메뉴 건너뛰기




Volumn 15, Issue 1, 2014, Pages

Comparative evaluation of gene set analysis approaches for RNA-Seq data

Author keywords

[No Author keywords available]

Indexed keywords

ERROR ANALYSIS; ERROR STATISTICS; GENES; RNA; STATISTICAL TESTS; TESTING;

EID: 84923922737     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-014-0397-8     Document Type: Article
Times cited : (23)

References (45)
  • 1
    • 57849109058 scopus 로고    scopus 로고
    • Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters
    • Core LJ, Waterfall JJ, Lis JT: Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 2008, 322(5909):1845-1848.
    • (2008) Science , vol.322 , Issue.5909 , pp. 1845-1848
    • Core, L.J.1    Waterfall, J.J.2    Lis, J.T.3
  • 3
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26(1):139-140.
    • (2010) Bioinformatics , vol.26 , Issue.1 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 4
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11(10):R106.
    • (2010) Genome Biol , vol.11 , Issue.10
    • Anders, S.1    Huber, W.2
  • 5
    • 84886557480 scopus 로고    scopus 로고
    • Finding consistent patterns: A nonparametric approach for identifying differential expression in RNA-Seq data
    • Li J, Tibshirani R: Finding consistent patterns: A nonparametric approach for identifying differential expression in RNA-Seq data. Stat Methods Med Res 2013, 22(5):519-536.
    • (2013) Stat Methods Med Res , vol.22 , Issue.5 , pp. 519-536
    • Li, J.1    Tibshirani, R.2
  • 6
    • 33644872577 scopus 로고    scopus 로고
    • linear models for microarray data.
    • Edited by Smyth G, Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. New York: Springer
    • Smyth G: Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions using R and Bioconductor. Edited by Smyth G, Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. New York: Springer; 2005:397-420.
    • (2005) Bioinformatics and Computational Biology Solutions using R and Bioconductor. , pp. 397-420
    • Smyth, G.1
  • 7
    • 84896735766 scopus 로고    scopus 로고
    • Voom: precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law CW, Chen Y, Shi W, Smyth GK: Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 2014, 15(2):R29.
    • (2014) Genome Biol , vol.15 , Issue.2
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 9
    • 69849105388 scopus 로고    scopus 로고
    • Unite and conquer: univariate and multivariate approaches for finding differentially expressed gene sets
    • Glazko GV, Emmert-Streib F: Unite and conquer: univariate and multivariate approaches for finding differentially expressed gene sets. Bioinformatics 2009, 25(18):2348-2354.
    • (2009) Bioinformatics , vol.25 , Issue.18 , pp. 2348-2354
    • Glazko, G.V.1    Emmert-Streib, F.2
  • 10
    • 79958152651 scopus 로고    scopus 로고
    • Pathway analysis of expression data: deciphering functional building blocks of complex diseases
    • Emmert-Streib F, Glazko GV: Pathway analysis of expression data: deciphering functional building blocks of complex diseases. PLoS Comput Biol 2011, 7(5):e1002053.
    • (2011) PLoS Comput Biol , vol.7 , Issue.5
    • Emmert-Streib, F.1    Glazko, G.V.2
  • 11
    • 63449107173 scopus 로고    scopus 로고
    • A general modular framework for gene set enrichment analysis
    • Ackermann M, Strimmer K: A general modular framework for gene set enrichment analysis. BMC Bioinformatics 2009, 10(1):47.
    • (2009) BMC Bioinformatics , vol.10 , Issue.1 , pp. 47
    • Ackermann, M.1    Strimmer, K.2
  • 12
    • 58549112996 scopus 로고    scopus 로고
    • Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists
    • da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37(1):1-13.
