메뉴 건너뛰기




Volumn 9, Issue 8, 2014, Pages

Ensemble inference and inferability of gene regulatory networks

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; BACTERIAL GENE; CALCULATION; ESCHERICHIA COLI; GENE CONTROL; GENE EXPRESSION; GENE REGULATORY NETWORK; INTERMETHOD COMPARISON; MATHEMATICAL ANALYSIS; NONHUMAN; SACCHAROMYCES CEREVISIAE; SIMULATION; YEAST; BIOLOGY; FORECASTING; GENE EXPRESSION PROFILING; GENE EXPRESSION REGULATION; GENETICS; METHODOLOGY; REPRODUCIBILITY; STANDARDS; TRANSGENIC ORGANISM;

EID: 84905640975     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0103812     Document Type: Article
Times cited : (23)

References (31)
  • 1
    • 14844289540 scopus 로고    scopus 로고
    • Illuminating drug discovery with biological pathways
    • DOI 10.1016/j.febslet.2005.02.023, Systems Biology
    • Apic G, Ignjatovic T, Boyer S, Russell RB (2005) Illuminating drug discovery with biological pathways. FEBS Lett 579: 1872-1877. (Pubitemid 40342667)
    • (2005) FEBS Letters , vol.579 , Issue.8 , pp. 1872-1877
    • Apic, G.1    Ignjatovic, T.2    Boyer, S.3    Russell, R.B.4
  • 2
    • 70349281876 scopus 로고    scopus 로고
    • Engineering for biofuels: Exploiting innate microbial capacity or importing biosynthetic potential?
    • Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7: 715-723.
    • (2009) Nat Rev Microbiol , vol.7 , pp. 715-723
    • Alper, H.1    Stephanopoulos, G.2
  • 3
    • 73149122136 scopus 로고    scopus 로고
    • Applications of genome-scale metabolic reconstructions
    • Oberhardt MA, Palsson B, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5: 320.
    • (2009) Mol Syst Biol , vol.5 , pp. 320
    • Oberhardt, M.A.1    Palsson, B.2    Papin, J.A.3
  • 4
    • 84855272311 scopus 로고    scopus 로고
    • Prediction of drug combinations by integrating molecular and pharmacological data
    • Zhao XM, Iskar M, Zeller G, Kuhn M, van Noort V, et al. (2011) Prediction of drug combinations by integrating molecular and pharmacological data. PLoS Comput Biol 7: e1002323.
    • (2011) PLoS Comput Biol , vol.7
    • Zhao, X.M.1    Iskar, M.2    Zeller, G.3    Kuhn, M.4    Van Noort, V.5
  • 5
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: Data integration in dynamic models-a review
    • Hecker M (2009) Gene regulatory network inference: data integration in dynamic models-a review. Biosystems 96: 86-103.
    • (2009) Biosystems , vol.96 , pp. 86-103
    • Hecker, M.1
  • 6
    • 36248989626 scopus 로고    scopus 로고
    • Theory and limitations of genetic network inference from microarray data
    • DOI 10.1196/annals.1407.019, Reverse Engineering Biological Networks: Opportunities and Challenges in Computational Methods for Pathway Inference
    • Margolin AA, Califano A (2007) Theory and limitations of genetic network inference from microarray data. Ann N Y Acad Sci 1115: 51-72. (Pubitemid 350134807)
    • (2007) Annals of the New York Academy of Sciences , vol.1115 , pp. 51-72
    • Margolin, A.A.1    Califano, A.2
  • 7
    • 77957110013 scopus 로고    scopus 로고
    • Advantages and limitations of current network inference methods
    • Smet RD, Marchal K (2010) Advantages and limitations of current network inference methods. Nature Reviews Microbiology 8: 717-729.
    • (2010) Nature Reviews Microbiology , vol.8 , pp. 717-729
    • Smet, R.D.1    Marchal, K.2
  • 11
    • 25444510601 scopus 로고    scopus 로고
    • Iterative approach to model identification of biological networks
    • Gadkar KG, Gunawan R, Doyle FJ 3rd (2005) Iterative approach to model identification of biological networks. BMC Bioinformatics 6: 155.
    • (2005) BMC Bioinformatics , vol.6 , pp. 155
    • Gadkar, K.G.1    Gunawan, R.2    Doyle III, F.J.3
  • 12
    • 77954190584 scopus 로고    scopus 로고
    • Parameter identifiability of power-law biochemical system models
    • Srinath S, Gunawan R (2010) Parameter identifiability of power-law biochemical system models. J Biotechnol 149: 132-140.
    • (2010) J Biotechnol , vol.149 , pp. 132-140
    • Srinath, S.1    Gunawan, R.2
  • 13
    • 81555207959 scopus 로고    scopus 로고
    • Structural identifiability of systems biology models: A critical comparison of methods
    • Chis OT, Banga JR, Balsa-Canto E (2011) Structural identifiability of systems biology models: A critical comparison of methods. PLoS ONE 6: e27755.
    • (2011) PLoS ONE , vol.6
    • Chis, O.T.1    Banga, J.R.2    Balsa-Canto, E.3
  • 14
    • 84855997910 scopus 로고    scopus 로고
    • Inference of complex biological networks: Distinguishability issues and optimization-based solutions
    • Szederkényi G, Banga J, Alonso A (2011) Inference of complex biological networks: distinguishability issues and optimization-based solutions. BMC systems biology 5: 177.
    • (2011) BMC Systems Biology , vol.5 , pp. 177
    • Szederkényi, G.1    Banga, J.2    Alonso, A.3
  • 15
    • 34948840834 scopus 로고    scopus 로고
    • Ensemble modeling for analysis of cell signaling dynamics
