메뉴 건너뛰기




Volumn 9, Issue 1, 2010, Pages

An empirical bayesian method for estimating biological networks from temporal microarray data

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; BAYES THEOREM; CALCULATION; DATA ANALYSIS; GENE EXPRESSION; GENE REGULATORY NETWORK; MICROARRAY ANALYSIS; NONHUMAN; PARAMETER; SIMULATION; TIME SERIES ANALYSIS; BIOLOGICAL MODEL; BIOSTATISTICS; COMPUTER SIMULATION; DNA MICROARRAY; GENE EXPRESSION PROFILING; GENETICS; HUMAN; IMMUNOLOGY; LYMPHOCYTE ACTIVATION; METABOLISM; RECEIVER OPERATING CHARACTERISTIC; STATISTICAL MODEL; STATISTICS; T LYMPHOCYTE;

EID: 77649166995     PISSN: None     EISSN: 15446115     Source Type: Journal    
DOI: 10.2202/1544-6115.1513     Document Type: Article
Times cited : (48)

References (37)
  • 2
    • 34249079154 scopus 로고    scopus 로고
    • Network motifs: Theory and experimental approaches
    • Alon, U. (2007). Network motifs: theory and experimental approaches. Nature Genetics Reviews 8, 450-461.
    • (2007) Nature Genetics Reviews , vol.8 , pp. 450-461
    • Alon, U.1
  • 3
    • 0001924713 scopus 로고
    • State space modeling of multiple time series
    • Aoki,M. and A. Havenner (1991). State space modeling of multiple time series. Econometric Reviews 10(1), 1-59.
    • (1991) Econometric Reviews , vol.10 , Issue.1 , pp. 1-59
    • Aoki, M.1    Havenner, A.2
  • 5
    • 13844253637 scopus 로고    scopus 로고
    • A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • Beal, M. J., F. Falciani, Z. Ghahramani, C. Rangel, and D. L. Wild (2005). A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21(3), 349-356.
    • (2005) Bioinformatics , vol.21 , Issue.3 , pp. 349-356
    • Beal, M.J.1    Falciani, F.2    Ghahramani, Z.3    Rangel, C.4    Wild, D.L.5
  • 6
    • 77649115528 scopus 로고    scopus 로고
    • Chapter "Reconstructing transcriptional networks using gene expression profiling and Bayesian state space models". Humana Press (Springer)
    • Beal, M. J., J. Li, Z. Ghahramani, and D. L. Wild (2005). Introduction to Systems Biology, Chapter "Reconstructing transcriptional networks using gene expression profiling and Bayesian state space models". Humana Press (Springer).
    • (2005) Introduction to Systems Biology
    • Beal, M.J.1    Li, J.2    Ghahramani, Z.3    Wild, D.L.4
  • 8
    • 54249137797 scopus 로고    scopus 로고
    • Feedback loops shape cellular signals in space and time
    • Brandman, O. and T. Meyer (2008). Feedback loops shape cellular signals in space and time. Science 322, 390-395.
    • (2008) Science , vol.322 , pp. 390-395
    • Brandman, O.1    Meyer, T.2
  • 9
    • 77649155929 scopus 로고    scopus 로고
    • The KM-algorithm identifies regulated genes in time series expression data
    • in press
    • Bremer, M. and R. W. Doerge (2009). The KM-algorithm identifies regulated genes in time series expression data. Advances in Bioinformatics (in press).
    • (2009) Advances in Bioinformatics
    • Bremer, M.1    Doerge, R.W.2
  • 11
    • 47049084462 scopus 로고    scopus 로고
    • Estimating dynamic models for gene regulation networks
    • Cao, J. and H. Zhao (2008). Estimating dynamic models for gene regulation networks. Bioinformatics 24(14), 1619-1624.
    • (2008) Bioinformatics , vol.24 , Issue.14 , pp. 1619-1624
    • Cao, J.1    Zhao, H.2
  • 13
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co-expression clustering to reverse engineering
    • D'haeseleer, P., S. Liang, and R. Somogyi (2000). Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16(8), 707-726.
    • (2000) Bioinformatics , vol.16 , Issue.8 , pp. 707-726
    • D'Haeseleer, P.1    Liang, S.2    Somogyi, R.3
  • 15
    • 38549145828 scopus 로고    scopus 로고
    • Targeting c-Jun and JunB proteins as potential anticancer cell therapy
    • Gurzov, E. N., L. Bakiri, J. M. Alfaro, E. F. Wagner, and M. Izquierdo (2008). Targeting c-Jun and JunB proteins as potential anticancer cell therapy. Oncogene 27, 641-1352
    • (2008) Oncogene , vol.27 , pp. 641-1352
    • Gurzov, E.N.1    Bakiri, L.2    Alfaro, J.M.3    Wagner, E.F.4    Izquierdo, M.5
  • 16
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier, D. (2003). Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19(17), 2271-2282.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 18
    • 84976998771 scopus 로고
