메뉴 건너뛰기




Volumn 14, Issue , 2015, Pages 346-378

Data- and knowledge-based modeling of gene regulatory networks: An update

Author keywords

Gene regulatory networks; Modeling; Network inference; Prior knowledge; Reverse engineering; RNA Seq

Indexed keywords

CROWDSOURCING; GENE REGULATORY NETWORK; INFORMATION PROCESSING; MODEL; NEXT GENERATION SEQUENCING; REVERSE ENGINEERING; SPECIES; SYSTEMS BIOLOGY;

EID: 84984891031     PISSN: None     EISSN: 16112156     Source Type: Journal    
DOI: 10.17179/excli2015-168     Document Type: Article
Times cited : (48)

References (183)
  • 1
    • 70449375094 scopus 로고    scopus 로고
    • Learning gene regulatory networks from gene expression measurements using nonparametric molecular kinetics
    • Äijö T, Lähdesmäki H.Learning gene regulatory networks from gene expression measurements using nonparametric molecular kinetics.Bioinformatics.2009;25:2937-44.
    • (2009) Bioinformatics. , vol.25 , pp. 2937-2944
    • Äijö, T.1    Lähdesmäki, H.2
  • 2
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • Akutsu T, Miyano S, Kuhara S.Identification of genetic networks from a small number of gene expression patterns under the Boolean network model.Pac Symp Biocomput.1999:17-28.
    • (1999) Pac Symp Biocomput. , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 3
    • 77957141016 scopus 로고    scopus 로고
    • Inferring the conservative causal core of gene regulatory networks
    • Altay G, Emmert-Streib F.Inferring the conservative causal core of gene regulatory networks.BMC Syst Biol.2010;4:132.
    • (2010) BMC Syst Biol. , vol.4 , pp. 132
    • Altay, G.1    Emmert-Streib, F.2
  • 5
    • 79952983516 scopus 로고    scopus 로고
    • Mathematical modeling of gene expression: A guide for the perplexed biologist
    • Ay A, Arnosti DN.Mathematical modeling of gene expression: a guide for the perplexed biologist.Crit Rev Biochem Mol Biol.2011;46:137-51.
    • (2011) Crit Rev Biochem Mol Biol. , vol.46 , pp. 137-151
    • Ay, A.1    Arnosti, D.N.2
  • 7
    • 34548388925 scopus 로고    scopus 로고
    • Inference of gene networks from temporal gene expression profiles
    • Bansal M, di Bernardo D.Inference of gene networks from temporal gene expression profiles.IET Syst Biol.2007;1:306-12.
    • (2007) IET Syst Biol. , vol.1 , pp. 306-312
    • Bansal, M.1    di Bernardo, D.2
  • 8
    • 33645307955 scopus 로고    scopus 로고
    • Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
    • Bansal M, Della Gatta G, di Bernardo D.Inference of gene regulatory networks and compound mode of action from time course gene expression profiles.Bioinformatics.2006;22:815-22.
    • (2006) Bioinformatics. , vol.22 , pp. 815-822
    • Bansal, M.1    Della Gatta, G.2    di Bernardo, D.3
  • 9
    • 33847055114 scopus 로고    scopus 로고
    • How to infer gene networks from expression profiles
    • Erratum in: Mol Syst Biol.2007;3:122
    • Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D.How to infer gene networks from expression profiles.Mol Syst Biol.2007;3:78.Erratum in: Mol Syst Biol.2007;3:122.
    • (2007) Mol Syst Biol. , vol.3 , pp. 78
    • Bansal, M.1    Belcastro, V.2    Ambesi-Impiombato, A.3    di Bernardo, D.4
  • 10
    • 84924338899 scopus 로고    scopus 로고
    • A community computational challenge to predict the activity of pairs of compounds
    • Bansal M, Yang J, Karan C, Menden MP, Costello JC, Tang H, et al; NCI-DREAM Community.A community computational challenge to predict the activity of pairs of compounds.Nat Biotechnol.2014;32:1213-22.
    • (2014) Nat Biotechnol. , vol.32 , pp. 1213-1222
    • Bansal, M.1    Yang, J.2    Karan, C.3    Menden, M.P.4    Costello, J.C.5    Tang, H.6
  • 11
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • Barabási AL, Albert R.Emergence of scaling in random networks.Science.1999;286(5439):509-12.
    • (1999) Science. , vol.286 , Issue.5439 , pp. 509-512
    • Barabási, A.L.1    Albert, R.2
  • 12
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: Understanding the cell’s functional organization
    • Barabási AL, Oltvai ZN.Network biology: understanding the cell’s functional organization.Nat Rev Genet.2004;5:101-13.
    • (2004) Nat Rev Genet. , vol.5 , pp. 101-113
    • Barabási, A.L.1    Oltvai, Z.N.2
  • 15
    • 15944361900 scopus 로고    scopus 로고
    • Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
    • Bernhard A, Hartemink AJ.Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data.Pac Symp Biocomput.2005;2005:459-70.
    • (2005) Pac Symp Biocomput. , vol.2005 , pp. 459-470
    • Bernhard, A.1    Hartemink, A.J.2
  • 16
    • 84877734926 scopus 로고    scopus 로고
    • Improving breast cancer survival analysis through competition-based multidimensional modeling
    • Bilal E, Dutkowski J, Guinney J, Jang IS, Logsdon BA, Pandey G, et al.Improving breast cancer survival analysis through competition-based multidimensional modeling.PLoS Comput Biol.2013;9(5):e1003047.
    • (2013) PLoS Comput Biol. , vol.9 , Issue.5 , pp. e1003047
    • Bilal, E.1    Dutkowski, J.2    Guinney, J.3    Jang, I.S.4    Logsdon, B.A.5    Pandey, G.6
  • 17
    • 84891796512 scopus 로고    scopus 로고
    • The Candida Genome Database: The new homology information page highlights protein similarity and phylogeny
    • Binkley J, Arnaud MB, Inglis DO, Skrzypek MS, Shah P, Wymore F, et al.The Candida Genome Database: the new homology information page highlights protein similarity and phylogeny.Nucleic Acids Res.2014;42(Database issue):D711-6.
    • (2014) Nucleic Acids Res. , vol.42 , Issue.Database issue , pp. D711-D716
    • Binkley, J.1    Arnaud, M.B.2    Inglis, D.O.3    Skrzypek, M.S.4    Shah, P.5    Wymore, F.6
  • 18
    • 84905049901 scopus 로고    scopus 로고
    • Trimmomatic: A flexible trimmer for Illumina sequence data
    • Bolger AM, Lohse M, Usadel B.Trimmomatic: a flexible trimmer for Illumina sequence data.Bioinformatics.2014;30:2114-21.
    • (2014) Bioinformatics. , vol.30 , pp. 2114-2121
    • Bolger, A.M.1    Lohse, M.2    Usadel, B.3
  • 19
    • 33747813561 scopus 로고    scopus 로고
    • The Inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L, Baliga NS, et al.The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo.Genome Biol.2006;7(5):R36.
    • (2006) Genome Biol. , vol.7 , Issue.5 , pp. R36
    • Bonneau, R.1    Reiss, D.J.2    Shannon, P.3    Facciotti, M.4    Hood, L.5    Baliga, N.S.6
  • 21
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements
    • Butte AJ, Kohane IS.Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements.Pac Symp Biocomput.2000:418-29.
    • (2000) Pac Symp Biocomput. , pp. 418-429
    • Butte, A.J.1    Kohane, I.S.2
  • 23
    • 84901679193 scopus 로고    scopus 로고
    • Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals upregulation of nutrient acquisition and cell cycle genes
    • Camilios-Neto D, Bonato P, Wassem R, Tadra-Sfeir MZ, Brusamarello-Santos LCC, Valdameri G, et al.Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals upregulation of nutrient acquisition and cell cycle genes.BMC Genomics.2014;15:378.
