메뉴 건너뛰기




Volumn 6, Issue , 2012, Pages

Integrating external biological knowledge in the construction of regulatory networks from time-series expression data

Author keywords

Data integration; Model uncertainty; Network inference; Statistics; Systems biology; Time series expression data

Indexed keywords

TRANSCRIPTION FACTOR; TRANSCRIPTOME;

EID: 84864946487     PISSN: None     EISSN: 17520509     Source Type: Journal    
DOI: 10.1186/1752-0509-6-101     Document Type: Article
Times cited : (48)

References (104)
  • 1
    • 70249134919 scopus 로고    scopus 로고
    • Molecular networks as sensors and drivers of common human diseases
    • 10.1038/nature08454, 19741703
    • Schadt EE. Molecular networks as sensors and drivers of common human diseases. Nature 2009, 461:218-223. 10.1038/nature08454, 19741703.
    • (2009) Nature , vol.461 , pp. 218-223
    • Schadt, E.E.1
  • 2
    • 67349154804 scopus 로고    scopus 로고
    • Advances in systems biology are enhancing our understanding of disease and moving us closer to novel disease treatments
    • 10.1007/s10709-009-9359-x, 19363597
    • Schadt EE, Zhang B, Zhu J. Advances in systems biology are enhancing our understanding of disease and moving us closer to novel disease treatments. Genetica 2009, 136:259-269. 10.1007/s10709-009-9359-x, 19363597.
    • (2009) Genetica , vol.136 , pp. 259-269
    • Schadt, E.E.1    Zhang, B.2    Zhu, J.3
  • 3
    • 82755198509 scopus 로고    scopus 로고
    • Construction of regulatory networks using expression time-series data of a genotyped population
    • 10.1073/pnas.1116442108, 3228453, 22084118
    • Yeung KY, Dombek KM, Lo K, Mittler JE, Zhu J, Schadt EE, Bumgarner RE, Raftery AE. Construction of regulatory networks using expression time-series data of a genotyped population. Proc Natl Acad Sci U S A 2011, 108:19436-19441. 10.1073/pnas.1116442108, 3228453, 22084118.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 19436-19441
    • Yeung, K.Y.1    Dombek, K.M.2    Lo, K.3    Mittler, J.E.4    Zhu, J.5    Schadt, E.E.6    Bumgarner, R.E.7    Raftery, A.E.8
  • 7
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • 10.1126/science.1094068, 14764868
    • Friedman N. Inferring cellular networks using probabilistic graphical models. Science 2004, 303:799-805. 10.1126/science.1094068, 14764868.
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 8
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • 10.1089/106652700750050961, 11108481
    • Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol 2000, 7:601-620. 10.1089/106652700750050961, 11108481.
    • (2000) J Comput Biol , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 9
    • 0035221560 scopus 로고    scopus 로고
    • Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
    • Hartemink AJ, Gifford DK, Jaakkola TS, Young RA. Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pac Symp Biocomput 2001, 6:422-433.
    • (2001) Pac Symp Biocomput , vol.6 , pp. 422-433
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 10
    • 0036366689 scopus 로고    scopus 로고
    • Combining location and expression data for principled discovery of genetic regulatory network models
    • Hartemink AJ, Gifford DK, Jaakkola TS, Young RA. Combining location and expression data for principled discovery of genetic regulatory network models. Pac Symp Biocomput 2002, 7:437-449.
    • (2002) Pac Symp Biocomput , vol.7 , pp. 437-449
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 11
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • 10.1093/bioinformatics/btg313, 14630656
    • Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 2003, 19:2271-2282. 10.1093/bioinformatics/btg313, 14630656.
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1
  • 12
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • 10.1093/bioinformatics/17.suppl_1.S215, 11473012
    • Pe'er D, Regev A, Elidan G, Friedman N. Inferring subnetworks from perturbed expression profiles. Bioinformatics 2001, 17:S215-S224. 10.1093/bioinformatics/17.suppl_1.S215, 11473012.
