. 1361-1373
    • Palframan, R.T.1
  • 28
    • 12444297666 scopus 로고    scopus 로고
    • The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node
    • Sixt M., et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 2005, 22:19-29.
    • (2005) Immunity , vol.22 , pp. 19-29
    • Sixt, M.1
  • 29
    • 33645289121 scopus 로고    scopus 로고
    • CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs
    • Shiow L.R., et al. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 2006, 440:540-544.
    • (2006) Nature , vol.440 , pp. 540-544
    • Shiow, L.R.1
  • 30
    • 28044432553 scopus 로고    scopus 로고
    • Innate control of adaptive immunity via remodeling of lymph node feed arteriole
    • Soderberg K.A., et al. Innate control of adaptive immunity via remodeling of lymph node feed arteriole. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:16315-16320.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 16315-16320
    • Soderberg, K.A.1
  • 31
    • 84874263028 scopus 로고    scopus 로고
    • Optical projection tomography reveals dynamics of HEV growth after immunization with protein plus CFA and features shared with HEVs in acute autoinflammatory lymphadenopathy
    • Kumar V., et al. Optical projection tomography reveals dynamics of HEV growth after immunization with protein plus CFA and features shared with HEVs in acute autoinflammatory lymphadenopathy. Front. Immunol. 2012, 3:282.
    • (2012) Front. Immunol. , vol.3 , pp. 282
    • Kumar, V.1
  • 32
    • 33746924370 scopus 로고    scopus 로고
    • Regulation of lymph node vascular growth by dendritic cells
    • Webster B., et al. Regulation of lymph node vascular growth by dendritic cells. J. Exp. Med. 2006, 203:1903-1913.
    • (2006) J. Exp. Med. , vol.203 , pp. 1903-1913
    • Webster, B.1
  • 33
    • 56149105838 scopus 로고    scopus 로고
    • Fibroblast-type reticular stromal cells regulate the lymph node vasculature
    • Chyou S., et al. Fibroblast-type reticular stromal cells regulate the lymph node vasculature. J. Immunol. 2008, 181:3887-3896.
    • (2008) J. Immunol. , vol.181 , pp. 3887-3896
    • Chyou, S.1
  • 34
    • 82755170400 scopus 로고    scopus 로고
    • + cells and then by T and B cells
    • + cells and then by T and B cells. J. Immunol. 2011, 187:5558-5567.
    • (2011) J. Immunol. , vol.187 , pp. 5558-5567
    • Chyou, S.1
  • 35
    • 77954734500 scopus 로고    scopus 로고
    • Global lymphoid tissue remodeling during a viral infection is orchestrated by a B cell-lymphotoxin-dependent pathway
    • Kumar V., et al. Global lymphoid tissue remodeling during a viral infection is orchestrated by a B cell-lymphotoxin-dependent pathway. Blood 2010, 115:4725-4733.
    • (2010) Blood , vol.115 , pp. 4725-4733
    • Kumar, V.1
  • 36
    • 84891940082 scopus 로고    scopus 로고
    • Trapping of naive lymphocytes triggers rapid growth and remodeling of the fibroblast network in reactive murine lymph nodes
    • Yang C.Y., et al. Trapping of naive lymphocytes triggers rapid growth and remodeling of the fibroblast network in reactive murine lymph nodes. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:E109-E118.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. E109-E118
    • Yang, C.Y.1
  • 37
    • 84919848646 scopus 로고    scopus 로고
    • Dendritic cells control fibroblastic reticular network tension and lymph node expansion
    • Acton S.E., et al. Dendritic cells control fibroblastic reticular network tension and lymph node expansion. Nature 2014, 514:498-502.
    • (2014) Nature , vol.514 , pp. 498-502
    • Acton, S.E.1
  • 38
    • 84926991343 scopus 로고    scopus 로고
    • The CLEC-2-podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture
    • Published online October 27, 2014
    • Astarita J.L., et al. The CLEC-2-podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nat. Immunol. 2014, Published online October 27, 2014. http://dx.doi.org/10.1038/ni.3035.