    • (2009) Nucleic Acids Res , vol.37 , Issue.1 , pp. 1-13
    • Huang, W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 14
    • 34249663294 scopus 로고    scopus 로고
    • Analyzing gene expression data in terms of gene sets: methodological issues
    • Goeman JJ, Buhlmann P: Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics 2007, 23(8):980-987.
    • (2007) Bioinformatics , vol.23 , Issue.8 , pp. 980-987
    • Goeman, J.J.1    Buhlmann, P.2
  • 16
    • 61449172037 scopus 로고    scopus 로고
    • Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
    • da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
    • (2009) Nat Protoc , vol.4 , Issue.1 , pp. 44-57
    • Huang, W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 17
    • 84861123691 scopus 로고    scopus 로고
    • Ten years of pathway analysis: current approaches and outstanding challenges
    • Khatri P, Sirota M, Butte AJ: Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 2012, 8(2):e1002375.
    • (2012) PLoS Comput Biol , vol.8 , Issue.2
    • Khatri, P.1    Sirota, M.2    Butte, A.J.3
  • 18
    • 84870441671 scopus 로고    scopus 로고
    • Gene set analysis for self-contained tests: complex null and specific alternative hypotheses
    • Rahmatallah Y, Emmert-Streib F, Glazko G: Gene set analysis for self-contained tests: complex null and specific alternative hypotheses. Bioinformatics 2012, 28(23):3073-3080.
    • (2012) Bioinformatics , vol.28 , Issue.23 , pp. 3073-3080
    • Rahmatallah, Y.1    Emmert-Streib, F.2    Glazko, G.3
  • 19
    • 77953212372 scopus 로고    scopus 로고
    • Gene ontology analysis for RNA-seq: accounting for selection bias
    • Young MD, Wakefield MJ, Smyth GK, Oshlack A: Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 2010, 11(2):R14.
    • (2010) Genome Biol , vol.11 , Issue.2
    • Young, M.D.1    Wakefield, M.J.2    Smyth, G.K.3    Oshlack, A.4
  • 20
    • 84872202078 scopus 로고    scopus 로고
    • GSVA: gene set variation analysis for microarray and RNA-seq data
    • Hanzelmann S, Castelo R, Guinney J: GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 2013, 14:7.
    • (2013) BMC Bioinformatics , vol.14 , pp. 7
    • Hanzelmann, S.1    Castelo, R.2    Guinney, J.3
  • 21
    • 84876153678 scopus 로고    scopus 로고
    • Gene set enrichment analysis of RNA-Seq data: integrating differential expression and splicing
    • Wang X, Cairns MJ: Gene set enrichment analysis of RNA-Seq data: integrating differential expression and splicing. BMC Bioinformatics 2013, 14(Suppl 5):S16.
    • (2013) BMC Bioinformatics , vol.14
    • Wang, X.1    Cairns, M.J.2
  • 22
    • 84876544061 scopus 로고    scopus 로고
    • Ensuring the statistical soundness of competitive gene set approaches: gene filtering and genome-scale coverage are essential
    • Tripathi S, Glazko GV, Emmert-Streib F: Ensuring the statistical soundness of competitive gene set approaches: gene filtering and genome-scale coverage are essential. Nucleic Acids Res 2013, 41(7):e82.
    • (2013) Nucleic Acids Res , vol.41 , Issue.7
    • Tripathi, S.1    Glazko, G.V.2    Emmert-Streib, F.3
  • 23
    • 84877309040 scopus 로고    scopus 로고
    • Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods
    • Varemo L, Nielsen J, Nookaew I: Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res 2013, 41(8):4378-4391.
    • (2013) Nucleic Acids Res , vol.41 , Issue.8 , pp. 4378-4391
    • Varemo, L.1    Nielsen, J.2    Nookaew, I.3
  • 25
    • 84885440313 scopus 로고    scopus 로고
    • Soft truncation thresholding for gene set analysis of RNA-seq data: application to a vaccine study