    • (2001) Bioinformatics , vol.17
    • Pe'er, D.1    Regev, A.2    Elidan, G.3    Friedman, N.4
  • 13
    • 48249140218 scopus 로고    scopus 로고
    • Seeded Bayesian Networks: constructing genetic networks from microarray data
    • 10.1186/1752-0509-2-57, 2474592, 18601736
    • Djebbari A, Quackenbush J. Seeded Bayesian Networks: constructing genetic networks from microarray data. BMC Syst Biol 2008, 2:57. 10.1186/1752-0509-2-57, 2474592, 18601736.
    • (2008) BMC Syst Biol , vol.2 , pp. 57
    • Djebbari, A.1    Quackenbush, J.2
  • 14
    • 0344844807 scopus 로고    scopus 로고
    • Modelling regulatory pathways in E. coli from time series expression profiles
    • Ong IM, Glasner JD, Page D. Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics 2002, 18:S241-S248.
    • (2002) Bioinformatics , vol.18
    • Ong, I.M.1    Glasner, J.D.2    Page, D.3
  • 15
    • 34548538013 scopus 로고    scopus 로고
    • Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge
    • 10.1186/1752-0509-1-11, 1839889, 17408501
    • Geier F, Timmer J, Fleck C. Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge. BMC Syst Biol 2007, 1:11. 10.1186/1752-0509-1-11, 1839889, 17408501.
    • (2007) BMC Syst Biol , vol.1 , pp. 11
    • Geier, F.1    Timmer, J.2    Fleck, C.3
  • 16
    • 3042698613 scopus 로고    scopus 로고
    • Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network
    • 10.1142/S0219720003000071, 15290771
    • Imoto S, Kim S, Goto T, Aburatani S, Tashiro K, Kuhara S, Miyano S. Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. J Bioinform Comput Biol 2003, 1:231-252. 10.1142/S0219720003000071, 15290771.
    • (2003) J Bioinform Comput Biol , vol.1 , pp. 231-252
    • Imoto, S.1    Kim, S.2    Goto, T.3    Aburatani, S.4    Tashiro, K.5    Kuhara, S.6    Miyano, S.7
  • 17
    • 45149106353 scopus 로고    scopus 로고
    • Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks
    • 10.1038/ng.167, 2573859, 18552845
    • Zhu J, Zhang B, Smith EN, Drees B, Brem RB, Kruglyak L, Bumgarner RE, Schadt EE. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet 2008, 40:854-861. 10.1038/ng.167, 2573859, 18552845.
    • (2008) Nat Genet , vol.40 , pp. 854-861
    • Zhu, J.1    Zhang, B.2    Smith, E.N.3    Drees, B.4    Brem, R.B.5    Kruglyak, L.6    Bumgarner, R.E.7    Schadt, E.E.8
  • 19
    • 77649206639 scopus 로고    scopus 로고
    • Characterizing dynamic changes in the human blood transcriptional network
    • 10.1371/journal.pcbi.1000671, 2820517, 20168994
    • Zhu J, Chen Y, Leonardson AS, Wang K, Lamb JR, Emilsson V, Schadt EE. Characterizing dynamic changes in the human blood transcriptional network. PLoS Comput Biol 2010, 6:e1000671. 10.1371/journal.pcbi.1000671, 2820517, 20168994.
    • (2010) PLoS Comput Biol , vol.6
    • Zhu, J.1    Chen, Y.2    Leonardson, A.S.3    Wang, K.4    Lamb, J.R.5    Emilsson, V.6    Schadt, E.E.7
  • 21
    • 0000854197 scopus 로고    scopus 로고
    • Learning the structure of dynamic probabilistic networks
    • San Mateo, CA: Morgan Kaufmann
    • Friedman N, Murphy K, Russell S. Learning the structure of dynamic probabilistic networks. 1998 1998, 139-147. San Mateo, CA: Morgan Kaufmann.