    • (2014) BMC Genomics. , vol.15 , pp. 378
    • Camilios-Neto, D.1    Bonato, P.2    Wassem, R.3    Tadra-Sfeir, M.Z.4    Brusamarello-Santos, L.C.C.5    Valdameri, G.6
  • 24
    • 63049128934 scopus 로고    scopus 로고
    • A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches
    • Cantone I, Marucci L, Iorio F, Ricci MA, Belcastro V, Bansal M, et al.A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches.Cell.2009;137:172-81.
    • (2009) Cell. , vol.137 , pp. 172-181
    • Cantone, I.1    Marucci, L.2    Iorio, F.3    Ricci, M.A.4    Belcastro, V.5    Bansal, M.6
  • 25
    • 84901748068 scopus 로고    scopus 로고
    • Dual RNA-seq of parasite and host reveals gene expression dynamics during filarial worm-mosquito interactions
    • Choi YJ, Aliota MT, Mayhew GF, Erickson SM, Christensen BM.Dual RNA-seq of parasite and host reveals gene expression dynamics during filarial worm-mosquito interactions.PloS Negl Trop Dis.2014;8(5):e2905.
    • (2014) PloS Negl Trop Dis. , vol.8 , Issue.5 , pp. e2905
    • Choi, Y.J.1    Aliota, M.T.2    Mayhew, G.F.3    Erickson, S.M.4    Christensen, B.M.5
  • 26
    • 77749251837 scopus 로고    scopus 로고
    • Success in the DREAM3 signaling response challenge using simple weightedaverage imputation: Lessons for community-wide experiments in systems biology
    • Clarke ND, Bourque G.Success in the DREAM3 signaling response challenge using simple weightedaverage imputation: lessons for community-wide experiments in systems biology.PLoS One.2010;5(1): e8417.
    • (2010) PLoS One. , vol.5 , Issue.1 , pp. e8417
    • Clarke, N.D.1    Bourque, G.2
  • 27
    • 54149084585 scopus 로고    scopus 로고
    • Multiple sclerosis
    • Compston A, Coles A.Multiple sclerosis.Lancet.2008;372(9648):1502-17.
    • (2008) Lancet. , vol.372 , Issue.9648 , pp. 1502-1517
    • Compston, A.1    Coles, A.2
  • 28
  • 29
    • 84893443187 scopus 로고    scopus 로고
    • An extensive evaluation of read trimming effects on Illumina NGS data analysis
    • Del Fabbro C, Scalabrin S, Morgante M, Giorgi FM.An extensive evaluation of read trimming effects on Illumina NGS data analysis.PLoS One.2013;8(12): e85024.
    • (2013) PLoS One. , vol.8 , Issue.12 , pp. e85024
    • Del Fabbro, C.1    Scalabrin, S.2    Morgante, M.3    Giorgi, F.M.4
  • 30
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: A literature review
    • de Jong H.Modeling and simulation of genetic regulatory systems: a literature review.J Comput Biol.2002;9:67-103.
    • (2002) J Comput Biol. , vol.9 , pp. 67-103
    • de Jong, H.1
  • 31
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co-expression clustering to reverse engineering
    • D’haeseleer P, Liang S, Somogyi R.Genetic network inference: from co-expression clustering to reverse engineering.Bioinformatics.2000;16:707-26.
    • (2000) Bioinformatics. , vol.16 , pp. 707-726
    • D’haeseleer, P.1    Liang, S.2    Somogyi, R.3
  • 33
    • 77958516401 scopus 로고    scopus 로고
    • A Boolean approach to linear prediction for signaling network modeling
    • Eduati F, Corradin A, Di Camillo B, Toffolo G.A Boolean approach to linear prediction for signaling network modeling.PLoS One.2010;5(9):e12789.
    • (2010) PLoS One. , vol.5 , Issue.9 , pp. e12789
    • Eduati, F.1    Corradin, A.2    Di Camillo, B.3    Toffolo, G.4
  • 35
    • 84928888210 scopus 로고    scopus 로고
    • Gene regulatory networks and their applications: Understanding biological and medical problems in terms of networks
    • Emmert-Streib F, Dehmer M, Haibe-Kains B.Gene regulatory networks and their applications: understanding biological and medical problems in terms of networks.Front Cell Dev Biol.2014;2:38.
    • (2014) Front Cell Dev Biol. , vol.2 , pp. 38
    • Emmert-Streib, F.1    Dehmer, M.2    Haibe-Kains, B.3
  • 38
    • 33846400424 scopus 로고    scopus 로고
    • Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles
    • Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, et al.Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles.PLoS Biol.2007;5(1):e8.
    • (2007) PLoS Biol. , vol.5 , Issue.1 , pp. e8
    • Faith, J.J.1    Hayete, B.2    Thaden, J.T.3    Mogno, I.4    Wierzbowski, J.5    Cottarel, G.6
  • 39
    • 84891789990 scopus 로고    scopus 로고
    • The 2014 Nucleic Acids Research Database Issue and an updated NAR online Molecular Biology Database Collection
    • Fernández-Suárez XM, Rigden DJ, Galperin MY.The 2014 Nucleic Acids Research Database Issue and an updated NAR online Molecular Biology Database Collection.Nucleic Acids Res.2014;42(Database issue):D1-6.
    • (2014) Nucleic Acids Res. , vol.42 , Issue.Database issue , pp. D1-D6
    • Fernández-Suárez, X.M.1    Rigden, D.J.2    Galperin, M.Y.3
  • 41
    • 84872528061 scopus 로고    scopus 로고
    • An effective framework for reconstructing gene regulatory networks from genetical genomics data
    • Flassig RJ, Heise S, Sundmacher K, Klamt S.An effective framework for reconstructing gene regulatory networks from genetical genomics data.Bioinformatics.2013;29:246-54.
    • (2013) Bioinformatics. , vol.29 , pp. 246-254
    • Flassig, R.J.1    Heise, S.2    Sundmacher, K.3    Klamt, S.4
  • 44
    • 38549140094 scopus 로고    scopus 로고
    • RegulonDB (version 6.0): Gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation
    • Gama-Castro S, Jiménez-Jacinto V, Peralta-Gil M, Santos-Zavaleta A, Peñaloza-Spinola MI, Contreras-Moreira B, et al.RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation.Nucleic Acids Res.2008;36(Database issue):D120-4.
    • (2008) Nucleic Acids Res. , vol.36 , Issue.Database issue , pp. D120-D124
    • Gama-Castro, S.1    Jiménez-Jacinto, V.2    Peralta-Gil, M.3    Santos-Zavaleta, A.4    Peñaloza-Spinola, M.I.5    Contreras-Moreira, B.6
  • 45
    • 14844286390 scopus 로고    scopus 로고
    • Reverse-engineering transcription control networks
    • Gardner TS, Faith JJ.Reverse-engineering transcription control networks.Phys Life Rev.2005;2:65-88.
    • (2005) Phys Life Rev. , vol.2 , pp. 65-88
    • Gardner, T.S.1    Faith, J.J.2
  • 46
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner TS, di Bernardo D, Lorenz D, Collins JJ.Inferring genetic networks and identifying compound mode of action via expression profiling.Science.2003;301(5629):102-5.
    • (2003) Science. , vol.301 , Issue.5629 , pp. 102-105
    • Gardner, T.S.1    di Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 47
    • 25444486700 scopus 로고    scopus 로고
    • Rheumatoid arthritis, a complex multifactorial disease: On the way toward individualized medicine
    • Glocker MO, Guthke R, Kekow J, Thiesen HJ.Rheumatoid arthritis, a complex multifactorial disease: on the way toward individualized medicine.Med Res Rev.2006;26:63-87.
    • (2006) Med Res Rev. , vol.26 , pp. 63-87
    • Glocker, M.O.1    Guthke, R.2    Kekow, J.3    Thiesen, H.J.4
  • 48
    • 84856228299 scopus 로고    scopus 로고
    • More than just a metabolic regulator - Elucidation and validation of new targets of PdhR in Escherichia coli
    • Göhler AK, Kökpinar Ö, Schmidt-Heck W, Geffers R, Guthke R, Rinas U, et al.More than just a metabolic regulator - elucidation and validation of new targets of PdhR in Escherichia coli.BMC Syst Biol.2011;5: 197.