    • (2014) Nat. Immunol.
    • Astarita, J.L.1
  • 39
    • 0036721329 scopus 로고    scopus 로고
    • Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs
    • Kamath A.T., et al. Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood 2002, 100:1734-1741.
    • (2002) Blood , vol.100 , pp. 1734-1741
    • Kamath, A.T.1
  • 40
    • 0025735629 scopus 로고
    • The dendritic cell system and its role in immunogenicity
    • Steinman R.M. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 1991, 9:271-296.
    • (1991) Annu. Rev. Immunol. , vol.9 , pp. 271-296
    • Steinman, R.M.1
  • 41
    • 34948814992 scopus 로고    scopus 로고
    • Functionally specialized junctions between endothelial cells of lymphatic vessels
    • Baluk P., et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 2007, 204:2349-2362.
    • (2007) J. Exp. Med. , vol.204 , pp. 2349-2362
    • Baluk, P.1
  • 42
    • 0025076869 scopus 로고
    • Microlymphatics and lymph flow
    • Schmid-Schonbein G.W. Microlymphatics and lymph flow. Physiol. Rev. 1990, 70:987-1028.
    • (1990) Physiol. Rev. , vol.70 , pp. 987-1028
    • Schmid-Schonbein, G.W.1
  • 43
    • 0034919044 scopus 로고    scopus 로고
    • Review article: lymphatic vessel pumping and inflammation - the role of spontaneous constrictions and underlying electrical pacemaker potentials
    • von der Weid P.Y. Review article: lymphatic vessel pumping and inflammation - the role of spontaneous constrictions and underlying electrical pacemaker potentials. Aliment. Pharmacol. Ther. 2001, 15:1115-1129.
    • (2001) Aliment. Pharmacol. Ther. , vol.15 , pp. 1115-1129
    • von der Weid, P.Y.1
  • 44
    • 84865401654 scopus 로고    scopus 로고
    • Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2
    • Acton S.E., et al. Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Immunity 2012, 37:276-289.
    • (2012) Immunity , vol.37 , pp. 276-289
    • Acton, S.E.1
  • 45
    • 23444451916 scopus 로고    scopus 로고
    • Dendritic-cell trafficking to lymph nodes through lymphatic vessels
    • Randolph G.J., et al. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 2005, 5:617-628.
    • (2005) Nat. Rev. Immunol. , vol.5 , pp. 617-628
    • Randolph, G.J.1
  • 46
    • 84899991702 scopus 로고    scopus 로고
    • Taking the lymphatic route: dendritic cell migration to draining lymph nodes
    • Teijeira A., et al. Taking the lymphatic route: dendritic cell migration to draining lymph nodes. Semin. Immunopathol. 2014, 36:261-274.
    • (2014) Semin. Immunopathol. , vol.36 , pp. 261-274
    • Teijeira, A.1
  • 47
    • 77953268755 scopus 로고    scopus 로고
    • Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells
    • Schumann K., et al. Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 2010, 32:703-713.
    • (2010) Immunity , vol.32 , pp. 703-713
    • Schumann, K.1
  • 48
    • 80555153996 scopus 로고    scopus 로고
    • DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling
    • Tal O., et al. DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. J. Exp. Med. 2011, 208:2141-2153.
    • (2011) J. Exp. Med. , vol.208 , pp. 2141-2153
    • Tal, O.1
  • 49
    • 84872435502 scopus 로고    scopus 로고
    • Interstitial dendritic cell guidance by haptotactic chemokine gradients
    • Weber M., et al. Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 2013, 339:328-332.
