-
2
-
-
34249079154
-
Network motifs: Theory and experimental approaches
-
Alon, U. (2007). Network motifs: theory and experimental approaches. Nature Genetics Reviews 8, 450-461.
-
(2007)
Nature Genetics Reviews
, vol.8
, pp. 450-461
-
-
Alon, U.1
-
3
-
-
0001924713
-
State space modeling of multiple time series
-
Aoki,M. and A. Havenner (1991). State space modeling of multiple time series. Econometric Reviews 10(1), 1-59.
-
(1991)
Econometric Reviews
, vol.10
, Issue.1
, pp. 1-59
-
-
Aoki, M.1
Havenner, A.2
-
4
-
-
16844376909
-
Reverse engineering of regulatory networks in human B cells
-
Basso, K., A. A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-Favera, and A. Califano (2005). Reverse engineering of regulatory networks in human B cells. Nature Genetics 37(4), 382-390.
-
(2005)
Nature Genetics
, vol.37
, Issue.4
, pp. 382-390
-
-
Basso, K.1
Margolin, A.A.2
Stolovitzky, G.3
Klein, U.4
Dalla-Favera, R.5
Califano, A.6
-
5
-
-
13844253637
-
A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
-
Beal, M. J., F. Falciani, Z. Ghahramani, C. Rangel, and D. L. Wild (2005). A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21(3), 349-356.
-
(2005)
Bioinformatics
, vol.21
, Issue.3
, pp. 349-356
-
-
Beal, M.J.1
Falciani, F.2
Ghahramani, Z.3
Rangel, C.4
Wild, D.L.5
-
6
-
-
77649115528
-
-
Chapter "Reconstructing transcriptional networks using gene expression profiling and Bayesian state space models". Humana Press (Springer)
-
Beal, M. J., J. Li, Z. Ghahramani, and D. L. Wild (2005). Introduction to Systems Biology, Chapter "Reconstructing transcriptional networks using gene expression profiling and Bayesian state space models". Humana Press (Springer).
-
(2005)
Introduction to Systems Biology
-
-
Beal, M.J.1
Li, J.2
Ghahramani, Z.3
Wild, D.L.4
-
8
-
-
54249137797
-
Feedback loops shape cellular signals in space and time
-
Brandman, O. and T. Meyer (2008). Feedback loops shape cellular signals in space and time. Science 322, 390-395.
-
(2008)
Science
, vol.322
, pp. 390-395
-
-
Brandman, O.1
Meyer, T.2
-
9
-
-
77649155929
-
The KM-algorithm identifies regulated genes in time series expression data
-
in press
-
Bremer, M. and R. W. Doerge (2009). The KM-algorithm identifies regulated genes in time series expression data. Advances in Bioinformatics (in press).
-
(2009)
Advances in Bioinformatics
-
-
Bremer, M.1
Doerge, R.W.2
-
11
-
-
47049084462
-
Estimating dynamic models for gene regulation networks
-
Cao, J. and H. Zhao (2008). Estimating dynamic models for gene regulation networks. Bioinformatics 24(14), 1619-1624.
-
(2008)
Bioinformatics
, vol.24
, Issue.14
, pp. 1619-1624
-
-
Cao, J.1
Zhao, H.2
-
12
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
Dempster, A., N. Laird, and D. Rubin (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological) 39(1), 1-38.
-
(1977)
Journal of the Royal Statistical Society, Series B (Methodological)
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
13
-
-
0033736476
-
Genetic network inference: From co-expression clustering to reverse engineering
-
D'haeseleer, P., S. Liang, and R. Somogyi (2000). Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16(8), 707-726.
