메뉴 건너뛰기




Volumn 2, Issue AUG, 2014, Pages

Gene regulatory networks and their applications: Understanding biological and medical problems in terms of networks

Author keywords

Biomarker; Computational genomics; Gene regulatory networks; Network analysis; Personalized medicine; Statistical inference; Systems biology

Indexed keywords


EID: 84928888210     PISSN: None     EISSN: 2296634X     Source Type: Journal    
DOI: 10.3389/fcell.2014.00038     Document Type: Short Survey
Times cited : (208)

References (67)
  • 1
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • Akutsu, T., Miyano, S., and Kuhara, S. (1999). Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pacif. Symp. Biocomput. 17-28
    • (1999) Pacif. Symp. Biocomput , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 2
    • 77957141016 scopus 로고    scopus 로고
    • Inferring the conservative causal core of gene regulatory networks
    • Altay, G., and Emmert-Streib, F. (2010a). Inferring the conservative causal core of gene regulatory networks. BMC Syst. Biol. 4:132. doi: 10.1186/1752-0509-4-132
    • (2010) BMC Syst. Biol , vol.4 , pp. 132
    • Altay, G.1    Emmert-Streib, F.2
  • 3
    • 77954484005 scopus 로고    scopus 로고
    • Revealing differences in gene network inference algorithms on the network-level by ensemble methods
    • Altay, G., and Emmert-Streib, F. (2010b). Revealing differences in gene network inference algorithms on the network-level by ensemble methods. Bioinformatics 26, 1738-1744. doi: 10.1093/bioinformatics/btq259
    • (2010) Bioinformatics , vol.26 , pp. 1738-1744
    • Altay, G.1    Emmert-Streib, F.2
  • 4
    • 84921732095 scopus 로고    scopus 로고
    • tranSMART: an open source and community-driven informatics and data sharing platform for clinical and translational research
    • Athey, B. D., Braxenthaler, M., Haas, M., and Guo, Y. (2013). tranSMART: an open source and community-driven informatics and data sharing platform for clinical and translational research. AMIA Summ. Trans. Sci. Proc. 2013, 6-8
    • (2013) AMIA Summ. Trans. Sci. Proc , vol.2013 , pp. 6-8
    • Athey, B.D.1    Braxenthaler, M.2    Haas, M.3    Guo, Y.4
  • 5
    • 78650373804 scopus 로고    scopus 로고
    • Network medicine: a network-based approach to human disease
    • Barabáasi, A.-L., Gulbahce, N., and Loscalzo, J. (2011). Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56-68. doi: 10.1038/nrg2918
    • (2011) Nat. Rev. Genet , vol.12 , pp. 56-68
    • Barabáasi, A.-L.1    Gulbahce, N.2    Loscalzo, J.3
  • 7
    • 82155202989 scopus 로고    scopus 로고
    • Gene expression and network-based analysis reveals a novel role for hsa-mir-9 and drug control over the p38 network in glioblastoma multiforme progression
    • Ben-Hamo, R., and Efroni, S. (2011). Gene expression and network-based analysis reveals a novel role for hsa-mir-9 and drug control over the p38 network in glioblastoma multiforme progression. Genome Med. 3:77. doi: 10.1186/gm293
    • (2011) Genome Med , vol.3 , pp. 77
    • Ben-Hamo, R.1    Efroni, S.2
  • 8
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Mach. Learn. 24, 123-140. doi: 10.1007/BF00058655
    • (1996) Mach. Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 9
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random forests. Mach. Learn. 45, 5-32. doi: 10.1023/A:1010933404324
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 10
    • 18744376914 scopus 로고    scopus 로고
    • Online predicted human interaction database
    • Brown, K. R., and Jurisica, I. (2005). Online predicted human interaction database. Bioinformatics 21, 2076-2082. doi: 10.1093/bioinformatics/bti273
    • (2005) Bioinformatics , vol.21 , pp. 2076-2082
    • Brown, K.R.1    Jurisica, I.2
  • 11
    • 0035135420 scopus 로고    scopus 로고