    • (2013) Science , vol.339 , pp. 328-332
    • Weber, M.1
  • 50
    • 0030810177 scopus 로고    scopus 로고
    • Glycosaminoglycans mediate cell surface oligomerization of chemokines
    • Hoogewerf A.J., et al. Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry 1997, 36:13570-13578.
    • (1997) Biochemistry , vol.36 , pp. 13570-13578
    • Hoogewerf, A.J.1
  • 51
    • 83055179249 scopus 로고    scopus 로고
    • D6 facilitates cellular migration and fluid flow to lymph nodes by suppressing lymphatic congestion
    • Lee K.M., et al. D6 facilitates cellular migration and fluid flow to lymph nodes by suppressing lymphatic congestion. Blood 2011, 118:6220-6229.
    • (2011) Blood , vol.118 , pp. 6220-6229
    • Lee, K.M.1
  • 52
    • 84871712791 scopus 로고    scopus 로고
    • D6: the 'crowd controller' at the immune gateway
    • Lee K.M., et al. D6: the 'crowd controller' at the immune gateway. Trends Immunol. 2013, 34:7-12.
    • (2013) Trends Immunol. , vol.34 , pp. 7-12
    • Lee, K.M.1
  • 53
    • 37349007286 scopus 로고    scopus 로고
    • Profiling heparin-chemokine interactions using synthetic tools
    • de Paz J.L., et al. Profiling heparin-chemokine interactions using synthetic tools. ACS Chem. Biol. 2007, 2:735-744.
    • (2007) ACS Chem. Biol. , vol.2 , pp. 735-744
    • de Paz, J.L.1
  • 54
    • 84902662442 scopus 로고    scopus 로고
    • The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes
    • Ulvmar M.H., et al. The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes. Nat. Immunol. 2014, 15:623-630.
    • (2014) Nat. Immunol. , vol.15 , pp. 623-630
    • Ulvmar, M.H.1
  • 55
    • 34347240977 scopus 로고    scopus 로고
    • A silent chemokine receptor regulates steady-state leukocyte homing in vivo
    • Heinzel K., et al. A silent chemokine receptor regulates steady-state leukocyte homing in vivo. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:8421-8426.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 8421-8426
    • Heinzel, K.1
  • 56
    • 79952107293 scopus 로고    scopus 로고
    • Atypical chemokine receptors
    • Ulvmar M.H., et al. Atypical chemokine receptors. Exp. Cell Res. 2011, 317:556-568.
    • (2011) Exp. Cell Res. , vol.317 , pp. 556-568
    • Ulvmar, M.H.1
  • 57
    • 57049131450 scopus 로고    scopus 로고
    • The conduit system of the lymph node
    • Roozendaal R., et al. The conduit system of the lymph node. Int. Immunol. 2008, 20:1483-1487.
    • (2008) Int. Immunol. , vol.20 , pp. 1483-1487
    • Roozendaal, R.1
  • 58
    • 60149086845 scopus 로고    scopus 로고
    • Conduits mediate transport of low-molecular-weight antigen to lymph node follicles
    • Roozendaal R., et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 2009, 30:264-276.
    • (2009) Immunity , vol.30 , pp. 264-276
    • Roozendaal, R.1
  • 59
    • 0014247921 scopus 로고
    • Antigens in immunity. XV. Ultrastructural features of antigen capture in primary and secondary lymphoid follicles
    • Nossal G.J., et al. Antigens in immunity. XV. Ultrastructural features of antigen capture in primary and secondary lymphoid follicles. J. Exp. Med. 1968, 127:277-290.
    • (1968) J. Exp. Med. , vol.127 , pp. 277-290
    • Nossal, G.J.1
  • 60
    • 34447623566 scopus 로고    scopus 로고
    • B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node
    • Carrasco Y.R., et al. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 2007, 27:160-171.
    • (2007) Immunity , vol.27 , pp. 160-171
    • Carrasco, Y.R.1
  • 61
    • 35948935059 scopus 로고    scopus 로고
    • Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells
    • Junt T., et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 2007, 450:110-114.