-
(2000)
Bioinformatics
, vol.16
, Issue.8
, pp. 707-726
-
-
D'Haeseleer, P.1
Liang, S.2
Somogyi, R.3
-
15
-
-
38549145828
-
Targeting c-Jun and JunB proteins as potential anticancer cell therapy
-
Gurzov, E. N., L. Bakiri, J. M. Alfaro, E. F. Wagner, and M. Izquierdo (2008). Targeting c-Jun and JunB proteins as potential anticancer cell therapy. Oncogene 27, 641-1352
-
(2008)
Oncogene
, vol.27
, pp. 641-1352
-
-
Gurzov, E.N.1
Bakiri, L.2
Alfaro, J.M.3
Wagner, E.F.4
Izquierdo, M.5
-
16
-
-
0344464762
-
Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
-
Husmeier, D. (2003). Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19(17), 2271-2282.
-
(2003)
Bioinformatics
, vol.19
, Issue.17
, pp. 2271-2282
-
-
Husmeier, D.1
-
18
-
-
84976998771
-
The application of electronic computers to factor analysis
-
Kaiser, H. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement 20(1), 141-151.
-
(1960)
Educational and Psychological Measurement
, vol.20
, Issue.1
, pp. 141-151
-
-
Kaiser, H.1
-
20
-
-
49449086368
-
Survival of the sparsest: Robust gene networks are parsimonious
-
Leclerc, R. D. (2008). Survival of the sparsest: robust gene networks are parsimonious. Molecular Systems Biology 4(213).
-
(2008)
Molecular Systems Biology
, vol.4
, Issue.213
-
-
Leclerc, R.D.1
-
21
-
-
9444239213
-
A probabilistic functional network of yeast genes
-
Lee, I., S. V. Date, A. T. Adai, and E. M. Marcotte (2004). A probabilistic functional network of yeast genes. Science 306, 1555-1558.
-
(2004)
Science
, vol.306
, pp. 1555-1558
-
-
Lee, I.1
Date, S.V.2
Adai, A.T.3
Marcotte, E.M.4
-
22
-
-
0004158155
-
-
Technical report, Computer Science Division, University of California, Berkeley, CA
-
Murphy, K. and S. Mian (1999). Modelling gene expression data using dynamic Bayesian networks. Technical report, Computer Science Division, University of California, Berkeley, CA.
-
(1999)
Modelling Gene Expression Data Using Dynamic Bayesian Networks
-
-
Murphy, K.1
Mian, S.2
-
23
-
-
34249862287
-
Learning causal networks from systems biology time course data: An effective model selection procedure for the vector autoregressive process
-
Opgen-Rhein, R. and K. Strimmer (2007). Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process. BMC Bioinformatics 8(Suppl 2).
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.SUPPL. 2
-
-
Opgen-Rhein, R.1
Strimmer, K.2
-
24
-
-
4143058645
-
Gene networks inference using dynamic Bayesian networks
-
Perrin, B.-E., L. Ralaivola, A. Mazurie, S. Bottani, J. Mallet, and F. d'Alche Buc (2003). Gene networks inference using dynamic Bayesian networks. Bioinformatics 19(Suppl. 2), ii138-ii148.
-
(2003)
Bioinformatics
, vol.19
, Issue.SUPPL. 2
-
-
Perrin, B.-E.1
Ralaivola, L.2
Mazurie, A.3
Bottani, S.4
Mallet, J.5
D'Alche Buc, F.6
-
25
-
-
70149113077
-
-
R Development Core Team. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0
-
R Development Core Team (2009). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.
-
(2009)
R: A Language and Environment for Statistical Computing
-
-
-
26
-
-
3142744689
-
Modeling T-cell activation using gene expression profiling and state-space model
-
Rangel, C., J. Angus, Z. Ghahramani, M. Lioumi, E. Southeran, A. Gaiba, D. L. Wild, and F. Falciani (2004). Modeling T-cell activation using gene expression profiling and state-space model. Bioinformatics 20(9), 1361-1372.
-
(2004)
Bioinformatics
, vol.20
, Issue.9
, pp. 1361-1372
-
-
Rangel, C.1
Angus, J.2
Ghahramani, Z.3
Lioumi, M.4
Southeran, E.5
Gaiba, A.6
Wild, D.L.7
Falciani, F.8
-
27
-
-
15944367731
-
Reconstructing biological networks using conditional correlation analysis
-
Rice, J. J., Y. Tu, and G. Stolovitzky (2005). Reconstructing biological networks using conditional correlation analysis. Bioinformatics 21, 765-773.