    • (1998) 1998 , pp. 139-147
    • Friedman, N.1    Murphy, K.2    Russell, S.3
  • 22
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • 10.1093/bib/4.3.228, 14582517
    • Kim SY, Imoto S, Miyano S. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform 2003, 4:228-235. 10.1093/bib/4.3.228, 14582517.
    • (2003) Brief Bioinform , vol.4 , pp. 228-235
    • Kim, S.Y.1    Imoto, S.2    Miyano, S.3
  • 23
    • 0004158155 scopus 로고    scopus 로고
    • Modeling gene expression data using dynamic Bayesian networks
    • Berkeley, CA: University of California
    • Murphy K, Mian S. Modeling gene expression data using dynamic Bayesian networks. Technical Report, Computer Science Division 1999, Berkeley, CA: University of California.
    • (1999) Technical Report, Computer Science Division
    • Murphy, K.1    Mian, S.2
  • 24
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • 10.1093/bioinformatics/bth448, 15284094
    • Yu J, Smith VA, Wang PP, Hartemink AJ, Jarvis ED. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 2004, 20:3594-3603. 10.1093/bioinformatics/bth448, 15284094.
    • (2004) Bioinformatics , vol.20 , pp. 3594-3603
    • Yu, J.1    Smith, V.A.2    Wang, P.P.3    Hartemink, A.J.4    Jarvis, E.D.5
  • 26
    • 33646107783 scopus 로고    scopus 로고
    • Large-sample learning of Bayesian networks is NP-hard
    • Chickering DM, Heckerman D, Meek C. Large-sample learning of Bayesian networks is NP-hard. J Mach Learn Res 2004, 5:1287-1330.
    • (2004) J Mach Learn Res , vol.5 , pp. 1287-1330
    • Chickering, D.M.1    Heckerman, D.2    Meek, C.3
  • 27
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • 10.1093/bioinformatics/bth463, 15308537
    • Zou M, Conzen SD. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 2005, 21:71-79. 10.1093/bioinformatics/bth463, 15308537.
    • (2005) Bioinformatics , vol.21 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2
  • 28
    • 77951623857 scopus 로고    scopus 로고
    • A new multiple regression approach for the construction of genetic regulatory networks
    • 10.1016/j.artmed.2009.11.001, 19963359
    • Zhang SQ, Ching WK, Tsing NK, Leung HY, Guo D. A new multiple regression approach for the construction of genetic regulatory networks. Artif Intell Med 2010, 48:153-160. 10.1016/j.artmed.2009.11.001, 19963359.
    • (2010) Artif Intell Med , vol.48 , pp. 153-160
    • Zhang, S.Q.1    Ching, W.K.2    Tsing, N.K.3    Leung, H.Y.4    Guo, D.5
  • 29
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • 10.1073/pnas.092576199, 122920, 11983907
    • Yeung MK, Tegner J, Collins JJ. Reverse engineering gene networks using singular value decomposition and robust regression. Proc Natl Acad Sci U S A 2002, 99:6163-6168. 10.1073/pnas.092576199, 122920, 11983907.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 6163-6168
    • Yeung, M.K.1    Tegner, J.2    Collins, J.J.3
  • 30
    • 17444430052 scopus 로고    scopus 로고
    • Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection
    • 10.1093/bioinformatics/bti226, 15613398
    • Guthke R, Moller U, Hoffmann M, Thies F, Topfer S. Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection. Bioinformatics 2005, 21:1626-1634. 10.1093/bioinformatics/bti226, 15613398.
    • (2005) Bioinformatics , vol.21 , pp. 1626-1634
    • Guthke, R.1    Moller, U.2    Hoffmann, M.3    Thies, F.4    Topfer, S.5
  • 31
    • 77958570788 scopus 로고    scopus 로고
    • Inferring regulatory networks from expression data using tree-based methods
    • 10.1371/journal.pone.0012776, 2946910, 20927193
    • Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS One 2010, 5:e12776. 10.1371/journal.pone.0012776, 2946910, 20927193.