    • (2007) Nature , vol.450 , pp. 110-114
    • Junt, T.1
  • 62
    • 34548044827 scopus 로고    scopus 로고
    • Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells
    • Phan T.G., et al. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat. Immunol. 2007, 8:992-1000.
    • (2007) Nat. Immunol. , vol.8 , pp. 992-1000
    • Phan, T.G.1
  • 63
    • 85015611581 scopus 로고
    • The filtering capacity of lymph nodes
    • Drinker C.K., et al. The filtering capacity of lymph nodes. J. Exp. Med. 1934, 59:393-405.
    • (1934) J. Exp. Med. , vol.59 , pp. 393-405
    • Drinker, C.K.1
  • 64
    • 77953920853 scopus 로고    scopus 로고
    • Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus
    • Iannacone M., et al. Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus. Nature 2010, 465:1079-1083.
    • (2010) Nature , vol.465 , pp. 1079-1083
    • Iannacone, M.1
  • 65
    • 77951298265 scopus 로고    scopus 로고
    • Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes
    • Gonzalez S.F., et al. Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nat. Immunol. 2010, 11:427-434.
    • (2010) Nat. Immunol. , vol.11 , pp. 427-434
    • Gonzalez, S.F.1
  • 66
    • 84902196240 scopus 로고    scopus 로고
    • Antigen capture and archiving by lymphatic endothelial cells following vaccination or viral infection
    • Tamburini B.A., et al. Antigen capture and archiving by lymphatic endothelial cells following vaccination or viral infection. Nat. Commun. 2014, 5:3989.
    • (2014) Nat. Commun. , vol.5 , pp. 3989
    • Tamburini, B.A.1
  • 67
    • 33845455093 scopus 로고    scopus 로고
    • Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes
    • Bajenoff M., et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 2006, 25:989-1001.
    • (2006) Immunity , vol.25 , pp. 989-1001
    • Bajenoff, M.1
  • 68
    • 0030582773 scopus 로고    scopus 로고
    • A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen
    • Forster R., et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 1996, 87:1037-1047.
    • (1996) Cell , vol.87 , pp. 1037-1047
    • Forster, R.1
  • 69
    • 84922014960 scopus 로고    scopus 로고
    • B cell homeostasis and follicle confines are governed by fibroblastic reticular cells
    • Cremasco V., et al. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat. Immunol. 2014, 15:973-981.
    • (2014) Nat. Immunol. , vol.15 , pp. 973-981
    • Cremasco, V.1
  • 71
    • 35548975191 scopus 로고    scopus 로고
    • Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells
    • Link A., et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 2007, 8:1255-1265.
    • (2007) Nat. Immunol. , vol.8 , pp. 1255-1265
    • Link, A.1
  • 72
    • 50649117100 scopus 로고    scopus 로고
    • + T cells and limiting reconstitution in HIV-1 and SIV infections through damage to the secondary lymphoid organ niche
    • + T cells and limiting reconstitution in HIV-1 and SIV infections through damage to the secondary lymphoid organ niche. Semin. Immunol. 2008, 20:181-186.
    • (2008) Semin. Immunol. , vol.20 , pp. 181-186
    • Estes, J.D.1
  • 73
    • 79952216365 scopus 로고    scopus 로고
    • Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections
    • Zeng M., et al. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J. Clin. Invest. 2011, 121:998-1008.
    • (2011) J. Clin. Invest. , vol.121 , pp. 998-1008
    • Zeng, M.1
  • 74
    • 84886606785 scopus 로고    scopus 로고
    • Identification of a new stromal cell type involved in the regulation of inflamed B cell follicles
    • Mionnet C., et al. Identification of a new stromal cell type involved in the regulation of inflamed B cell follicles. PLoS Biol. 2013, 11:e1001672.