    • (2011) BMC Syst Biol. , vol.5 , pp. 197
    • Göhler, A.K.1    Kökpinar, Ö.2    Schmidt-Heck, W.3    Geffers, R.4    Guthke, R.5    Rinas, U.6
  • 50
    • 78149421254 scopus 로고    scopus 로고
    • DREAM4: Combining genetic and dynamic information to identify biological networks and dynamical models
    • Greenfield A, Madar A, Ostrer H, Bonneau R.DREAM4: Combining genetic and dynamic information to identify biological networks and dynamical models.PLoS One.2010;5(10):e13397.
    • (2010) PLoS One. , vol.5 , Issue.10 , pp. e13397
    • Greenfield, A.1    Madar, A.2    Ostrer, H.3    Bonneau, R.4
  • 51
    • 84876207916 scopus 로고    scopus 로고
    • Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks
    • Greenfield A, Hafemeister C, Bonneau R.Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks.Bioinformatics.2013;29:1060-7.
    • (2013) Bioinformatics. , vol.29 , pp. 1060-1067
    • Greenfield, A.1    Hafemeister, C.2    Bonneau, R.3
  • 52
    • 33747342709 scopus 로고    scopus 로고
    • Sensing by bacterial regulatory systems in host and non-host environments
    • Groisman EA, Mouslim C.Sensing by bacterial regulatory systems in host and non-host environments.Nat Rev Microbiol.2006;4:705-9.
    • (2006) Nat Rev Microbiol. , vol.4 , pp. 705-709
    • Groisman, E.A.1    Mouslim, C.2
  • 53
    • 77649327878 scopus 로고    scopus 로고
    • Multiple imputations applied to the DREAM3 phosphoproteomics challenge: A winning strategy
    • Guex N, Migliavacca E, Xenarios I.Multiple imputations applied to the DREAM3 phosphoproteomics challenge: a winning strategy.PLoS One.2010;5(1): e8012.
    • (2010) PLoS One. , vol.5 , Issue.1 , pp. e8012
    • Guex, N.1    Migliavacca, E.2    Xenarios, I.3
  • 54
    • 79953871120 scopus 로고    scopus 로고
    • A computational framework for gene regulatory network inference that combines multiple methods and datasets
    • Gupta R, Stincone A, Antczak P, Durant S, Bicknell R, Bikfalvi A, et al.A computational framework for gene regulatory network inference that combines multiple methods and datasets.BMC Syst Biol.2011;5: 52.
    • (2011) BMC Syst Biol. , vol.5 , pp. 52
    • Gupta, R.1    Stincone, A.2    Antczak, P.3    Durant, S.4    Bicknell, R.5    Bikfalvi, A.6
  • 55
    • 77949535261 scopus 로고    scopus 로고
    • Gene expression prediction by soft integration and the elastic net-best performance of the DREAM3 gene expression challenge
    • Gustafsson M, Hörnquist M.Gene expression prediction by soft integration and the elastic net-best performance of the DREAM3 gene expression challenge.PLoS One.2010;5(2):e9134.
    • (2010) PLoS One. , vol.5 , Issue.2 , pp. e9134
    • Gustafsson, M.1    Hörnquist, M.2
  • 56
    • 27644508196 scopus 로고    scopus 로고
    • Constructing and analyzing a large-scale gene-to-gene regulatory network--lasso-constrained inference and biological validation
    • Gustafsson M, Hörnquist M, Lombardi A.Constructing and analyzing a large-scale gene-to-gene regulatory network--lasso-constrained inference and biological validation.IEEE/ACM Trans Comput Biol Bioinform.2005;2:254-61.
    • (2005) IEEE/ACM Trans Comput Biol Bioinform. , vol.2 , pp. 254-261
    • Gustafsson, M.1    Hörnquist, M.2    Lombardi, A.3
  • 58
    • 17444430052 scopus 로고    scopus 로고
    • Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection
    • Guthke R, Möller U, Hoffmann M, Thies F, Töpfer S.Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection.Bioinformatics.2005;21:1626-34.
    • (2005) Bioinformatics. , vol.21 , pp. 1626-1634
    • Guthke, R.1    Möller, U.2    Hoffmann, M.3    Thies, F.4    Töpfer, S.5
  • 59
    • 84880266648 scopus 로고    scopus 로고
    • De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis
    • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al.De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis.Nat Protoc.2013;8:1494-512.
    • (2013) Nat Protoc. , vol.8 , pp. 1494-1512
    • Haas, B.J.1    Papanicolaou, A.2    Yassour, M.3    Grabherr, M.4    Blood, P.D.5    Bowden, J.6
  • 60
    • 34447539654 scopus 로고    scopus 로고
    • Text mining: Powering the database revolution
    • Hahn U, Wermter J, Blasczyk R, Horn PA.Text mining: powering the database revolution.Nature.2007;448(7150):130.
    • (2007) Nature. , vol.448 , Issue.7150 , pp. 130
    • Hahn, U.1    Wermter, J.2    Blasczyk, R.3    Horn, P.A.4
  • 61
    • 84862197985 scopus 로고    scopus 로고
    • Predictive networks: A flexible, open source, web application for integration and analysis of human gene networks
    • Haibe-Kains B, Olsen C, Djebbari A, Bontempi G, Correll M, Bouton C, et al.Predictive networks: a flexible, open source, web application for integration and analysis of human gene networks.Nucleic Acids Res.2012;40(Database issue): D866-D875
    • (2012) Nucleic Acids Res. , vol.40 , Issue.Database issue , pp. D866-D875
    • Haibe-Kains, B.1    Olsen, C.2    Djebbari, A.3    Bontempi, G.4    Correll, M.5    Bouton, C.6
  • 62
    • 0035221560 scopus 로고    scopus 로고
    • Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
    • Hartemink AJ, Gifford DK, Jaakkola TS, Young RA.Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks.Pac Symp Biocomput.2001:422-33.
    • (2001) Pac Symp Biocomput. , pp. 422-433
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 63
    • 84925334433 scopus 로고    scopus 로고
    • Inference of gene regulatory networks incorporating multi-source biological knowledge via a state space model with L1 regularization
    • Hasegawa T, Yamaguchi R, Nagasaki M, Miyano S, Imoto S.Inference of gene regulatory networks incorporating multi-source biological knowledge via a state space model with L1 regularization.PLoS One.2014;9(8):e105942.
    • (2014) PLoS One. , vol.9 , Issue.8 , pp. e105942
    • Hasegawa, T.1    Yamaguchi, R.2    Nagasaki, M.3    Miyano, S.4    Imoto, S.5
  • 64
    • 84869882656 scopus 로고    scopus 로고
    • TIGRESS: Trustful Inference of Gene REgulation using Stability Selection
    • Haury AC, Mordelet F, Vera-Licona P, Vert JP.TIGRESS: Trustful Inference of Gene REgulation using Stability Selection.BMC Syst Biol.2012;6:145.
    • (2012) BMC Syst Biol. , vol.6 , pp. 145
    • Haury, A.C.1    Mordelet, F.2    Vera-Licona, P.3    Vert, J.P.4
  • 65
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: Data integration in dynamic models - A review
    • Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R.Gene regulatory network inference: data integration in dynamic models - a review.Biosystems.2009a;96:86-103.
    • (2009) Biosystems. , vol.96 , pp. 86-103
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3    van Someren, E.4    Guthke, R.5
  • 68
    • 84897740390 scopus 로고    scopus 로고
    • Interactive exploration of integrated biological datasets using context-sensitive workflows
    • Horn F, Rittweger M, Taubert J, Lysenko A, Rawlings C, Guthke R.Interactive exploration of integrated biological datasets using context-sensitive workflows.Front Genet.2014;5:21.