-
(2005)
Bioinformatics
, vol.21
, pp. 765-773
-
-
Rice, J.J.1
Tu, Y.2
Stolovitzky, G.3
-
28
-
-
25144501141
-
A Bayesian regression approach to the inference of regulatory networks from gene expression data
-
Rogers, S. and M. Girolami (2005). A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics 21(14), 3131-3137.
-
(2005)
Bioinformatics
, vol.21
, Issue.14
, pp. 3131-3137
-
-
Rogers, S.1
Girolami, M.2
-
29
-
-
34848908079
-
Reverse engineering genetic networks using the GeneNet package
-
Schäfer, J., R. Opgen-Rhein, and K. Strimmer (2006). Reverse engineering genetic networks using the GeneNet package. R News 6, 50-53.
-
(2006)
R News
, vol.6
, pp. 50-53
-
-
Schäfer, J.1
Opgen-Rhein, R.2
Strimmer, K.3
-
30
-
-
15944364151
-
An empirical Bayes approach to inferring large-scale gene association networks
-
Schäfer, J. and K. Strimmer (2005). An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21(6), 754-764.
-
(2005)
Bioinformatics
, vol.21
, Issue.6
, pp. 754-764
-
-
Schäfer, J.1
Strimmer, K.2
-
31
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6(2), 461-464.
-
(1978)
The Annals of Statistics
, vol.6
, Issue.2
, pp. 461-464
-
-
Schwarz, G.1
-
32
-
-
0242490780
-
Cytoscape: A software environment for integrated model of biomolecular interaction networks
-
Shannon, P., A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker (2003). Cytoscape: A software environment for integrated model of biomolecular interaction networks. Genome Research 13, 2498-2504.
-
(2003)
Genome Research
, vol.13
, pp. 2498-2504
-
-
Shannon, P.1
Markiel, A.2
Ozier, O.3
Baliga, N.S.4
Wang, J.T.5
Ramage, D.6
Amin, N.7
Schwikowski, B.8
Ideker, T.9
-
34
-
-
2442691914
-
Modeling gene expression from microarray expression data with state-space equations
-
Wu, F., W. Zhang, and A. Kusalik (2004). Modeling gene expression from microarray expression data with state-space equations. Pacific Symposium on Biocomputing 9, 581-592.
-
(2004)
Pacific Symposium on Biocomputing
, vol.9
, pp. 581-592
-
-
Wu, F.1
Zhang, W.2
Kusalik, A.3
-
35
-
-
0242651270
-
Simulation studies for the identification of genetic networks from cDNA array and regulatory activity data
-
Zak, D. E., F. J. I. Doyle, G. Gonye, and J. S. Schwaber (2001). Simulation studies for the identification of genetic networks from cDNA array and regulatory activity data. Proceedings of the 2nd International Conference on Systems Biology, 231-238.
-
(2001)
Proceedings of the 2nd International Conference on Systems Biology
, pp. 231-238
-
-
Zak, D.E.1
Doyle, F.J.I.2
Gonye, G.3
Schwaber, J.S.4
-
36
-
-
0242490789
-
Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: Insights from an identifiability analysis of an in silico network
-
Zak, D. E., G. E. Gonye, J. S. Schwaber, and F. J. Doyle (2003). Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: Insights from an identifiability analysis of an in silico network. Genome Research 13, 2396-2405.
-
(2003)
Genome Research
, vol.13
, pp. 2396-2405
-
-
Zak, D.E.1
Gonye, G.E.2
Schwaber, J.S.3
Doyle, F.J.4
-
37
-
-
12744261506
-
A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
-
Zou,M. and S. D. Conzen (2005). A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21(1), 71-79
-
(2005)
Bioinformatics
, vol.21
, Issue.1
, pp. 71-79
-
-
Zou, M.1
Conzen, S.D.2
|