    • (2013) PLoS Biol. , vol.11 , pp. e1001672
    • Mionnet, C.1
  • 75
    • 84890233027 scopus 로고    scopus 로고
    • Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection
    • Bannard O., et al. Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection. Immunity 2013, 39:912-924.
    • (2013) Immunity , vol.39 , pp. 912-924
    • Bannard, O.1
  • 76
    • 0033821807 scopus 로고    scopus 로고
    • Follicular stromal cells and lymphocyte homing to follicles
    • Cyster J.G., et al. Follicular stromal cells and lymphocyte homing to follicles. Immunol. Rev. 2000, 176:181-193.
    • (2000) Immunol. Rev. , vol.176 , pp. 181-193
    • Cyster, J.G.1
  • 77
    • 84862908273 scopus 로고    scopus 로고
    • Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers
    • Wang X., et al. Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. J. Exp. Med. 2011, 208:2497-2510.
    • (2011) J. Exp. Med. , vol.208 , pp. 2497-2510
    • Wang, X.1
  • 78
    • 84874207942 scopus 로고    scopus 로고
    • Marginal reticular cells: a stromal subset directly descended from the lymphoid tissue organizer
    • Katakai T. Marginal reticular cells: a stromal subset directly descended from the lymphoid tissue organizer. Front. Immunol. 2012, 3:200.
    • (2012) Front. Immunol. , vol.3 , pp. 200
    • Katakai, T.1
  • 79
    • 58749101541 scopus 로고    scopus 로고
    • Organizer-like reticular stromal cell layer common to adult secondary lymphoid organs
    • Katakai T., et al. Organizer-like reticular stromal cell layer common to adult secondary lymphoid organs. J. Immunol. 2008, 181:6189-6200.
    • (2008) J. Immunol. , vol.181 , pp. 6189-6200
    • Katakai, T.1
  • 80
    • 84901852038 scopus 로고    scopus 로고
    • Fate mapping reveals origin and dynamics of lymph node follicular dendritic cells
    • Jarjour M., et al. Fate mapping reveals origin and dynamics of lymph node follicular dendritic cells. J. Exp. Med. 2014, 211:1109-1122.
    • (2014) J. Exp. Med. , vol.211 , pp. 1109-1122
    • Jarjour, M.1
  • 81
    • 84878209722 scopus 로고    scopus 로고
    • Maturation of lymph node fibroblastic reticular cells from myofibroblastic precursors is critical for antiviral immunity
    • Chai Q., et al. Maturation of lymph node fibroblastic reticular cells from myofibroblastic precursors is critical for antiviral immunity. Immunity 2013, 38:1013-1024.
    • (2013) Immunity , vol.38 , pp. 1013-1024
    • Chai, Q.1
  • 82
    • 33645796485 scopus 로고    scopus 로고
    • Specific remodeling of splenic architecture by cytomegalovirus
    • Benedict C.A., et al. Specific remodeling of splenic architecture by cytomegalovirus. PLoS Pathog. 2006, 2:e16.
    • (2006) PLoS Pathog. , vol.2 , pp. e16
    • Benedict, C.A.1
  • 83
    • 51949106699 scopus 로고    scopus 로고
    • Alterations of splenic architecture in malaria are induced independently of Toll-like receptors 2, 4, and 9 or MyD88 and may affect antibody affinity
    • Cadman E.T., et al. Alterations of splenic architecture in malaria are induced independently of Toll-like receptors 2, 4, and 9 or MyD88 and may affect antibody affinity. Infect. Immun. 2008, 76:3924-3931.
    • (2008) Infect. Immun. , vol.76 , pp. 3924-3931
    • Cadman, E.T.1
  • 84
    • 84867588933 scopus 로고    scopus 로고
    • Infection with Toxoplasma gondii alters lymphotoxin expression associated with changes in splenic architecture
    • Glatman Zaretsky A., et al. Infection with Toxoplasma gondii alters lymphotoxin expression associated with changes in splenic architecture. Infect. Immun. 2012, 80:3602-3610.