    • (2014) Front Genet. , vol.5 , pp. 21
    • Horn, F.1    Rittweger, M.2    Taubert, J.3    Lysenko, A.4    Rawlings, C.5    Guthke, R.6
  • 69
    • 58549112996 scopus 로고    scopus 로고
    • Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists
    • Huang DW, Sherman BT, Lempicki RA.Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists.Nucleic Acids Res.2009;37:1-13.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 1-13
    • Huang, D.W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 70
    • 77958570788 scopus 로고    scopus 로고
    • Inferring regulatory networks from expression data using tree-based methods
    • Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P.Inferring regulatory networks from expression data using tree-based methods.PLoS One.2010;5(9): e12776.
    • (2010) PLoS One. , vol.5 , Issue.9 , pp. e12776
    • Huynh-Thu, V.A.1    Irrthum, A.2    Wehenkel, L.3    Geurts, P.4
  • 72
    • 75249096608 scopus 로고    scopus 로고
    • The Gene Interaction Miner: A new tool for data mining contextual information for protein-protein interaction analysis
    • Ikin A, Riveros C, Moscato P, Mendes A.The Gene Interaction Miner: a new tool for data mining contextual information for protein-protein interaction analysis.Bioinformatics.2010;26:283-4.
    • (2010) Bioinformatics. , vol.26 , pp. 283-284
    • Ikin, A.1    Riveros, C.2    Moscato, P.3    Mendes, A.4
  • 73
    • 84897891549 scopus 로고    scopus 로고
    • Bayesian network prior: Network analysis of biological data using external knowledge
    • Isci S, Dogan H, Ozturk C, Otu HH.Bayesian network prior: network analysis of biological data using external knowledge.Bioinformatics.2014;30:860-7.
    • (2014) Bioinformatics. , vol.30 , pp. 860-867
    • Isci, S.1    Dogan, H.2    Ozturk, C.3    Otu, H.H.4
  • 75
    • 84903513963 scopus 로고    scopus 로고
    • Skewer: A fast and accurate adapter trimmer for next-generation sequencing paired-end reads
    • Jiang H, Lei R, Ding SW, Zhu S.Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads.BMC Bioinformatics.2014; 15(1):18.
    • (2014) BMC Bioinformatics. , vol.15 , Issue.1 , pp. 18
    • Jiang, H.1    Lei, R.2    Ding, S.W.3    Zhu, S.4
  • 76
    • 77955641867 scopus 로고    scopus 로고
    • Integrative inference of generegulatory networks in Escherichia coli using information theoretic concepts and sequence analysis
    • Kaleta C, Göhler A, Schuster S, Jahreis K, Guthke R, Nikolajewa S.Integrative inference of generegulatory networks in Escherichia coli using information theoretic concepts and sequence analysis.BMC Syst Biol.2010;4:116.
    • (2010) BMC Syst Biol. , vol.4 , pp. 116
    • Kaleta, C.1    Göhler, A.2    Schuster, S.3    Jahreis, K.4    Guthke, R.5    Nikolajewa, S.6
  • 77
    • 0014489272 scopus 로고
    • Metabolic stability and epigenesis in randomly constructed genetic nets
    • Kauffman SA.Metabolic stability and epigenesis in randomly constructed genetic nets.J Theor Biol.1969;22:437-67.
    • (1969) J Theor Biol. , vol.22 , pp. 437-467
    • Kauffman, S.A.1
  • 78
    • 77955867869 scopus 로고    scopus 로고
    • TRANSWESD: Inferring cellular networks with transitive reduction
    • Klamt S, Flassig RJ, Sundmacher K.TRANSWESD: inferring cellular networks with transitive reduction.Bioinformatics.2010;26:2160-8.
    • (2010) Bioinformatics. , vol.26 , pp. 2160-2168
    • Klamt, S.1    Flassig, R.J.2    Sundmacher, K.3
  • 79
    • 0037155938 scopus 로고    scopus 로고
    • The seven pillars of life
    • Koshland DE Jr.The seven pillars of life.Science.2002;295(5563):2215-6.
    • (2002) Science. , vol.295 , Issue.5563 , pp. 2215-2216
    • Koshland Jr, D.E.1
  • 81
    • 84963940835 scopus 로고    scopus 로고
    • Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression
    • Küffner R, Zach N, Norel R, Hawe J, Schoenfeld D, Wang L, et al.Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression.Nat Biotechnol.2015;33:51-7.
    • (2015) Nat Biotechnol. , vol.33 , pp. 51-57
    • Küffner, R.1    Zach, N.2    Norel, R.3    Hawe, J.4    Schoenfeld, D.5    Wang, L.6
  • 84
    • 49449086368 scopus 로고    scopus 로고
    • Survival of the sparsest: Robust gene networks are parsimonious
    • Leclerc RD.Survival of the sparsest: robust gene networks are parsimonious.Mol Syst Biol.2008;4: 213.
    • (2008) Mol Syst Biol. , vol.4 , pp. 213
    • Leclerc, R.D.1
  • 86
    • 0031616241 scopus 로고    scopus 로고
    • Reveal, a general reverse engineering algorithm for inference of genetic network architectures
    • Liang S, Fuhrman S, Somogyi R.Reveal, a general reverse engineering algorithm for inference of genetic network architectures.Pac Symp Biocomput.1998:18-29.
    • (1998) Pac Symp Biocomput. , pp. 18-29
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 87
    • 84897397058 scopus 로고    scopus 로고
    • FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features
    • Liao Y, Smyth GK, Shi W.featureCounts: an efficient general purpose program for assigning sequence reads to genomic features.Bioinformatics.2013;30:923-30.
    • (2013) Bioinformatics. , vol.30 , pp. 923-930
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 88
    • 78049407924 scopus 로고    scopus 로고
    • Regulatory network modelling of iron acquisition by a fungal pathogen in contact with epithelial cells
    • Linde J, Wilson D, Hube B, Guthke R.Regulatory network modelling of iron acquisition by a fungal pathogen in contact with epithelial cells.BMC Syst Biol.2010;4:148.
    • (2010) BMC Syst Biol. , vol.4 , pp. 148
    • Linde, J.1    Wilson, D.2    Hube, B.3    Guthke, R.4
  • 89
    • 84984916524 scopus 로고    scopus 로고
    • Fullgenomic network inference for non-model organism: A case study for the fungal pathogen Candida albicans
    • Heidelberg - Mannheim, Germany, August 28th - September 1st
    • Linde J, Buyko E, Robert A, Hahn U, Guthke R.Fullgenomic network inference for non-model organism: A case study for the fungal pathogen Candida albicans.In: International Conference on Systems Biology (ICSB-2011).Heidelberg - Mannheim, Germany, August 28th - September 1st, 2011.
    • (2011) International Conference on Systems Biology (ICSB-2011)
    • Linde, J.1    Buyko, E.2    Robert, A.3    Hahn, U.4    Guthke, R.5
  • 90
    • 84855871849 scopus 로고    scopus 로고
    • Regulatory interactions for iron homeostasis in Aspergillus fumigatus inferred by a Systems Biology approach
    • Linde J, Hortschansky P, Fazius E, Brakhage AA, Guthke R, Haas H.Regulatory interactions for iron homeostasis in Aspergillus fumigatus inferred by a Systems Biology approach.BMC Syst Biol.2012;6:6.
    • (2012) BMC Syst Biol. , vol.6 , pp. 6
    • Linde, J.1    Hortschansky, P.2    Fazius, E.3    Brakhage, A.A.4    Guthke, R.5    Haas, H.6
  • 91
    • 84893242996 scopus 로고    scopus 로고
    • RNA-seq differential expression studies: More sequence or more replication?
    • Liu Y, Zhou J, White KP.RNA-seq differential expression studies: more sequence or more replication? Bioinformatics.2013;30:301-4.