    • (2010) PLoS One , vol.5
    • Huynh-Thu, V.A.1    Irrthum, A.2    Wehenkel, L.3    Geurts, P.4
  • 32
    • 33749037129 scopus 로고    scopus 로고
    • Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification
    • 10.1073/pnas.0601852103, 1599912, 16968785
    • Lee SI, Pe'er D, Dudley AM, Church GM, Koller D. Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification. Proc Natl Acad Sci U S A 2006, 103:14062-14067. 10.1073/pnas.0601852103, 1599912, 16968785.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 14062-14067
    • Lee, S.I.1    Pe'er, D.2    Dudley, A.M.3    Church, G.M.4    Koller, D.5
  • 34
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data
    • 10.1038/ng1165, 12740579
    • Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman N. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 2003, 34:166-176. 10.1038/ng1165, 12740579.
    • (2003) Nat Genet , vol.34 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'er, D.4    Botstein, D.5    Koller, D.6    Friedman, N.7
  • 35
    • 77954147517 scopus 로고    scopus 로고
    • Using GeneReg to construct time delay gene regulatory networks
    • 10.1186/1756-0500-3-142, 2892504, 20500822
    • Huang T, Liu L, Qian Z, Tu K, Li Y, Xie L. Using GeneReg to construct time delay gene regulatory networks. BMC Res Notes 2010, 3:142. 10.1186/1756-0500-3-142, 2892504, 20500822.
    • (2010) BMC Res Notes , vol.3 , pp. 142
    • Huang, T.1    Liu, L.2    Qian, Z.3    Tu, K.4    Li, Y.5    Xie, L.6
  • 36
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • 2929880, 20808728
    • Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010, 33:1-22. 2929880, 20808728.
    • (2010) J Stat Softw , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 38
    • 46749151407 scopus 로고    scopus 로고
    • Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data
    • Shimamura T, Imoto S, Yamaguchi R, Miyano S. Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data. Genome Inform 2007, 19:142-153.
    • (2007) Genome Inform , vol.19 , pp. 142-153
    • Shimamura, T.1    Imoto, S.2    Yamaguchi, R.3    Miyano, S.4
  • 39
    • 77249179159 scopus 로고    scopus 로고
    • Weighted-LASSO for structured network inference from time course data
    • Charbonnier C, Chiquet J, Ambroise C. Weighted-LASSO for structured network inference from time course data. Stat Appl Genet Mol Biol 2010, 9:Article 15.
    • (2010) Stat Appl Genet Mol Biol , vol.9
    • Charbonnier, C.1    Chiquet, J.2    Ambroise, C.3
  • 40
    • 77949535261 scopus 로고    scopus 로고
    • Gene expression prediction by soft integration and the elastic net-best performance of the DREAM3 gene expression challenge
    • 10.1371/journal.pone.0009134, 2821917, 20169069
    • Gustafsson M, Hornquist M. Gene expression prediction by soft integration and the elastic net-best performance of the DREAM3 gene expression challenge. PLoS One 2010, 5:e9134. 10.1371/journal.pone.0009134, 2821917, 20169069.
    • (2010) PLoS One , vol.5
    • Gustafsson, M.1    Hornquist, M.2
  • 41
    • 70449434583 scopus 로고    scopus 로고
    • Integrative modeling of transcriptional regulation in response to antirheumatic therapy
    • Hecker M, Goertsches RH, Engelmann R, Thiesen HJ, Guthke R. Integrative modeling of transcriptional regulation in response to antirheumatic therapy. BMC Bioinforma 2009, 10:262.
    • (2009) BMC Bioinforma , vol.10 , pp. 262
    • Hecker, M.1    Goertsches, R.H.2    Engelmann, R.3    Thiesen, H.J.4    Guthke, R.5
  • 42
    • 84859006684 scopus 로고    scopus 로고
    • Network analysis of transcriptional regulation in response to intramuscular interferon-beta-1a multiple sclerosis treatment
    • in press
    • Hecker M, Goertsches RH, Fatum C, Koczan D, Thiesen HJ, Guthke R, Zettl UK. Network analysis of transcriptional regulation in response to intramuscular interferon-beta-1a multiple sclerosis treatment. Pharmacogenomics J 2010, in press.