    • (2012) Infect. Immun. , vol.80 , pp. 3602-3610
    • Glatman Zaretsky, A.1
  • 85
    • 70049090747 scopus 로고    scopus 로고
    • + T cells and dendritic cells during infection with Toxoplasma gondii
    • + T cells and dendritic cells during infection with Toxoplasma gondii. PLoS Pathog. 2009, 5:e1000505.
    • (2009) PLoS Pathog. , vol.5 , pp. e1000505
    • John, B.1
  • 86
    • 34547782880 scopus 로고    scopus 로고
    • Regulation of homeostatic chemokine expression and cell trafficking during immune responses
    • Mueller S.N., et al. Regulation of homeostatic chemokine expression and cell trafficking during immune responses. Science 2007, 317:670-674.
    • (2007) Science , vol.317 , pp. 670-674
    • Mueller, S.N.1
  • 87
    • 34848852256 scopus 로고    scopus 로고
    • Viral targeting of fibroblastic reticular cells contributes to immunosuppression and persistence during chronic infection
    • Mueller S.N., et al. Viral targeting of fibroblastic reticular cells contributes to immunosuppression and persistence during chronic infection. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:15430-15435.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 15430-15435
    • Mueller, S.N.1
  • 88
    • 70449109146 scopus 로고    scopus 로고
    • Salmonella disrupts lymph node architecture by TLR4-mediated suppression of homeostatic chemokines
    • St John A.L., et al. Salmonella disrupts lymph node architecture by TLR4-mediated suppression of homeostatic chemokines. Nat. Med. 2009, 15:1259-1265.
    • (2009) Nat. Med. , vol.15 , pp. 1259-1265
    • St John, A.L.1
  • 89
    • 44049100259 scopus 로고    scopus 로고
    • Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone
    • Scandella E., et al. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat. Immunol. 2008, 9:667-675.
    • (2008) Nat. Immunol. , vol.9 , pp. 667-675
    • Scandella, E.1
  • 90
    • 4344651077 scopus 로고    scopus 로고
    • A novel reticular stromal structure in lymph node cortex: an immuno-platform for interactions among dendritic cells, T cells and B cells
    • Katakai T., et al. A novel reticular stromal structure in lymph node cortex: an immuno-platform for interactions among dendritic cells, T cells and B cells. Int. Immunol. 2004, 16:1133-1142.
    • (2004) Int. Immunol. , vol.16 , pp. 1133-1142
    • Katakai, T.1
  • 91
    • 84870864876 scopus 로고    scopus 로고
    • + T helper 1 cell differentiation
    • + T helper 1 cell differentiation. Immunity 2012, 37:1091-1103.
    • (2012) Immunity , vol.37 , pp. 1091-1103
    • Groom, J.R.1
  • 92
    • 84905111574 scopus 로고    scopus 로고
    • Trans-nodal migration of resident dendritic cells into medullary interfollicular regions initiates immunity to influenza vaccine
    • Woodruff M.C., et al. Trans-nodal migration of resident dendritic cells into medullary interfollicular regions initiates immunity to influenza vaccine. J. Exp. Med. 2014, 211:1611-1621.
    • (2014) J. Exp. Med. , vol.211 , pp. 1611-1621
    • Woodruff, M.C.1
  • 93
    • 70350447216 scopus 로고    scopus 로고
    • Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation
    • van de Pavert S.A., et al. Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nat. Immunol. 2009, 10:1193-1199.
    • (2009) Nat. Immunol. , vol.10 , pp. 1193-1199
    • van de Pavert, S.A.1
  • 94
    • 84867867727 scopus 로고    scopus 로고
    • Lymphotoxin-beta receptor signaling through NF-kappaB2-RelB pathway reprograms adipocyte precursors as lymph node stromal cells
    • Benezech C., et al. Lymphotoxin-beta receptor signaling through NF-kappaB2-RelB pathway reprograms adipocyte precursors as lymph node stromal cells. Immunity 2012, 37:721-734.