    • (2013) Bioinformatics. , vol.30 , pp. 301-304
    • Liu, Y.1    Zhou, J.2    White, K.P.3
  • 92
    • 84864946487 scopus 로고    scopus 로고
    • Integrating external biological knowledge in the construction of regulatory networks from time-series expression data
    • Lo K, Raftery AE, Dombek KM, Zhu J, Schadt EE, Bumgarner RE, et al.Integrating external biological knowledge in the construction of regulatory networks from time-series expression data.BMC Syst Biol.2012;6:101.
    • (2012) BMC Syst Biol. , vol.6 , pp. 101
    • Lo, K.1    Raftery, A.E.2    Dombek, K.M.3    Zhu, J.4    Schadt, E.E.5    Bumgarner, R.E.6
  • 94
    • 84555203262 scopus 로고    scopus 로고
    • Phenotype prediction using regularized regression on genetic data in the DREAM5 Systems Genetics B Challenge
    • Loh PR, Tucker G, Berger B.Phenotype prediction using regularized regression on genetic data in the DREAM5 Systems Genetics B Challenge.PLoS One.2011;6(12):e29095.
    • (2011) PLoS One. , vol.6 , Issue.12 , pp. e29095
    • Loh, P.R.1    Tucker, G.2    Berger, B.3
  • 95
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • Love MI, Huber W, Anders S.Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Genome Biol.2014;15:550.
    • (2014) Genome Biol. , vol.15 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 96
    • 78149461178 scopus 로고    scopus 로고
    • DREAM3: Network inference using dynamic context likelihood of relatedness and the inferelator
    • Madar A, Greenfield A, Vanden-Eijnden E, Bonneau R.DREAM3: network inference using dynamic context likelihood of relatedness and the inferelator.PLoS One.2010;5(3):e9803.
    • (2010) PLoS One. , vol.5 , Issue.3 , pp. e9803
    • Madar, A.1    Greenfield, A.2    Vanden-Eijnden, E.3    Bonneau, R.4
  • 97
    • 79957665988 scopus 로고    scopus 로고
    • Microarrays, deep sequencing and the true measure of the transcriptome
    • Malone JH, Oliver B.Microarrays, deep sequencing and the true measure of the transcriptome.BMC Biology.2011;9(1):34.
    • (2011) BMC Biology. , vol.9 , Issue.1 , pp. 34
    • Malone, J.H.1    Oliver, B.2
  • 99
    • 63849258962 scopus 로고    scopus 로고
    • Combining multiple results of a reverse-engineering algorithm: Application to the DREAM five-gene network challenge
    • Marbach D, Mattiussi C, Floreano D.Combining multiple results of a reverse-engineering algorithm: application to the DREAM five-gene network challenge.Ann N Y Acad Sci.2009a;1158:102-13.
    • (2009) Ann N Y Acad Sci. , vol.1158 , pp. 102-113
    • Marbach, D.1    Mattiussi, C.2    Floreano, D.3
  • 100
    • 59649096341 scopus 로고    scopus 로고
    • Replaying the evolutionary tape: Biomimetic reverse engineering of gene networks
    • Marbach D, Mattiussi C, Floreano D.Replaying the evolutionary tape: biomimetic reverse engineering of gene networks.Ann N Y Acad Sci.2009b;1158:234-45.
    • (2009) Ann N Y Acad Sci. , vol.1158 , pp. 234-245
    • Marbach, D.1    Mattiussi, C.2    Floreano, D.3
  • 103
    • 84877765675 scopus 로고    scopus 로고
    • Systematic analysis of challenge-driven improvements in molecular prognostic models for breast cancer
    • Margolin AA, Bilal E, Huang E, Norman TC, Ottestad L, Mecham BH, et al.Systematic analysis of challenge-driven improvements in molecular prognostic models for breast cancer.Sci Transl Med.2013;5(181):181re1.
    • (2013) Sci Transl Med. , vol.5 , Issue.181 , pp. 181re1
    • Margolin, A.A.1    Bilal, E.2    Huang, E.3    Norman, T.C.4    Ottestad, L.5    Mecham, B.H.6
  • 104
    • 27744489138 scopus 로고    scopus 로고
    • Non-transcriptional pathway features reconstructed from secondary effects of RNA interference
    • Markowetz F, Bloch J, Spang R.Non-transcriptional pathway features reconstructed from secondary effects of RNA interference.Bioinformatics.2005;21: 4026-32.
    • (2005) Bioinformatics. , vol.21 , pp. 4026-4032
    • Markowetz, F.1    Bloch, J.2    Spang, R.3
  • 105
    • 34248572623 scopus 로고    scopus 로고
    • Boolean dynamics of genetic regulatory networks inferred from microarray time series data
    • Martin S, Zhang Z, Martino A, Faulon JL.Boolean dynamics of genetic regulatory networks inferred from microarray time series data.Bioinformatics.2007;23:866-74.
    • (2007) Bioinformatics. , vol.23 , pp. 866-874
    • Martin, S.1    Zhang, Z.2    Martino, A.3    Faulon, J.L.4
  • 106
    • 84891808382 scopus 로고    scopus 로고
    • JASPAR.2014: An extensively expanded and updated open-access database of transcription factor binding profiles
    • Mathelier A, Zhao X, Zhang A, Parcy F, Worsley-Hunt R, Arenillas DJ, et al.JASPAR.2014: an extensively expanded and updated open-access database of transcription factor binding profiles.Nucleic Acids Res.2013;42(Database issue):D142-7.
    • (2013) Nucleic Acids Res. , vol.42 , Issue.Database issue , pp. D142-D147
    • Mathelier, A.1    Zhao, X.2    Zhang, A.3    Parcy, F.4    Worsley-Hunt, R.5    Arenillas, D.J.6
  • 108
    • 78650901444 scopus 로고    scopus 로고
    • Gene regulatory networks from multifactorial perturbations using Graphical Lasso: Application to the DREAM4 challenge
    • Menéndez P, Kourmpetis YA, ter Braak CJ, van Eeuwijk FA.Gene regulatory networks from multifactorial perturbations using Graphical Lasso: application to the DREAM4 challenge.PLoS One.2010; 5(12):e14147.
    • (2010) PLoS One. , vol.5 , Issue.12 , pp. e14147
    • Menéndez, P.1    Kourmpetis, Y.A.2    ter Braak, C.J.3    van Eeuwijk, F.A.4
  • 110
    • 84893710009 scopus 로고    scopus 로고
    • Network topology and parameter estimation: From experimental design methods to gene regulatory network kinetics using a community based approach
    • Meyer P, Cokelaer T, Chandran D, Kim KH, Loh PR, Tucker G, et al.Network topology and parameter estimation: from experimental design methods to gene regulatory network kinetics using a community based approach.BMC Syst Biol.2014;8(1):13.
    • (2014) BMC Syst Biol. , vol.8 , Issue.1 , pp. 13
    • Meyer, P.1    Cokelaer, T.2    Chandran, D.3    Kim, K.H.4    Loh, P.R.5    Tucker, G.6
  • 111
    • 84907952658 scopus 로고    scopus 로고
    • A first look at the Oxford Nanopore MinION sequencer
    • Mikheyev AS, Tin MM.A first look at the Oxford Nanopore MinION sequencer.Mol Ecol Resour.2014;14:1097-102.
    • (2014) Mol Ecol Resour. , vol.14 , pp. 1097-1102
    • Mikheyev, A.S.1    Tin, M.M.2
  • 113
    • 34250112778 scopus 로고
    • On the concept of attractor
    • Milnor J.On the concept of attractor.Commun Math Phys.1985;99:177-95.
    • (1985) Commun Math Phys. , vol.99 , pp. 177-195
    • Milnor, J.1
  • 114
    • 84898940253 scopus 로고    scopus 로고
    • From coexpression to coregulation: An approach to inferring transcriptional regulation among gene classes from large-scale expression data
    • Solla SA, Leen TK, Müller KR (eds), Cambridge, MA: MIT Press
    • Mjolsness E, Mann T, Castaño R, Wold B.From coexpression to coregulation: An approach to inferring transcriptional regulation among gene classes from large-scale expression data.In: Solla SA, Leen TK, Müller KR (eds).Advances in neural information processing systems, Vol.12 (pp 928-34).Cambridge, MA: MIT Press, 2000.