    • (2010) Pharmacogenomics J
    • Hecker, M.1    Goertsches, R.H.2    Fatum, C.3    Koczan, D.4    Thiesen, H.J.5    Guthke, R.6    Zettl, U.K.7
  • 43
    • 82755165986 scopus 로고    scopus 로고
    • Sparse regulatory networks
    • 10.1214/10-AOAS350, 3102251, 21625366
    • James G, Sabatti C, Zhou N, Zhu J. Sparse regulatory networks. Annals of Applied Statistics 2010, 4:663-686. 10.1214/10-AOAS350, 3102251, 21625366.
    • (2010) Annals of Applied Statistics , vol.4 , pp. 663-686
    • James, G.1    Sabatti, C.2    Zhou, N.3    Zhu, J.4
  • 44
    • 59249086642 scopus 로고    scopus 로고
    • Learning a prior on regulatory potential from eQTL data
    • 10.1371/journal.pgen.1000358, 2627940, 19180192
    • Lee SI, Dudley AM, Drubin D, Silver PA, Krogan NJ, Pe'er D, Koller D. Learning a prior on regulatory potential from eQTL data. PLoS Genet 2009, 5:e1000358. 10.1371/journal.pgen.1000358, 2627940, 19180192.
    • (2009) PLoS Genet , vol.5
    • Lee, S.I.1    Dudley, A.M.2    Drubin, D.3    Silver, P.A.4    Krogan, N.J.5    Pe'er, D.6    Koller, D.7
  • 45
    • 33644681560 scopus 로고    scopus 로고
    • Recovering genetic regulatory networks from micro-array data and location analysis data
    • Li F, Yang Y. Recovering genetic regulatory networks from micro-array data and location analysis data. Genome Inform 2004, 15:131-140.
    • (2004) Genome Inform , vol.15 , pp. 131-140
    • Li, F.1    Yang, Y.2
  • 46
    • 77952976255 scopus 로고    scopus 로고
    • Incorporating predictor network in penalized regression with application to microarray data
    • 10.1111/j.1541-0420.2009.01296.x, 3338337, 19645699
    • Pan W, Xie B, Shen X. Incorporating predictor network in penalized regression with application to microarray data. Biometrics 2010, 66:474-484. 10.1111/j.1541-0420.2009.01296.x, 3338337, 19645699.
    • (2010) Biometrics , vol.66 , pp. 474-484
    • Pan, W.1    Xie, B.2    Shen, X.3
  • 47
    • 84870267097 scopus 로고    scopus 로고
    • Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer
    • Peng J, Zhu J, Bergamaschi A, Han W, Noh D-Y, Pollack JR, Wang P. Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer. Ann Appl Stat 2010, 4:53-77.
    • (2010) Ann Appl Stat , vol.4 , pp. 53-77
    • Peng, J.1    Zhu, J.2    Bergamaschi, A.3    Han, W.4    Noh, D.-Y.5    Pollack, J.R.6    Wang, P.7
  • 48
    • 32544457104 scopus 로고    scopus 로고
    • Least absolute regression network analysis of the murine osteoblast differentiation network
    • 10.1093/bioinformatics/bti816, 16332709
    • van Someren EP, Vaes BL, Steegenga WT, Sijbers AM, Dechering KJ, Reinders MJ. Least absolute regression network analysis of the murine osteoblast differentiation network. Bioinformatics 2006, 22:477-484. 10.1093/bioinformatics/bti816, 16332709.
    • (2006) Bioinformatics , vol.22 , pp. 477-484
    • van Someren, E.P.1    Vaes, B.L.2    Steegenga, W.T.3    Sijbers, A.M.4    Dechering, K.J.5    Reinders, M.J.6
  • 51
    • 0032612220 scopus 로고    scopus 로고
    • Linear modeling of mRNA expression levels during CNS development and injury
    • D'Haeseleer P, Wen X, Fuhrman S, Somogyi R. Linear modeling of mRNA expression levels during CNS development and injury. Pac Symp Biocomput 1999, 41-52.