    • (2012) Immunity , vol.37 , pp. 721-734
    • Benezech, C.1
  • 95
    • 65549089861 scopus 로고    scopus 로고
    • LTbetaR signaling induces cytokine expression and up-regulates lymphangiogenic factors in lymph node anlagen
    • Vondenhoff M.F., et al. LTbetaR signaling induces cytokine expression and up-regulates lymphangiogenic factors in lymph node anlagen. J. Immunol. 2009, 182:5439-5445.
    • (2009) J. Immunol. , vol.182 , pp. 5439-5445
    • Vondenhoff, M.F.1
  • 96
    • 0034694090 scopus 로고    scopus 로고
    • Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE
    • Kim D., et al. Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE. J. Exp. Med. 2000, 192:1467-1478.
    • (2000) J. Exp. Med. , vol.192 , pp. 1467-1478
    • Kim, D.1
  • 97
    • 77952787146 scopus 로고    scopus 로고
    • Ontogeny of stromal organizer cells during lymph node development
    • Benezech C., et al. Ontogeny of stromal organizer cells during lymph node development. J. Immunol. 2010, 184:4521-4530.
    • (2010) J. Immunol. , vol.184 , pp. 4521-4530
    • Benezech, C.1
  • 98
    • 4344669819 scopus 로고    scopus 로고
    • Presumptive lymph node organizers are differentially represented in developing mesenteric and peripheral nodes
    • Cupedo T., et al. Presumptive lymph node organizers are differentially represented in developing mesenteric and peripheral nodes. J. Immunol. 2004, 173:2968-2975.
    • (2004) J. Immunol. , vol.173 , pp. 2968-2975
    • Cupedo, T.1
  • 99
    • 77956175900 scopus 로고    scopus 로고
    • New insights into the development of lymphoid tissues
    • van de Pavert S.A., et al. New insights into the development of lymphoid tissues. Nat. Rev. Immunol. 2010, 10:664-674.
    • (2010) Nat. Rev. Immunol. , vol.10 , pp. 664-674
    • van de Pavert, S.A.1
  • 100
    • 84874246475 scopus 로고    scopus 로고
    • Mesenchymal cell differentiation during lymph node organogenesis
    • Brendolan A., et al. Mesenchymal cell differentiation during lymph node organogenesis. Front. Immunol. 2012, 3:381.
    • (2012) Front. Immunol. , vol.3 , pp. 381
    • Brendolan, A.1
  • 101
    • 84861670223 scopus 로고    scopus 로고
    • Interdependence of stromal and immune cells for lymph node function
    • Koning J.J., et al. Interdependence of stromal and immune cells for lymph node function. Trends Immunol. 2012, 33:264-270.
    • (2012) Trends Immunol. , vol.33 , pp. 264-270
    • Koning, J.J.1
  • 102
    • 30444452843 scopus 로고    scopus 로고
    • A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2
    • Suzuki-Inoue K., et al. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 2006, 107:542-549.
    • (2006) Blood , vol.107 , pp. 542-549
    • Suzuki-Inoue, K.1
  • 103
    • 84859405717 scopus 로고    scopus 로고
    • Signaling by myeloid C-type lectin receptors in immunity and homeostasis
    • Sancho D., et al. Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu. Rev. Immunol. 2012, 30:491-529.
    • (2012) Annu. Rev. Immunol. , vol.30 , pp. 491-529
    • Sancho, D.1
  • 104
    • 0033952396 scopus 로고    scopus 로고
    • Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells
    • Colonna M., et al. Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur. J. Immunol. 2000, 30:697-704.