    • (2000) Advances in neural information processing systems , vol.12 , pp. 928-934
    • Mjolsness, E.1    Mann, T.2    Castaño, R.3    Wold, B.4
  • 115
    • 84908648308 scopus 로고    scopus 로고
    • GeneMANIA: Fast gene network construction and function prediction for Cytoscape
    • Montojo J, Zuberi K, Rodriguez H, Bader GD, Morris Q.GeneMANIA: Fast gene network construction and function prediction for Cytoscape.F1000Res.2014 1;3:153.
    • (2014) F1000Res. , vol.1 , Issue.3 , pp. 153
    • Montojo, J.1    Zuberi, K.2    Rodriguez, H.3    Bader, G.D.4    Morris, Q.5
  • 116
    • 47949084846 scopus 로고    scopus 로고
    • Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing
    • Morin R, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh T, et al.Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing.Biotechniques.2008;45(1):81-94.
    • (2008) Biotechniques. , vol.45 , Issue.1 , pp. 81-94
    • Morin, R.1    Bainbridge, M.2    Fejes, A.3    Hirst, M.4    Krzywinski, M.5    Pugh, T.6
  • 118
    • 47549107689 scopus 로고    scopus 로고
    • GeneMANIA: A real-time multiple association network integration algorithm for predicting gene function
    • Mostafavi S, Debajyoti R, Warde-Farley D, Grouios C, Morris Q.GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function.Genome Biology.2008;9(Suppl 1):S4.
    • (2008) Genome Biology. , vol.9 , pp. S4
    • Mostafavi, S.1    Debajyoti, R.2    Warde-Farley, D.3    Grouios, C.4    Morris, Q.5
  • 121
    • 84899531301 scopus 로고    scopus 로고
    • Network completion for static gene expression data
    • Nakajima N, Akutsu T.Network completion for static gene expression data.Adv Bioinformatics.2014;2014:382452.
    • (2014) Adv Bioinformatics. , vol.2014 , pp. 382452
    • Nakajima, N.1    Akutsu, T.2
  • 122
  • 124
    • 0242559054 scopus 로고    scopus 로고
    • Pathway studio - The analysis and navigation of molecular networks
    • Nikitin A, Egorov S, Daraselia N, Mazo I.Pathway studio - the analysis and navigation of molecular networks.Bioinformatics.2003;19:2155-215.
    • (2003) Bioinformatics. , vol.19 , pp. 2155-2215
    • Nikitin, A.1    Egorov, S.2    Daraselia, N.3    Mazo, I.4
  • 126
    • 65649126066 scopus 로고    scopus 로고
    • Transcript length bias in RNA-seq data confounds systems biology
    • Oshlack A, Wakefield MJ.Transcript length bias in RNA-seq data confounds systems biology.Biology Direct.2009;4(1):14-10.
    • (2009) Biology Direct. , vol.4 , Issue.1 , pp. 14-110
    • Oshlack, A.1    Wakefield, M.J.2
  • 127
    • 77957769655 scopus 로고    scopus 로고
    • High-throughput sequencing and clinical microbiology: Progress, opportunities and challenges
    • Pallen MJ, Loman NJ, Penn CW.High-throughput sequencing and clinical microbiology: progress, opportunities and challenges.Curr Opin Microbiol.2010;13:625-31.
    • (2010) Curr Opin Microbiol. , vol.13 , pp. 625-631
    • Pallen, M.J.1    Loman, N.J.2    Penn, C.W.3
  • 129
    • 78149429509 scopus 로고    scopus 로고
    • From knockouts to networks: Establishing direct cause-effect relationships through graph analysis
    • Pinna A, Soranzo N, de la Fuente A.From knockouts to networks: establishing direct cause-effect relationships through graph analysis.PLoS One.2010;5(10): e12912.
    • (2010) PLoS One. , vol.5 , Issue.10 , pp. e12912
    • Pinna, A.1    Soranzo, N.2    de la Fuente, A.3
  • 130
    • 84881178444 scopus 로고    scopus 로고
    • Reconstruction of large-scale regulatory networks based on perturbation graphs and transitive reduction: Improved methods and their evaluation
    • Pinna A, Heise S, Flassig RJ, de la Fuente A, Klamt S.Reconstruction of large-scale regulatory networks based on perturbation graphs and transitive reduction: improved methods and their evaluation.BMC Syst Biol.2013;7:73.
    • (2013) BMC Syst Biol. , vol.7 , pp. 73
    • Pinna, A.1    Heise, S.2    Flassig, R.J.3    de la Fuente, A.4    Klamt, S.5
  • 131
    • 84878568206 scopus 로고    scopus 로고
    • Crowdsourcing genetic prediction of clinical utility in the Rheumatoid Arthritis Responder Challenge
    • Plenge RM, Greenberg JD, Mangravite LM, Derry JM, Stahl EA, Coenen MJ, et al.Crowdsourcing genetic prediction of clinical utility in the Rheumatoid Arthritis Responder Challenge.Nat Genet.2013;45: 468-9.
    • (2013) Nat Genet. , vol.45 , pp. 468-469
    • Plenge, R.M.1    Greenberg, J.D.2    Mangravite, L.M.3    Derry, J.M.4    Stahl, E.A.5    Coenen, M.J.6
  • 132
    • 0015101072 scopus 로고
    • Biological order, structure and instabilities
    • Prigogine I, Nicolis G.Biological order, structure and instabilities.Q Rev Biophys.1971;4:107-48.
    • (1971) Q Rev Biophys. , vol.4 , pp. 107-148
    • Prigogine, I.1    Nicolis, G.2
  • 133
    • 84906921702 scopus 로고    scopus 로고
    • Extension of life span by impaired glucose metabolism in Caenorhabditis elegans is accompanied by structural rearrangements of the transcriptomic network
    • Priebe S, Menzel U, Zarse K, Groth M, Platzer M, Ristow M, et al.Extension of life span by impaired glucose metabolism in Caenorhabditis elegans is accompanied by structural rearrangements of the transcriptomic network.PLoS One.2013;8(10):e77776.
    • (2013) PLoS One. , vol.8 , Issue.10 , pp. e77776
    • Priebe, S.1    Menzel, U.2    Zarse, K.3    Groth, M.4    Platzer, M.5    Ristow, M.6
  • 134
    • 84929141855 scopus 로고    scopus 로고
    • FungiFun2: A comprehensive online resource for systematic analysis of gene lists from fungal species
    • Priebe S, Kreisel C, Horn F, Guthke R, Linde J.FungiFun2: a comprehensive online resource for systematic analysis of gene lists from fungal species.Bioinformatics.2015;31:445-6.
    • (2015) Bioinformatics. , vol.31 , pp. 445-446
    • Priebe, S.1    Kreisel, C.2    Horn, F.3    Guthke, R.4    Linde, J.5
  • 137
    • 84923922737 scopus 로고    scopus 로고
    • Comparative evaluation of gene set analysis approaches for RNA-Seq data
    • Rahmatallah Y, Emmert-Streib F, Glazko G.Comparative evaluation of gene set analysis approaches for RNA-Seq data.BMC Bioinformatics.2014;15(1):397.
    • (2014) BMC Bioinformatics. , vol.15 , Issue.1 , pp. 397
    • Rahmatallah, Y.1    Emmert-Streib, F.2    Glazko, G.3
  • 138
    • 77649166995 scopus 로고    scopus 로고
    • An empirical Bayesian method for estimating biological networks from temporal microarray data
    • article 9
    • Rau A, Jaffrézic F, Foulley JL, Doerge RW.An empirical Bayesian method for estimating biological networks from temporal microarray data.Stat Appl Genet Mol Biol.2010;9:article 9.