    • Regulatory element detection using correlation with expression
    • Bussemaker, H. J., Li, H., and Siggia, E. D. (2001). Regulatory element detection using correlation with expression. Nat. Genet. 27, 167-171. doi: 10.1038/84792
    • (2001) Nat. Genet , vol.27 , pp. 167-171
    • Bussemaker, H.J.1    Li, H.2    Siggia, E.D.3
  • 12
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements
    • Butte, A., and Kohane, I. (2000). Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements. Pacif. Symp. Biocomput. 5, 415-426
    • (2000) Pacif. Symp. Biocomput , vol.5 , pp. 415-426
    • Butte, A.1    Kohane, I.2
  • 13
    • 0034710924 scopus 로고    scopus 로고
    • Discovering functional relationships between rna expression and chemotherapeutic susceptibility using relevance networks
    • Butte, A., Tamayo, P., Slonim, D., Golub, T., and Kohane, I. (2000). Discovering functional relationships between rna expression and chemotherapeutic susceptibility using relevance networks. Proc. Natl. Acad. Sci. U.S.A. 97, 12182-12186. doi: 10.1073/pnas.220392197
    • (2000) Proc. Natl. Acad. Sci. U.S.A , vol.97 , pp. 12182-12186
    • Butte, A.1    Tamayo, P.2    Slonim, D.3    Golub, T.4    Kohane, I.5
  • 14
    • 80052724921 scopus 로고    scopus 로고
    • Personalized medicine: progress and promise
    • Chan, I. S., and Ginsburg, G. S. (2011). Personalized medicine: progress and promise. Ann. Rev. Genom. Hum. Genet. 12, 217-244. doi: 10.1146/annurev-genom-082410-101446
    • (2011) Ann. Rev. Genom. Hum. Genet , vol.12 , pp. 217-244
    • Chan, I.S.1    Ginsburg, G.S.2
  • 15
    • 80053918061 scopus 로고    scopus 로고
    • Identifying cancer biomarkers by network-constrained support vector machines
    • Chen, L., Xuan, J., Riggins, R. B., Clarke, R., and Wang, Y. (2011). Identifying cancer biomarkers by network-constrained support vector machines. BMC Syst. Biol. 5:161. doi: 10.1186/1752-0509-5-161
    • (2011) BMC Syst. Biol , vol.5 , pp. 161
    • Chen, L.1    Xuan, J.2    Riggins, R.B.3    Clarke, R.4    Wang, Y.5
  • 16
    • 35348891430 scopus 로고    scopus 로고
    • Network-based classification of breast cancer metastasis
    • Chuang, H.-Y., Lee, E., Liu, Y.-T., Lee, D., and Ideker, T. (2007). Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3, 140. doi: 10.1038/msb4100180
    • (2007) Mol. Syst. Biol , vol.3 , pp. 140
    • Chuang, H.-Y.1    Lee, E.2    Liu, Y.-T.3    Lee, D.4    Ideker, T.5
  • 17
    • 34248165422 scopus 로고    scopus 로고
    • Comparing large graphs efficiently by margins of feature vectors
    • Dehmer, M., and Emmert-Streib, F. (2007). Comparing large graphs efficiently by margins of feature vectors. Appl. Math. Comput. 188, 1699-1710. doi: 10.1016/j.amc.2006.11.185
    • (2007) Appl. Math. Comput , vol.188 , pp. 1699-1710
    • Dehmer, M.1    Emmert-Streib, F.2
  • 18
    • 84884974800 scopus 로고    scopus 로고
    • An efficient heuristic approach to detecting graph isomorphism based on combinations of highly discriminating invariants
    • Dehmer, M., Grabner, M., Mowshowitz, A., and Emmert-Streib, F. (2013c). An efficient heuristic approach to detecting graph isomorphism based on combinations of highly discriminating invariants. Adv. Comput. Math. 39, 311-325. doi: 10.1007/s10444-012-9281-0
    • (2013) Adv. Comput. Math , vol.39 , pp. 311-325
    • Dehmer, M.1    Grabner, M.2    Mowshowitz, A.3    Emmert-Streib, F.4
  • 19
    • 49849085811 scopus 로고    scopus 로고
    • A new method of measuring similarity for a special class of directed graphs
    • Dehmer, M., and Mehler, A. (2007). A new method of measuring similarity for a special class of directed graphs. Tatra Mount. Math. Public. 36, 39-59
    • (2007) Tatra Mount. Math. Public , vol.36 , pp. 39-59
    • Dehmer, M.1    Mehler, A.2
  • 20