    • (1999) Pac Symp Biocomput , pp. 41-52
    • D'Haeseleer, P.1    Wen, X.2    Fuhrman, S.3    Somogyi, R.4
  • 52
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: a literature review
    • 10.1089/10665270252833208, 11911796
    • de Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 2002, 9:67-103. 10.1089/10665270252833208, 11911796.
    • (2002) J Comput Biol , vol.9 , pp. 67-103
    • de Jong, H.1
  • 53
    • 33645307955 scopus 로고    scopus 로고
    • Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
    • 10.1093/bioinformatics/btl003, 16418235
    • Bansal M, Della Gatta G, di Bernardo D. Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 2006, 22:815-822. 10.1093/bioinformatics/btl003, 16418235.
    • (2006) Bioinformatics , vol.22 , pp. 815-822
    • Bansal, M.1    Della Gatta, G.2    di Bernardo, D.3
  • 54
    • 33747813561 scopus 로고    scopus 로고
    • The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • 10.1186/gb-2006-7-5-r36, 1779511, 16686963
    • Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L, Baliga NS, Thorsson V. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol 2006, 7:R36. 10.1186/gb-2006-7-5-r36, 1779511, 16686963.
    • (2006) Genome Biol , vol.7
    • Bonneau, R.1    Reiss, D.J.2    Shannon, P.3    Facciotti, M.4    Hood, L.5    Baliga, N.S.6    Thorsson, V.7
  • 56
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • 10.1126/science.1081900, 12843395
    • Gardner TS, di Bernardo D, Lorenz D, Collins JJ. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003, 301:102-105. 10.1126/science.1081900, 12843395.
    • (2003) Science , vol.301 , pp. 102-105
    • Gardner, T.S.1    di Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 57
    • 77956321735 scopus 로고    scopus 로고
    • A parallel implementation of the network identification by multiple regression (NIR) algorithm to reverse-engineer regulatory gene networks
    • 10.1371/journal.pone.0010179, 2858156, 20422008
    • Gregoretti F, Belcastro V, di Bernardo D, Oliva G. A parallel implementation of the network identification by multiple regression (NIR) algorithm to reverse-engineer regulatory gene networks. PLoS One 2010, 5:e10179. 10.1371/journal.pone.0010179, 2858156, 20422008.
    • (2010) PLoS One , vol.5
    • Gregoretti, F.1    Belcastro, V.2    di Bernardo, D.3    Oliva, G.4
  • 58
    • 0037687416 scopus 로고    scopus 로고
    • Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling
    • 10.1073/pnas.0933416100, 156306, 12730377
    • Tegner J, Yeung MK, Hasty J, Collins JJ. Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proc Natl Acad Sci U S A 2003, 100:5944-5949. 10.1073/pnas.0933416100, 156306, 12730377.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 5944-5949
    • Tegner, J.1    Yeung, M.K.2    Hasty, J.3    Collins, J.J.4
  • 60
    • 0001201909 scopus 로고
    • Bayesian model selection in social research (with discussion)
    • Raftery AE. Bayesian model selection in social research (with discussion). Sociol Methodol 1995, 25:111-193.
    • (1995) Sociol Methodol , vol.25 , pp. 111-193
    • Raftery, A.E.1
  • 61
    • 0031506560 scopus 로고    scopus 로고
    • Bayesian model averaging for linear regression models
    • Raftery AE, Madigan D, Hoeting JA. Bayesian model averaging for linear regression models. J Am Stat Assoc 1997, 92:179-191.