    • DOI 10.1038/nbt1330, PII NBT1330
    • Kuepfer L, Peter M, Sauer U, Stelling J (2007) Ensemble modeling for analysis of cell signaling dynamics. Nat Biotechnol 25: 1001-1006. (Pubitemid 47517639)
    • (2007) Nature Biotechnology , vol.25 , Issue.9 , pp. 1001-1006
    • Kuepfer, L.1    Peter, M.2    Sauer, U.3    Stelling, J.4
  • 16
    • 78650218972 scopus 로고    scopus 로고
    • Modeling of uncertainties in biochemical reactions
    • Miskovic L, Hatzimanikatis V (2011) Modeling of uncertainties in biochemical reactions. Biotechnol Bioeng 108: 413-423.
    • (2011) Biotechnol Bioeng , vol.108 , pp. 413-423
    • Miskovic, L.1    Hatzimanikatis, V.2
  • 17
    • 84857702241 scopus 로고    scopus 로고
    • Metabolic ensemble modeling for strain engineers
    • Tan Y, Liao JC (2012) Metabolic ensemble modeling for strain engineers. Biotechnol J 7: 343-353.
    • (2012) Biotechnol J , vol.7 , pp. 343-353
    • Tan, Y.1    Liao, J.C.2
  • 18
    • 84875090763 scopus 로고    scopus 로고
    • Ensemble kinetic modeling of metabolic networks from dynamic metabolic profiles
    • Jia G, Stephanopoulos G, Gunawan R (2012) Ensemble kinetic modeling of metabolic networks from dynamic metabolic profiles. Metabolites 2: 891-912.
    • (2012) Metabolites , vol.2 , pp. 891-912
    • Jia, G.1    Stephanopoulos, G.2    Gunawan, R.3
  • 19
    • 0036138322 scopus 로고    scopus 로고
    • How to reconstruct a large genetic network from n gene perturbations in fewer than n(2) easy steps
    • Wagner A (2001) How to reconstruct a large genetic network from n gene perturbations in fewer than n(2) easy steps. Bioinformatics 17: 1183-1197.
    • (2001) Bioinformatics , vol.17 , pp. 1183-1197
    • Wagner, A.1
  • 20
    • 0011560546 scopus 로고
    • The transitive reduction of a directed graph
    • Aho AV, Garey MR, Ullman JD (1972) The transitive reduction of a directed graph. SIAM J Comput 1: 131-137.
    • (1972) SIAM J Comput , vol.1 , pp. 131-137
    • Aho, A.V.1    Garey, M.R.2    Ullman, J.D.3
  • 22
    • 0003780715 scopus 로고
    • Addison-Wesley, Reading, Massachusetts
    • Harray F (1969) Graph Theory. Addison-Wesley, Reading, Massachusetts.
    • (1969) Graph Theory
    • Harray, F.1
  • 23
    • 78149429509 scopus 로고    scopus 로고
    • From knockouts to networks: Establishing direct cause-effect relationships through graph analysis
    • Pinna A, Soranzo N, de la Fuente A (2010) From knockouts to networks: Establishing direct cause-effect relationships through graph analysis. PLoS ONE 5: e12912.
    • (2010) PLoS ONE , vol.5
    • Pinna, A.1    Soranzo, N.2    De La Fuente, A.3
  • 24
    • 79961200389 scopus 로고    scopus 로고
    • Genenetweaver: In silico benchmark generation and performance profiling of network inference methods
    • Schaffter T, Marbach D, Floreano D (2011) Genenetweaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27: 2263-2270.
    • (2011) Bioinformatics , vol.27 , pp. 2263-2270
    • Schaffter, T.1    Marbach, D.2    Floreano, D.3
  • 25
    • 27944493925 scopus 로고    scopus 로고
    • Scale-free networks in cell biology
    • Albert R (2005) Scale-free networks in cell biology. Journal of cell science 118: 4947-4957.
    • (2005) Journal of Cell Science , vol.118 , pp. 4947-4957
    • Albert, R.1
  • 26
    • 0036013593 scopus 로고    scopus 로고
    • Statistical mechanics of complex networks
    • Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74: 47-97.
    • (2002) Rev Mod Phys , vol.74 , pp. 47-97
    • Albert, R.1    Barabási, A.L.2
  • 27
    • 78149429509 scopus 로고    scopus 로고
    • From knockouts to networks: Establishing direct cause-effect relationships through graph analysis
    • Pinna A, Soranzo N, de la Fuente A (2010) From knockouts to networks: Establishing direct cause-effect relationships through graph analysis. PLoS ONE 5: e12912.
    • (2010) PLoS ONE , vol.5
    • Pinna, A.1    Soranzo, N.2    De La Fuente, A.3
  • 28
    • 77958570788 scopus 로고    scopus 로고
    • Inferring regulatory networks from expression data using tree-based methods
    • Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P (2010) Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5: e12776.
    • (2010) PLoS ONE , vol.5
    • Huynh-Thu, V.A.1    Irrthum, A.2    Wehenkel, L.3    Geurts, P.4
  • 29
  • 30
    • 84897389995 scopus 로고    scopus 로고
    • Assessing network inference methods: How to cope with an underdetermined problem
    • Siegenthaler C, Gunawan R (2014) Assessing network inference methods: How to cope with an underdetermined problem. PLoS One 9: e90481.
    • (2014) PLoS One , vol.9
    • Siegenthaler, C.1    Gunawan, R.2
  • 31
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • DOI 10.1007/s10994-006-6889-7
    • Tsamardinos I, Brown LE, Aliferis CF (2006) The max-min hill-climbing bayesian network structure learning algorithm. Machine Learning 65: 31-78. (Pubitemid 44451193)
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.