    • 84893547080 scopus 로고    scopus 로고
    • Quantitative network measures as biomarkers for classifying prostate cancer disease states: a systems approach to diagnostic biomarkers
    • Dehmer, M., Mueller, L., and Emmert-Streib, F. (2013b). Quantitative network measures as biomarkers for classifying prostate cancer disease states: a systems approach to diagnostic biomarkers. PLoS ONE 8:e77602. doi: 10.1371/journal.pone.0077602
    • (2013) PLoS ONE , vol.8
    • Dehmer, M.1    Mueller, L.2    Emmert-Streib, F.3
  • 21
    • 84893547080 scopus 로고    scopus 로고
    • Quantitative network measures as biomarkers for classifying prostate cancer disease states: a systems approach to diagnostic biomarkers
    • Dehmer, M., Mueller, L. A. J., and Emmert-Streib, F. (2013a). Quantitative network measures as biomarkers for classifying prostate cancer disease states: a systems approach to diagnostic biomarkers. PLoS ONE 8:e77602. doi: 10.1371/journal.pone.0077602
    • (2013) PLoS ONE , vol.8
    • Dehmer, M.1    Mueller, L.A.J.2    Emmert-Streib, F.3
  • 22
    • 84877302557 scopus 로고    scopus 로고
    • Interfacing cellular networks of S. cerevisiae and E. coli: Connecting dynamic and genetic information
    • de Matos Simoes, R., Dehmer, M., and Emmert-Streib, F. (2013a). Interfacing cellular networks of S. cerevisiae and E. coli: Connecting dynamic and genetic information. BMC Genomics 14:324. doi: 10.1186/1471-2164-14-324
    • (2013) BMC Genomics , vol.14 , pp. 324
    • de Matos Simoes, R.1    Dehmer, M.2    Emmert-Streib, F.3
  • 23
    • 84892411193 scopus 로고    scopus 로고
    • B-cell lymphoma gene regulatory networks: biological consistency among inference methods
    • de Matos Simoes, R., Dehmer, M., and Emmert-Streib, F. (2013b). B-cell lymphoma gene regulatory networks: biological consistency among inference methods. Front. Genet. 4:281. doi: 10.3389/fgene.2013.00281
    • (2013) Front. Genet , vol.4 , pp. 281
    • de Matos Simoes, R.1    Dehmer, M.2    Emmert-Streib, F.3
  • 24
    • 84859125037 scopus 로고    scopus 로고
    • Bagging statistical network inference from large-scale gene expression data
    • de Matos Simoes, R., and Emmert-Streib, F. (2012). Bagging statistical network inference from large-scale gene expression data. PLoS ONE 7:e33624. doi: 10.1371/journal.pone.0033624
    • (2012) PLoS ONE , vol.7
    • de Matos Simoes, R.1    Emmert-Streib, F.2
  • 25
    • 77954479475 scopus 로고    scopus 로고
    • Local network-based measures to assess the inferability of different regulatory networks
    • Emmert-Streib, F., and Altay, G. (2010). Local network-based measures to assess the inferability of different regulatory networks. IET Syst. Biol. 4, 277-288. doi: 10.1049/iet-syb.2010.0028
    • (2010) IET Syst. Biol , vol.4 , pp. 277-288
    • Emmert-Streib, F.1    Altay, G.2
  • 26
    • 84897675326 scopus 로고    scopus 로고
    • The gene regulatory network for breast cancer: integrated regulatory landscape of cancer hallmarks
    • Emmert-Streib, F., de Matos Simoes, R., Mullan, P., Haibe-Kains, B., and Dehmer, M. (2014). The gene regulatory network for breast cancer: integrated regulatory landscape of cancer hallmarks. Front. Genet. 5:15. doi: 10.3389/fgene.2014.00015
    • (2014) Front. Genet , vol.5 , pp. 15
    • Emmert-Streib, F.1    de Matos Simoes, R.2    Mullan, P.3    Haibe-Kains, B.4    Dehmer, M.5
  • 27
    • 79958145357 scopus 로고    scopus 로고
    • Network biology: a direct approach to study biological function
    • Emmert-Streib, F., and Glazko, G. (2011). Network biology: a direct approach to study biological function. Wiley Interdiscip. Rev. Syst. Biol. Med. 3, 379-391. doi: 10.1002/wsbm.134
    • (2011) Wiley Interdiscip. Rev. Syst. Biol. Med , vol.3 , pp. 379-391
    • Emmert-Streib, F.1    Glazko, G.2
  • 28