    • The application of electronic computers to factor analysis
    • Kaiser, H. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement 20(1), 141-151.
    • (1960) Educational and Psychological Measurement , vol.20 , Issue.1 , pp. 141-151
    • Kaiser, H.1
  • 20
    • 49449086368 scopus 로고    scopus 로고
    • Survival of the sparsest: Robust gene networks are parsimonious
    • Leclerc, R. D. (2008). Survival of the sparsest: robust gene networks are parsimonious. Molecular Systems Biology 4(213).
    • (2008) Molecular Systems Biology , vol.4 , Issue.213
    • Leclerc, R.D.1
  • 21
    • 9444239213 scopus 로고    scopus 로고
    • A probabilistic functional network of yeast genes
    • Lee, I., S. V. Date, A. T. Adai, and E. M. Marcotte (2004). A probabilistic functional network of yeast genes. Science 306, 1555-1558.
    • (2004) Science , vol.306 , pp. 1555-1558
    • Lee, I.1    Date, S.V.2    Adai, A.T.3    Marcotte, E.M.4
  • 23
    • 34249862287 scopus 로고    scopus 로고
    • Learning causal networks from systems biology time course data: An effective model selection procedure for the vector autoregressive process
    • Opgen-Rhein, R. and K. Strimmer (2007). Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process. BMC Bioinformatics 8(Suppl 2).
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 2
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 25
    • 70149113077 scopus 로고    scopus 로고
    • R Development Core Team. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0
    • R Development Core Team (2009). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.
    • (2009) R: A Language and Environment for Statistical Computing
  • 27
    • 15944367731 scopus 로고    scopus 로고
    • Reconstructing biological networks using conditional correlation analysis
    • Rice, J. J., Y. Tu, and G. Stolovitzky (2005). Reconstructing biological networks using conditional correlation analysis. Bioinformatics 21, 765-773.
    • (2005) Bioinformatics , vol.21 , pp. 765-773
    • Rice, J.J.1    Tu, Y.2    Stolovitzky, G.3
  • 28
    • 25144501141 scopus 로고    scopus 로고
    • A Bayesian regression approach to the inference of regulatory networks from gene expression data
    • Rogers, S. and M. Girolami (2005). A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics 21(14), 3131-3137.
    • (2005) Bioinformatics , vol.21 , Issue.14 , pp. 3131-3137
    • Rogers, S.1    Girolami, M.2
  • 29
    • 34848908079 scopus 로고    scopus 로고
    • Reverse engineering genetic networks using the GeneNet package
    • Schäfer, J., R. Opgen-Rhein, and K. Strimmer (2006). Reverse engineering genetic networks using the GeneNet package. R News 6, 50-53.
    • (2006) R News , vol.6 , pp. 50-53
    • Schäfer, J.1    Opgen-Rhein, R.2    Strimmer, K.3
  • 30
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schäfer, J. and K. Strimmer (2005). An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21(6), 754-764.
    • (2005) Bioinformatics , vol.21 , Issue.6 , pp. 754-764
    • Schäfer, J.1    Strimmer, K.2
  • 31
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6(2), 461-464.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 34
    • 2442691914 scopus 로고    scopus 로고
    • Modeling gene expression from microarray expression data with state-space equations
    • Wu, F., W. Zhang, and A. Kusalik (2004). Modeling gene expression from microarray expression data with state-space equations. Pacific Symposium on Biocomputing 9, 581-592.
    • (2004) Pacific Symposium on Biocomputing , vol.9 , pp. 581-592
    • Wu, F.1    Zhang, W.2    Kusalik, A.3
  • 36
    • 0242490789 scopus 로고    scopus 로고
    • Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: Insights from an identifiability analysis of an in silico network
    • Zak, D. E., G. E. Gonye, J. S. Schwaber, and F. J. Doyle (2003). Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: Insights from an identifiability analysis of an in silico network. Genome Research 13, 2396-2405.
    • (2003) Genome Research , vol.13 , pp. 2396-2405
    • Zak, D.E.1    Gonye, G.E.2    Schwaber, J.S.3    Doyle, F.J.4
  • 37
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • Zou,M. and S. D. Conzen (2005). A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21(1), 71-79
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.