    • (2000) Eur. J. Immunol. , vol.30 , pp. 697-704
    • Colonna, M.1
  • 105
    • 84873339567 scopus 로고    scopus 로고
    • Podoplanin: emerging functions in development, the immune system, and cancer
    • Astarita J.L., et al. Podoplanin: emerging functions in development, the immune system, and cancer. Front. Immunol. 2012, 3:283.
    • (2012) Front. Immunol. , vol.3 , pp. 283
    • Astarita, J.L.1
  • 106
    • 84859926294 scopus 로고    scopus 로고
    • Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks
    • Malhotra D., et al. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat. Immunol. 2012, 13:499-510.
    • (2012) Nat. Immunol. , vol.13 , pp. 499-510
    • Malhotra, D.1
  • 107
    • 33751539322 scopus 로고    scopus 로고
    • Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition
    • Martin-Villar E., et al. Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. J. Cell Sci. 2006, 119:4541-4553.
    • (2006) J. Cell Sci. , vol.119 , pp. 4541-4553
    • Martin-Villar, E.1
  • 108
    • 77955301210 scopus 로고    scopus 로고
    • Essential in vivo roles of the C-type lectin receptor CLEC-2: embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets
    • Suzuki-Inoue K., et al. Essential in vivo roles of the C-type lectin receptor CLEC-2: embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets. J. Biol. Chem. 2010, 285:24494-24507.
    • (2010) J. Biol. Chem. , vol.285 , pp. 24494-24507
    • Suzuki-Inoue, K.1
  • 109
    • 84862702605 scopus 로고    scopus 로고
    • Platelet activation receptor CLEC-2 regulates blood/lymphatic vessel separation by inhibiting proliferation, migration, and tube formation of lymphatic endothelial cells
    • Osada M., et al. Platelet activation receptor CLEC-2 regulates blood/lymphatic vessel separation by inhibiting proliferation, migration, and tube formation of lymphatic endothelial cells. J. Biol. Chem. 2012, 287:22241-22252.
    • (2012) J. Biol. Chem. , vol.287 , pp. 22241-22252
    • Osada, M.1
  • 110
    • 56149111087 scopus 로고    scopus 로고
    • T1alpha/podoplanin is essential for capillary morphogenesis in lymphatic endothelial cells
    • Navarro A., et al. T1alpha/podoplanin is essential for capillary morphogenesis in lymphatic endothelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008, 295:L543-L551.
    • (2008) Am. J. Physiol. Lung Cell. Mol. Physiol. , vol.295 , pp. L543-L551
    • Navarro, A.1
  • 111
    • 84901408061 scopus 로고    scopus 로고
    • CLEC-2 is required for development and maintenance of lymph nodes
    • Benezech C., et al. CLEC-2 is required for development and maintenance of lymph nodes. Blood 2014, 123:3200-3207.
    • (2014) Blood , vol.123 , pp. 3200-3207
    • Benezech, C.1
  • 112
    • 58149392964 scopus 로고    scopus 로고
    • Pulmonary vein, dorsal atrial wall and atrial septum abnormalities in podoplanin knockout mice with disturbed posterior heart field contribution
    • Douglas Y.L., et al. Pulmonary vein, dorsal atrial wall and atrial septum abnormalities in podoplanin knockout mice with disturbed posterior heart field contribution. Pediatr. Res. 2009, 65:27-32.
    • (2009) Pediatr. Res. , vol.65 , pp. 27-32
    • Douglas, Y.L.1
  • 113
    • 0037376154 scopus 로고    scopus 로고
    • T1alpha, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth
    • Ramirez M.I., et al. T1alpha, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth. Dev. Biol. 2003, 256:61-72.
    • (2003) Dev. Biol. , vol.256 , pp. 61-72
    • Ramirez, M.I.1
  • 114
    • 84355166761 scopus 로고    scopus 로고
    • Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation
    • Peters A., et al. Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 2011, 35:986-996.
    • (2011) Immunity , vol.35 , pp. 986-996
    • Peters, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.