    • 84859112389 scopus 로고    scopus 로고
    • Statistical inference and reverse engineering of gene regulatory networks from observational expression data
    • Emmert-Streib, F., Glazko, G., Altay, G., and de Matos Simoes, R. (2012). Statistical inference and reverse engineering of gene regulatory networks from observational expression data. Front. Genet. 3:8. doi: 10.3389/fgene.2012.00008
    • (2012) Front. Genet , vol.3 , pp. 8
    • Emmert-Streib, F.1    Glazko, G.2    Altay, G.3    de Matos Simoes, R.4
  • 29
    • 33846400424 scopus 로고    scopus 로고
    • Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles
    • Faith, J. J., Hayete, B., Thaden, J. T., Mogno, I., Wierzbowski, J., Cottarel, G., et al. (2007). Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5:e8. doi: 10.1371/journal.pbio.0050008
    • (2007) PLoS Biol , vol.5
    • Faith, J.J.1    Hayete, B.2    Thaden, J.T.3    Mogno, I.4    Wierzbowski, J.5    Cottarel, G.6
  • 30
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman, N. (2004). Inferring cellular networks using probabilistic graphical models. Science 303, 799-805. doi: 10.1126/science.1094068
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 31
    • 54949105871 scopus 로고    scopus 로고
    • Analyzing gene perturbation screens with nested effects models in R and bioconductor
    • Frohlich, H., Beissbarth, T., Tresch, A., Kostka, D., Jacob, J., Spang, R., et al. (2008). Analyzing gene perturbation screens with nested effects models in R and bioconductor. Bioinformatics 24, 2549-2550. doi: 10.1093/bioinformatics/btn446
    • (2008) Bioinformatics , vol.24 , pp. 2549-2550
    • Frohlich, H.1    Beissbarth, T.2    Tresch, A.3    Kostka, D.4    Jacob, J.5    Spang, R.6
  • 32
    • 84876566428 scopus 로고    scopus 로고
    • NetwoRx: connecting drugs to networks and phenotypes in Saccharomyces cerevisiae
    • Fortney, K., Xie, W., Kotlyar, M., Griesman, J., Kotseruba, Y., and Jurisica, I. (2013). NetwoRx: connecting drugs to networks and phenotypes in Saccharomyces cerevisiae. Nucleic Acids Res. 41, D720-D727. doi: 10.1093/nar/gks1106
    • (2013) Nucleic Acids Res , vol.41 , pp. D720-D727
    • Fortney, K.1    Xie, W.2    Kotlyar, M.3    Griesman, J.4    Kotseruba, Y.5    Jurisica, I.6
  • 33
    • 84861647487 scopus 로고    scopus 로고
    • Network medicine in drug design: implications for neuroinflammation
    • Ghosh, S., and Basu, A. (2012). Network medicine in drug design: implications for neuroinflammation. Drug Discov. Today 17, 600-607. doi: 10.1016/j.drudis.2012.01.018
    • (2012) Drug Discov. Today , vol.17 , pp. 600-607
    • Ghosh, S.1    Basu, A.2
  • 34
    • 84866931187 scopus 로고    scopus 로고
    • Tissue-specific functional networks for prioritizing phenotype and disease genes
    • Guan, Y., Gorenshteyn, D., Burmeister, M., Wong, A. K., Schimenti, J. C., Handel, M. A., et al. (2012). Tissue-specific functional networks for prioritizing phenotype and disease genes. PLoS Comput. Biol. 8:e1002694. doi: 10.1371/journal.pcbi.1002694
    • (2012) PLoS Comput. Biol , vol.8
    • Guan, Y.1    Gorenshteyn, D.2    Burmeister, M.3    Wong, A.K.4    Schimenti, J.C.5    Handel, M.A.6
  • 35
    • 84862197985 scopus 로고    scopus 로고
    • Predictive networks: a flexible, open source, web application for integration and analysis of human gene networks
    • Haibe-Kains, B., Olsen, C., Djebbari, A., Bontempi, G., Correll, M., Bouton, C., et al. (2012). Predictive networks: a flexible, open source, web application for integration and analysis of human gene networks. Nucleic Acids Res. 40, D866-D875. doi: 10.1093/nar/gkr1050
    • (2012) Nucleic Acids Res , vol.40 , pp. D866-D875
    • Haibe-Kains, B.1    Olsen, C.2    Djebbari, A.3    Bontempi, G.4    Correll, M.5    Bouton, C.6
  • 36