    • Fridley BL, Jenkins GD, Grill DE, Kennedy RB, Poland GA, Oberg AL: Soft truncation thresholding for gene set analysis of RNA-seq data: application to a vaccine study. Sci Rep 2013, 3:2898.
    • (2013) Sci Rep , vol.3 , pp. 2898
    • Fridley, B.L.1    Jenkins, G.D.2    Grill, D.E.3    Kennedy, R.B.4    Poland, G.A.5    Oberg, A.L.6
  • 26
    • 0000673504 scopus 로고
    • Multivariate Generalizations of the Wald-Wolfowitz and Smirnov Two-Sample Tests
    • Friedman JH, Rafsky C: Multivariate Generalizations of the Wald-Wolfowitz and Smirnov Two-Sample Tests. Ann Stat 1979, 7(4):697-717.
    • (1979) Ann Stat , vol.7 , Issue.4 , pp. 697-717
    • Friedman, J.H.1    Rafsky, C.2
  • 30
    • 0346973088 scopus 로고    scopus 로고
    • On a new multivariate two-sample test
    • Baringhaus L, Franz C: On a new multivariate two-sample test. J Multivariate Anal 2004, 88:190-206.
    • (2004) J Multivariate Anal , vol.88 , pp. 190-206
    • Baringhaus, L.1    Franz, C.2
  • 32
    • 79960277368 scopus 로고    scopus 로고
    • Optimally weighted Z-test is a powerful method for combining probabilities in meta-analysis
    • Zaykin DV: Optimally weighted Z-test is a powerful method for combining probabilities in meta-analysis. J Evol Biol 2011, 24(8):1836-1841.
    • (2011) J Evol Biol , vol.24 , Issue.8 , pp. 1836-1841
    • Zaykin, D.V.1
  • 34
    • 0036898577 scopus 로고    scopus 로고
    • Microarray data normalization and transformation
    • Quackenbush J: Microarray data normalization and transformation. Nat Genet 2002, 32(Suppl):496-501.
    • (2002) Nat Genet , vol.32 , Issue.SUPPL , pp. 496-501
    • Quackenbush, J.1
  • 37
    • 84887791432 scopus 로고    scopus 로고
    • A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis
    • Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, Keime C, Marot G, Castel D, Estelle J, Guernec G, Jagla B, Jouneau L, Laloë D, Le Gall C, Schaëffer B, Le Crom S, Guedj M, Jaffrézic F, French StatOmique Consortium: A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform 2012, 14(6):671-683.
    • (2012) Brief Bioinform , vol.14 , Issue.6 , pp. 671-683
  • 38
    • 65649126066 scopus 로고    scopus 로고
    • Transcript length bias in RNA-seq data confounds systems biology
    • Oshlack A, Wakefield MJ: Transcript length bias in RNA-seq data confounds systems biology. Biol Direct 2009, 4:14.
    • (2009) Biol Direct , vol.4 , pp. 14
    • Oshlack, A.1    Wakefield, M.J.2
  • 39
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson MD, Oshlack A: A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 2010, 11(3):R25.
    • (2010) Genome Biol , vol.11 , Issue.3
    • Robinson, M.D.1    Oshlack, A.2
  • 40
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
    • Bullard JH, Purdom E, Hansen KD, Dudoit S: Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 2010, 11:94.
    • (2010) BMC Bioinformatics , vol.11 , pp. 94
    • Bullard, J.H.1    Purdom, E.2    Hansen, K.D.3    Dudoit, S.4
  • 41
    • 84858068675 scopus 로고    scopus 로고
    • Removing technical variability in RNA-seq data using conditional quantile normalization
    • Hansen KD, Irizarry RA, Wu Z: Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 2012, 13(2):204-216.
    • (2012) Biostatistics , vol.13 , Issue.2 , pp. 204-216
    • Hansen, K.D.1    Irizarry, R.A.2    Wu, Z.3
  • 45
    • 36448981743 scopus 로고    scopus 로고
    • Moderated statistical tests for assessing differences in tag abundance
    • Robinson MD, Smyth GK: Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 2007, 23(21):2881-2887.
    • (2007) Bioinformatics , vol.23 , Issue.21 , pp. 2881-2887
    • Robinson, M.D.1    Smyth, G.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.