    • (1997) J Am Stat Assoc , vol.92 , pp. 179-191
    • Raftery, A.E.1    Madigan, D.2    Hoeting, J.A.3
  • 62
    • 19544362938 scopus 로고    scopus 로고
    • Bayesian model averaging: development of an improved multi-class, gene selection and classification tool for microarray data
    • 10.1093/bioinformatics/bti319, 15713736
    • Yeung KY, Bumgarner RE, Raftery AE. Bayesian model averaging: development of an improved multi-class, gene selection and classification tool for microarray data. Bioinformatics 2005, 21:2394-2402. 10.1093/bioinformatics/bti319, 15713736.
    • (2005) Bioinformatics , vol.21 , pp. 2394-2402
    • Yeung, K.Y.1    Bumgarner, R.E.2    Raftery, A.E.3
  • 63
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • Tibshirani R. Regression shrinkage and selection via the LASSO. J R Stat Soc Series B Stat Methodol 1996, 58:267-288.
    • (1996) J R Stat Soc Series B Stat Methodol , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 66
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • 2929880, 20808728
    • Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010, 33:1-22. 2929880, 20808728.
    • (2010) J Stat Softw , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 67
    • 77953166503 scopus 로고    scopus 로고
    • Glmnet: Lasso and elastic net regularized generalized linear models
    • R package available at
    • Friedman J, Hastie T, Tibshirani R. glmnet: Lasso and elastic net regularized generalized linear models. R package available at http://cran.r-project.org/web/packages/glmnet/index.html.
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 69
    • 38549096565 scopus 로고    scopus 로고
    • JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update
    • 10.1093/nar/gkn449, 2238834, 18006571
    • Bryne JC, Valen E, Tang MH, Marstrand T, Winther O, da Piedade I, Krogh A, Lenhard B, Sandelin A. JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res 2008, 36:D102-D106. 10.1093/nar/gkn449, 2238834, 18006571.
    • (2008) Nucleic Acids Res , vol.36
    • Bryne, J.C.1    Valen, E.2    Tang, M.H.3    Marstrand, T.4    Winther, O.5    da Piedade, I.6    Krogh, A.7    Lenhard, B.8    Sandelin, A.9
  • 70
    • 1842584947 scopus 로고    scopus 로고
    • Applied bioinformatics for the identification of regulatory elements
    • 10.1038/nrg1315, 15131651
    • Wasserman WW, Sandelin A. Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 2004, 5:276-287. 10.1038/nrg1315, 15131651.
    • (2004) Nat Rev Genet , vol.5 , pp. 276-287
    • Wasserman, W.W.1    Sandelin, A.2
  • 72
    • 13444306165 scopus 로고    scopus 로고
    • The landscape of genetic complexity across 5,700 gene expression traits in yeast
    • 10.1073/pnas.0408709102, 547855, 15659551
    • Brem RB, Kruglyak L. The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci U S A 2005, 102:1572-1577. 10.1073/pnas.0408709102, 547855, 15659551.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 1572-1577
    • Brem, R.B.1    Kruglyak, L.2
  • 77
    • 67149102196 scopus 로고    scopus 로고
    • Methods to reconstruct and compare transcriptional regulatory networks
    • 10.1007/978-1-59745-243-4_8, 19381525
    • Babu MM, Lang B, Aravind L. Methods to reconstruct and compare transcriptional regulatory networks. Methods Mol Biol 2009, 541:163-180. 10.1007/978-1-59745-243-4_8, 19381525.
    • (2009) Methods Mol Biol , vol.541 , pp. 163-180
    • Babu, M.M.1    Lang, B.2    Aravind, L.3
  • 81
    • 0142121516 scopus 로고    scopus 로고
    • Exploration, normalization, and summaries of high density oligonucleotide array probe level data
    • 10.1093/biostatistics/4.2.249, 12925520
    • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4:249-264. 10.1093/biostatistics/4.2.249, 12925520.
    • (2003) Biostatistics , vol.4 , pp. 249-264
    • Irizarry, R.A.1    Hobbs, B.2    Collin, F.3    Beazer-Barclay, Y.D.4    Antonellis, K.J.5    Scherf, U.6    Speed, T.P.7
  • 84
    • 0016128505 scopus 로고
    • Regression by leaps and bounds
    • Furnival GM, Wilson RW. Regression by leaps and bounds. Technometrics 1974, 16:499-511.