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674. doi: 10.1016/j.cell.2011.02.013
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 37
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: data integration in dynamic models-A review
    • Hecker, M., Lambeck, S., Toepfer, S., van Someren, E., and Guthke, R. (2009). Gene regulatory network inference: data integration in dynamic models-A review. Biosystems 96, 86-103. doi: 10.1016/j.biosystems.2008.12.004
    • (2009) Biosystems , vol.96 , pp. 86-103
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3    van Someren, E.4    Guthke, R.5
  • 38
    • 77958570788 scopus 로고    scopus 로고
    • Inferring regulatory networks from expression data using tree-based methods
    • Huynh-Thu, V. A., Irrthum, A., Wehenkel, L., and Geurts, P. (2010). Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5:e12776. doi: 10.1371/journal.pone.0012776
    • (2010) PLoS ONE , vol.5
    • Huynh-Thu, V.A.1    Irrthum, A.2    Wehenkel, L.3    Geurts, P.4
  • 39
    • 84856094560 scopus 로고    scopus 로고
    • Differential network biology
    • Ideker, T., and Krogan, N. J. (2012). Differential network biology. Mol. Syst. Biol. 8, 565. doi: 10.1038/msb.2011.99
    • (2012) Mol. Syst. Biol , vol.8 , pp. 565
    • Ideker, T.1    Krogan, N.J.2
  • 40
    • 85032068327 scopus 로고    scopus 로고
    • Comparative analysis of differential network modularity in tissue specific normal and cancer protein interaction networks
    • Islam, M., Hoque, M., Banik, R., Roy, S., Sumi, S., Hassan, F. M., et al. (2013). Comparative analysis of differential network modularity in tissue specific normal and cancer protein interaction networks. J. Clin. Bioinform. 3:19. doi: 10.1186/2043-9113-3-19
    • (2013) J. Clin. Bioinform , vol.3 , pp. 19
    • Islam, M.1    Hoque, M.2    Banik, R.3    Roy, S.4    Sumi, S.5    Hassan, F.M.6
  • 41
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: kyoto encyclopedia of genes and genomes
    • Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27-30. doi: 10.1093/nar/28.1.27
    • (2000) Nucleic Acids Res , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 42
    • 33749335282 scopus 로고    scopus 로고
    • The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease
    • Lamb, J., Crawford, E. D., Peck, D., Modell, J. W., Blat, I. C., Wrobel, M. J., et al. (2006). The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929-1935. doi: 10.1126/science.1132939
    • (2006) Science , vol.313 , pp. 1929-1935
    • Lamb, J.1    Crawford, E.D.2    Peck, D.3    Modell, J.W.4    Blat, I.C.5    Wrobel, M.J.6
  • 43
    • 67449095889 scopus 로고    scopus 로고
    • Computational methods for discovering gene networks from expression data
    • Lee, W. P., and Tzou, W. S. (2009). Computational methods for discovering gene networks from expression data. Brief. Bioinform. 10, 408-423. doi: 10.1093/bib/bbp028
    • (2009) Brief. Bioinform , vol.10 , pp. 408-423
    • Lee, W.P.1    Tzou, W.S.2
  • 44
    • 0031616241 scopus 로고    scopus 로고
    • Reveal, a general reverse engineering algorithm for inference of genetic network architectures
    • Liang, S., Fuhrman, S., and Somogyi, R. (1998). Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pac. Symp. Biocomput. 1998, 18-29
    • (1998) Pac. Symp. Biocomput , vol.1998 , pp. 18-29
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 45
    • 58149349958 scopus 로고    scopus 로고
    • Learning transcriptional regulatory networks from high throughput gene expression data using continuous three-way mutual information
    • Luo, W., Hankenson, K., and Woolf, P. (2008). Learning transcriptional regulatory networks from high throughput gene expression data using continuous three-way mutual information. BMC Bioinformatics 9:467. doi: 10.1186/1471-2105-9-467