    • (2010) Stat Appl Genet Mol Biol. , vol.9
    • Rau, A.1    Jaffrézic, F.2    Foulley, J.L.3    Doerge, R.W.4
  • 139
    • 77649299348 scopus 로고    scopus 로고
    • An atlas of combinatorial transcriptional regulation in mouse and man
    • Erratum in: Cell.2010;141:369
    • Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, Tan K, et al.An atlas of combinatorial transcriptional regulation in mouse and man.Cell.2010;140:744-52.Erratum in: Cell.2010;141:369.
    • (2010) Cell. , vol.140 , pp. 744-752
    • Ravasi, T.1    Suzuki, H.2    Cannistraci, C.V.3    Katayama, S.4    Bajic, V.B.5    Tan, K.6
  • 141
    • 84908190303 scopus 로고    scopus 로고
    • A model integration approach linking signalling and gene-regulatory logic with kinetic metabolic models
    • Ryll A, Bucher J, Bonin A, Bongard S, Gonçalves E, Saez-Rodriguez J, et al.A model integration approach linking signalling and gene-regulatory logic with kinetic metabolic models.Biosystems.2014;124:26-38.
    • (2014) Biosystems. , vol.124 , pp. 26-38
    • Ryll, A.1    Bucher, J.2    Bonin, A.3    Bongard, S.4    Gonçalves, E.5    Saez-Rodriguez, J.6
  • 142
    • 84879452903 scopus 로고    scopus 로고
    • Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks
    • Samaga R, Klamt S.Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks.Cell Commun Signal.2013;11(1):43.
    • (2013) Cell Commun Signal. , vol.11 , Issue.1 , pp. 43
    • Samaga, R.1    Klamt, S.2
  • 143
    • 34247587012 scopus 로고    scopus 로고
    • Genetics.Getting closer to the whole picture
    • Sauer U, Heinemann M, Zamboni N.Genetics.Getting closer to the whole picture.Science.2007; 316 (5824):550-1.
    • (2007) Science , vol.316 , Issue.5824 , pp. 550-551
    • Sauer, U.1    Heinemann, M.2    Zamboni, N.3
  • 144
    • 34848908079 scopus 로고    scopus 로고
    • Reverse engineering genetic networks using the GeneNet package
    • Schäfer J, Opgen-Rhein R, Strimmer K.Reverse engineering genetic networks using the GeneNet package.R News.2006;5/6:50-3.
    • (2006) R News. , vol.5-6 , pp. 50-53
    • Schäfer, J.1    Opgen-Rhein, R.2    Strimmer, K.3
  • 145
    • 84927523798 scopus 로고    scopus 로고
    • Computational prediction of molecular pathogen-host interactions based on dual transcriptome data
    • Schulze S, Henkel SG, Driesch D, Guthke R, Linde J.Computational prediction of molecular pathogen-host interactions based on dual transcriptome data.Front Microbiol.2015;6:65.
    • (2015) Front Microbiol. , vol.6 , pp. 65
    • Schulze, S.1    Henkel, S.G.2    Driesch, D.3    Guthke, R.4    Linde, J.5
  • 146
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean Networks: A rule-based uncertainty model for gene regulatory networks
    • Shmulevich I, Dougherty ER, Kim S, Zhang W.Probabilistic Boolean Networks: a rule-based uncertainty model for gene regulatory networks.Bioinformatics.2002;18:261-74.
    • (2002) Bioinformatics. , vol.18 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 148
    • 84874677498 scopus 로고    scopus 로고
    • A comparison of methods for differential expression analysis of RNA-seq data
    • Soneson D, Delorenzi M.A comparison of methods for differential expression analysis of RNA-seq data.BMC Bioinformatics.2013;14:91.
    • (2013) BMC Bioinformatics. , vol.14 , pp. 91
    • Soneson, D.1    Delorenzi, M.2
  • 149
    • 12344296457 scopus 로고    scopus 로고
    • A reductionist’s systems biology
    • Sorger PK.A reductionist’s systems biology.Curr Opin Cell Biol.2005;17:9-11.
    • (2005) Curr Opin Cell Biol. , vol.17 , pp. 9-11
    • Sorger, P.K.1
  • 150
    • 33747828539 scopus 로고    scopus 로고
    • Jcell - A Java-based framework for inferring regulatory networks from time series data
    • Spieth C, Supper J, Streichert F, Speer N, Zell A.Jcell - a Java-based framework for inferring regulatory networks from time series data.Bioinformatics.2006;22:2051-2.
    • (2006) Bioinformatics. , vol.22 , pp. 2051-2052
    • Spieth, C.1    Supper, J.2    Streichert, F.3    Speer, N.4    Zell, A.5
  • 151
    • 36249019789 scopus 로고    scopus 로고
    • Dialogue on reverse-engineering assessment and methods: The DREAM of high-throughput pathway inference
    • Stolovitzky G, Monroe D, Califano A.Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference.Ann N Y Acad Sci.2007;1115:1-22.
    • (2007) Ann N Y Acad Sci. , vol.1115 , pp. 1-22
    • Stolovitzky, G.1    Monroe, D.2    Califano, A.3
  • 156
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R.Regression shrinkage and selection via the Lasso.J Roy Stat Soc Ser B.1996;58:267-88.
    • (1996) J Roy Stat Soc Ser B. , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 157
    • 84865175959 scopus 로고    scopus 로고
    • An interspecies regulatory network inferred from simultaneous RNA-seq of Candida albicans invading innate immune cells
    • Tierney L, Linde J, Müller S, Brunke S, Molina JC, Hube B, et al.An interspecies regulatory network inferred from simultaneous RNA-seq of Candida albicans invading innate immune cells.Front Microbiol.2012;3:85.
    • (2012) Front Microbiol. , vol.3 , pp. 85
    • Tierney, L.1    Linde, J.2    Müller, S.3    Brunke, S.4    Molina, J.C.5    Hube, B.6
  • 158
    • 84859885816 scopus 로고    scopus 로고
    • Differential gene and transcript expressionanalysis of RNA-seq experiments with TopHat and Cufflinks
    • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al.Differential gene and transcript expressionanalysis of RNA-seq experiments with TopHat and Cufflinks.Nat Protoc.2012;7:562-78.
    • (2012) Nat Protoc. , vol.7 , pp. 562-578
    • Trapnell, C.1    Roberts, A.2    Goff, L.3    Pertea, G.4    Kim, D.5    Kelley, D.R.6
  • 159
    • 83855165105 scopus 로고    scopus 로고
    • Repetitive DNA and nextgeneration sequencing: Computational challenges and solutions
    • Treangen TJ, Salzberg SL.Repetitive DNA and nextgeneration sequencing: computational challenges and solutions.Nat Rev Genet.2011;13:146.
    • (2011) Nat Rev Genet. , vol.13 , pp. 146
    • Treangen, T.J.1    Salzberg, S.L.2
  • 160
    • 84905640975 scopus 로고    scopus 로고
    • Ensemble inference and inferability of gene regulatory networks
    • Ud-Dean SM, Gunawan R.Ensemble inference and inferability of gene regulatory networks.PLoS One.2014;9(8):e103812.
    • (2014) PLoS One. , vol.9 , Issue.8 , pp. e103812
    • Ud-Dean, S.M.1    Gunawan, R.2
  • 163
    • 84455173311 scopus 로고    scopus 로고
    • Gene regulatory network reconstruction using Bayesian networks, the Dantzig Selector, the Lasso and their meta-analysis
    • Vignes M, Vandel J, Allouche D, Ramadan-Alban N, Cierco-Ayrolles C, Schiex T, et al.Gene regulatory network reconstruction using Bayesian networks, the Dantzig Selector, the Lasso and their meta-analysis.PLoS One.2011;6(12):e29165.