    • (1974) Technometrics , vol.16 , pp. 499-511
    • Furnival, G.M.1    Wilson, R.W.2
  • 85
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using Occam's window
    • Madigan D, Raftery A. Model selection and accounting for model uncertainty in graphical models using Occam's window. J Am Stat Assoc 1994, 89:1335-1346.
    • (1994) J Am Stat Assoc , vol.89 , pp. 1335-1346
    • Madigan, D.1    Raftery, A.2
  • 86
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann Stat 1978, 6:461-464.
    • (1978) Ann Stat , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 92
    • 0032861774 scopus 로고    scopus 로고
    • SCPD: a promoter database of the yeast Saccharomyces cerevisiae
    • 10.1093/bioinformatics/15.7.607, 10487868
    • Zhu J, Zhang MQ. SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics 1999, 15:607-611. 10.1093/bioinformatics/15.7.607, 10487868.
    • (1999) Bioinformatics , vol.15 , pp. 607-611
    • Zhu, J.1    Zhang, M.Q.2
  • 94
    • 0000130839 scopus 로고
    • Bayesian variable selection in linear regression
    • Mitchell TJ, Beauchamp JJ. Bayesian variable selection in linear regression. J Am Stat Assoc 1988, 83:1023-1032.
    • (1988) J Am Stat Assoc , vol.83 , pp. 1023-1032
    • Mitchell, T.J.1    Beauchamp, J.J.2
  • 95
    • 84950455641 scopus 로고
    • Regression with missing X's: a review
    • Little RJA. Regression with missing X's: a review. J Am Stat Assoc 1992, 87:1227-1237.
    • (1992) J Am Stat Assoc , vol.87 , pp. 1227-1237
    • Little, R.J.A.1
  • 97
    • 34548451124 scopus 로고    scopus 로고
    • How many imputations are really needed? Some practical clarifications of multiple imputation theory
    • 10.1007/s11121-007-0070-9, 17549635
    • Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prev Sci 2007, 8:206-213. 10.1007/s11121-007-0070-9, 17549635.
    • (2007) Prev Sci , vol.8 , pp. 206-213
    • Graham, J.W.1    Olchowski, A.E.2    Gilreath, T.D.3
  • 100
    • 0036578654 scopus 로고    scopus 로고
    • Topological and causal structure of the yeast transcriptional regulatory network
    • 10.1038/ng873, 11967534
    • Guelzim N, Bottani S, Bourgine P, Képès F. Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 2002, 31:60-63. 10.1038/ng873, 11967534.
    • (2002) Nat Genet , vol.31 , pp. 60-63
    • Guelzim, N.1    Bottani, S.2    Bourgine, P.3    Képès, F.4
  • 101
    • 0036578795 scopus 로고    scopus 로고
    • Network motifs in the transcriptional regulation network of Escherichia coli
    • 10.1038/ng881, 11967538
    • Shen-Orr S, Milo R, Mangan S, Alon U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 2002, 31:64-68. 10.1038/ng881, 11967538.
    • (2002) Nat Genet , vol.31 , pp. 64-68
    • Shen-Orr, S.1    Milo, R.2    Mangan, S.3    Alon, U.4
  • 102
    • 66749098497 scopus 로고    scopus 로고
    • Degree dependence in rates of transcription factor evolution explains the unusual structure of transcription networks
    • 10.1098/rspb.2009.0210, 2690470, 19364737
    • Stewart AJ, Seymour RM, Pomiankowski A. Degree dependence in rates of transcription factor evolution explains the unusual structure of transcription networks. Proc R Soc B 2009, 276:2493-2501. 10.1098/rspb.2009.0210, 2690470, 19364737.
    • (2009) Proc R Soc B , vol.276 , pp. 2493-2501
    • Stewart, A.J.1    Seymour, R.M.2    Pomiankowski, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.