    • (2008) BMC Bioinformatics , vol.9 , pp. 467
    • Luo, W.1    Hankenson, K.2    Woolf, P.3
  • 46
    • 84860280305 scopus 로고    scopus 로고
    • Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets
    • Madhamshettiwar, P., Maetschke, S., Davis, M., Reverter, A., and Ragan, M. (2012). Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets. Genome Med. 4:41. doi: 10.1186/gm340
    • (2012) Genome Med , vol.4 , pp. 41
    • Madhamshettiwar, P.1    Maetschke, S.2    Davis, M.3    Reverter, A.4    Ragan, M.5
  • 48
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • Margolin, A. A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., et al. (2006). ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl. 1):S7. doi: 10.1186/1471-2105-7-S1-S7
    • (2006) BMC Bioinformatics , vol.7 , pp. S7
    • Margolin, A.A.1    Nemenman, I.2    Basso, K.3    Wiggins, C.4    Stolovitzky, G.5    Dalla Favera, R.6
  • 49
    • 38449088751 scopus 로고    scopus 로고
    • Inferring cellular networks D a review
    • Markowetz, F., and Spang, R. (2007). Inferring cellular networks D a review. BMC Bioinformatics 8(Suppl. 6):S5. doi: 10.1186/1471-2105-8-S6-S5
    • (2007) BMC Bioinformatics , vol.8 , pp. S5
    • Markowetz, F.1    Spang, R.2
  • 50
    • 59949086432 scopus 로고    scopus 로고
    • minet: a R/Bioconductor package for inferring large transcriptional networks using mutual information
    • Meyer, P., Lafitte, F., and Bontempi, G. (2008). minet: a R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics 9:461. doi: 10.1186/1471-2105-9-461
    • (2008) BMC Bioinformatics , vol.9 , pp. 461
    • Meyer, P.1    Lafitte, F.2    Bontempi, G.3
  • 51
    • 78650490181 scopus 로고    scopus 로고
    • Comparative analysis of metabolic networks provides insight into the evolution of plant pathogenic and nonpathogenic lifestyles in pseudomonas
    • Mithani, A., Hein, J., and Preston, G. M. (2011). Comparative analysis of metabolic networks provides insight into the evolution of plant pathogenic and nonpathogenic lifestyles in pseudomonas. Mol. Biol. Evol. 28, 483-499. doi: 10.1093/molbev/msq213
    • (2011) Mol. Biol. Evol , vol.28 , pp. 483-499
    • Mithani, A.1    Hein, J.2    Preston, G.M.3
  • 52
    • 47549107689 scopus 로고    scopus 로고
    • GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function
    • Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C., and Morris, Q. (2008). GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 9(Suppl. 1)S4. doi: 10.1186/gb-2008-9-s1-s4
    • (2008) Genome Biol , vol.9 , pp. S4
    • Mostafavi, S.1    Ray, D.2    Warde-Farley, D.3    Grouios, C.4    Morris, Q.5
  • 53
    • 84902160817 scopus 로고    scopus 로고
    • Inference and validation of predictive gene networks from biomedical literature and gene expression data
    • Olsen, C., Fleming, K., Prendergast, N., Rubio, R., Emmert-Streib, F., Bontempi, G., et al. (2014). Inference and validation of predictive gene networks from biomedical literature and gene expression data. Genomics 103, 329-336. doi: 10.1016/j.ygeno.2014.03.004
    • (2014) Genomics , vol.103 , pp. 329-336
    • Olsen, C.1    Fleming, K.2    Prendergast, N.3    Rubio, R.4    Emmert-Streib, F.5    Bontempi, G.6
  • 54
    • 84857402984 scopus 로고    scopus 로고
    • A novel framework for the comparative analysis of biological networks
    • Pache, R. A., and Aloy, P. (2012). A novel framework for the comparative analysis of biological networks. PLoS ONE 7:e31220. doi: 10.1371/journal.pone.0031220
    • (2012) PLoS ONE , vol.7
    • Pache, R.A.1    Aloy, P.2
  • 55
    • 33846672214 scopus 로고    scopus 로고
    • Biological network comparison using graphlet degree distribution
    • Przulj, N. (2007). Biological network comparison using graphlet degree distribution. Bioinformatics 23, e177-e183. doi: 10.1093/bioinformatics/btl301