    • (2011) PLoS One. , vol.6 , Issue.12 , pp. e29165
    • Vignes, M.1    Vandel, J.2    Allouche, D.3    Ramadan-Alban, N.4    Cierco-Ayrolles, C.5    Schiex, T.6
  • 164
    • 84870053474 scopus 로고    scopus 로고
    • The extended TILAR approach: A novel tool for dynamic modeling of the transcription factor network regulating the adaption to in vitro cultivation of murine hepatocytes
    • Vlaic S, Schmidt-Heck W, Matz-Soja M, Marbach E, Linde J, Meyer-Baese A, et al.The extended TILAR approach: a novel tool for dynamic modeling of the transcription factor network regulating the adaption to in vitro cultivation of murine hepatocytes.BMC Syst Biol.2012;6:147.
    • (2012) BMC Syst Biol. , vol.6 , pp. 147
    • Vlaic, S.1    Schmidt-Heck, W.2    Matz-Soja, M.3    Marbach, E.4    Linde, J.5    Meyer-Baese, A.6
  • 165
    • 0034104824 scopus 로고    scopus 로고
    • Coarse-grained reverse engineering of genetic regulatory networks
    • Wahde M, Hertz J.Coarse-grained reverse engineering of genetic regulatory networks.Biosystems.2000;55(1-3):129-36.
    • (2000) Biosystems , vol.55 , Issue.1-3 , pp. 129-136
    • Wahde, M.1    Hertz, J.2
  • 166
    • 33750016109 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from multiple microarray datasets
    • Wang Y, Joshi T, Zhang XS, Xu D, Chen L.Inferring gene regulatory networks from multiple microarray datasets.Bioinformatics.2006;22:2413-20.
    • (2006) Bioinformatics. , vol.22 , pp. 2413-2420
    • Wang, Y.1    Joshi, T.2    Zhang, X.S.3    Xu, D.4    Chen, L.5
  • 167
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: A revolutionary tool for transcriptomics
    • Wang Z, Gerstein M, Snyder M.RNA-Seq: a revolutionary tool for transcriptomics.Nat Rev Genet.2009;10:57-63.
    • (2009) Nat Rev Genet. , vol.10 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 168
    • 84865079833 scopus 로고    scopus 로고
    • Identification of aberrant pathways and network activities from high-throughput data
    • Wang J, Zhang Y, Marian C, Ressom HW.Identification of aberrant pathways and network activities from high-throughput data.Brief Bioinform.2012;13:406-19.
    • (2012) Brief Bioinform. , vol.13 , pp. 406-419
    • Wang, J.1    Zhang, Y.2    Marian, C.3    Ressom, H.W.4
  • 169
    • 84871681271 scopus 로고    scopus 로고
    • Inference of dynamical generegulatory networks based on time-resolved multistimuli multi-experiment data applying NetGenerator V2.0
    • Weber M, Henkel SG, Vlaic S, Guthke R, van Zoelen EJ, Driesch D.Inference of dynamical generegulatory networks based on time-resolved multistimuli multi-experiment data applying NetGenerator V2.0.BMC Syst Biol.2013;7:1.
    • (2013) BMC Syst Biol. , vol.7 , pp. 1
    • Weber, M.1    Henkel, S.G.2    Vlaic, S.3    Guthke, R.4    van Zoelen, E.J.5    Driesch, D.6
  • 170
  • 173
    • 84858266638 scopus 로고    scopus 로고
    • Learning transcriptional regulation on a genome scale: A theoretical analysis based on gene expression data
    • Wu M, Chan C.Learning transcriptional regulation on a genome scale: a theoretical analysis based on gene expression data.Brief Bioinform.2012;13:150-61.
    • (2012) Brief Bioinform. , vol.13 , pp. 150-161
    • Wu, M.1    Chan, C.2
  • 174
    • 79959986975 scopus 로고    scopus 로고
    • KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases
    • Web Server issue
    • Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, et al.KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases.Nucleic Acids Res.2011;39(Web Server issue):W316-22.
    • (2011) Nucleic Acids Res. , vol.39 , pp. W316-W322
    • Xie, C.1    Mao, X.2    Huang, J.3    Ding, Y.4    Wu, J.5    Dong, S.6
  • 175
    • 33745553265 scopus 로고    scopus 로고
    • Multi-scale methodology: A key to deciphering systems biology
    • Ye X, Chu J, Zhuang Y, Zhang S.Multi-scale methodology: a key to deciphering systems biology.Front Biosci.2005;10:961-5.
    • (2005) Front Biosci. , vol.10 , pp. 961-965
    • Ye, X.1    Chu, J.2    Zhuang, Y.3    Zhang, S.4
  • 176
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • Yeung MK, Tegnér J, Collins JJ.Reverse engineering gene networks using singular value decomposition and robust regression.Proc Natl Acad Sci U S A.2002;99:6163-8.
    • (2002) Proc Natl Acad Sci U S A. , vol.99 , pp. 6163-6168
    • Yeung, M.K.1    Tegnér, J.2    Collins, J.J.3
  • 177
    • 82755198509 scopus 로고    scopus 로고
    • Construction of regulatory networks using expression time-series data of a genotyped population
    • Yeung KY, Dombek KM, Lo K, Mittler JE, Zhu J, Schadt EE, et al.Construction of regulatory networks using expression time-series data of a genotyped population.Proc Natl Acad Sci U S A.2011;108:19436-41.
    • (2011) Proc Natl Acad Sci U S A. , vol.108 , pp. 19436-19441
    • Yeung, K.Y.1    Dombek, K.M.2    Lo, K.3    Mittler, J.E.4    Zhu, J.5    Schadt, E.E.6
  • 178
    • 77749264188 scopus 로고    scopus 로고
    • Improved reconstruction of in silico gene regulatory networks by integrating knockout and perturbation data
    • Yip KY, Alexander RP, Yan KK, Gerstein M.Improved reconstruction of in silico gene regulatory networks by integrating knockout and perturbation data.PLoS One.2010;5(1):e8121.
    • (2010) PLoS One. , vol.5 , Issue.1 , pp. e8121
    • Yip, K.Y.1    Alexander, R.P.2    Yan, K.K.3    Gerstein, M.4
  • 179
    • 77953212372 scopus 로고    scopus 로고
    • Gene ontology analysis for RNA-seq: Accounting for selection bias
    • Young MD, Wakefield MJ, Smyth GK, Oshlack A.Gene ontology analysis for RNA-seq: accounting for selection bias.Genome Biol.2010;11(2):R14.
    • (2010) Genome Biol. , vol.11 , Issue.2 , pp. R14
    • Young, M.D.1    Wakefield, M.J.2    Smyth, G.K.3    Oshlack, A.4
  • 180
    • 84899971737 scopus 로고    scopus 로고
    • Fast Bayesian inference for gene regulatory networks using ScanBMA
    • Young WC, Raftery AE, Yeung KY.Fast Bayesian inference for gene regulatory networks using ScanBMA.BMC Syst Biol.2014;8:47.
    • (2014) BMC Syst Biol. , vol.8 , pp. 47
    • Young, W.C.1    Raftery, A.E.2    Yeung, K.Y.3
  • 181
    • 84905912949 scopus 로고    scopus 로고
    • A comparative study of techniques for differential expression analysis on RNA-seq data
    • Zhang ZH, Jhaveri DJ, Marshall VM, Bauer DC, Edson J, et al.A comparative study of techniques for differential expression analysis on RNA-seq data.Plos One.2014;9(8):e103207.
    • (2014) Plos One. , vol.9 , Issue.8 , pp. e103207
    • Zhang, Z.H.1    Jhaveri, D.J.2    Marshall, V.M.3    Bauer, D.C.4    Edson, J.5
  • 182
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T.Regularization and variable selection via the elastic net.J Roy Stat Soc Ser B.2005;67:301-20.
    • (2005) J Roy Stat Soc Ser B. , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 183
    • 77952663448 scopus 로고    scopus 로고
    • TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach
    • Zoppoli P, Morganella S, Ceccarelli M.TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach.BMC Bioinformatics.2010;11:154.
    • (2010) BMC Bioinformatics. , vol.11 , pp. 154
    • Zoppoli, P.1    Morganella, S.2    Ceccarelli, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.