    • (2007) Bioinformatics , vol.23 , pp. e177-e183
    • Przulj, N.1
  • 56
    • 84864285545 scopus 로고    scopus 로고
    • Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins
    • Rozenblatt-Rosen, O., Deo, R. C., Padi, M., Adelmant, G., Calderwood, M. A., Rolland, T., et al. (2012). Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature 487, 491-495. doi: 10.1038/nature11288
    • (2012) Nature , vol.487 , pp. 491-495
    • Rozenblatt-Rosen, O.1    Deo, R.C.2    Padi, M.3    Adelmant, G.4    Calderwood, M.A.5    Rolland, T.6
  • 57
    • 70249134919 scopus 로고    scopus 로고
    • Molecular networks as sensors and drivers of common human diseases
    • Schadt, E. (2009). Molecular networks as sensors and drivers of common human diseases. Nature 461, 218-223. doi: 10.1038/nature08454
    • (2009) Nature , vol.461 , pp. 218-223
    • Schadt, E.1
  • 58
    • 33645732240 scopus 로고    scopus 로고
    • Modeling cellular machinery through biological network comparison
    • Sharan, R., and Ideker, T. (2006). Modeling cellular machinery through biological network comparison. Nat. Biotechnol. 24, 427-433. doi: 10.1038/nbt1196
    • (2006) Nat. Biotechnol , vol.24 , pp. 427-433
    • Sharan, R.1    Ideker, T.2
  • 59
    • 72249103485 scopus 로고    scopus 로고
    • A physical and regulatory map of Host-Influenza interactions reveals pathways in H1N1 infection
    • Shapira, S. D., Gat-Viks, I., Shum, B. O. V., Dricot, A., Grace, M. M. D., Wu, L., et al. (2009). A physical and regulatory map of Host-Influenza interactions reveals pathways in H1N1 infection. Cell 139, 1255-1267. doi: 10.1016/j.cell.2009.12.018
    • (2009) Cell , vol.139 , pp. 1255-1267
    • Shapira, S.D.1    Gat-Viks, I.2    Shum, B.O.V.3    Dricot, A.4    Grace, M.M.D.5    Wu, L.6
  • 60
    • 84895923109 scopus 로고    scopus 로고
    • Recent advances in modeling languages for pathway maps and computable biological networks
    • Slater, T. (2014). Recent advances in modeling languages for pathway maps and computable biological networks. Drug Disco. Today 19, 193-198. doi: 10.1016/j.drudis.2013.12.011
    • (2014) Drug Disco. Today , vol.19 , pp. 193-198
    • Slater, T.1
  • 61
    • 84860478431 scopus 로고    scopus 로고
    • A critical evaluation of network and pathway-based classifiers for outcome prediction in breast cancer
    • Staiger, C., Cadot, S., Kooter, R., Dittrich, M., Müller, T., Klau, G. W., et al. (2012). A critical evaluation of network and pathway-based classifiers for outcome prediction in breast cancer. PLoS ONE 7:e34796. doi: 10.1371/journal.pone.0034796
    • (2012) PLoS ONE , vol.7
    • Staiger, C.1    Cadot, S.2    Kooter, R.3    Dittrich, M.4    Müller, T.5    Klau, G.W.6
  • 62
    • 63849210631 scopus 로고    scopus 로고
    • Lessons from the DREAM 2 challenges
    • Stolovitzky, G., Prill, R., and Califano, A. (2009). Lessons from the DREAM 2 challenges. Ann. N.Y. Acad. Sci. 1158, 159-195. doi: 10.1111/j.1749-6632.2009.04497.x
    • (2009) Ann. N.Y. Acad. Sci , vol.1158 , pp. 159-195
    • Stolovitzky, G.1    Prill, R.2    Califano, A.3
  • 63
    • 33749825955 scopus 로고    scopus 로고
    • Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks
    • Werhli, A., Grzegorczyk, M., and Husmeier, D. (2006). Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. Bioinformatics 22, 2523-2531. doi: 10.1093/bioinformatics/btl391
    • (2006) Bioinformatics , vol.22 , pp. 2523-2531
    • Werhli, A.1    Grzegorczyk, M.2    Husmeier, D.3
  • 64
    • 22044448669 scopus 로고    scopus 로고
    • Sparse graphical gaussian modeling of the isoprenoid gene network in arabidopsis thaliana
    • Wille, A., Zimmermann, P., Vranova, E., Furholz, A., Laule, O., Bleuler, S., et al. (2004). Sparse graphical gaussian modeling of the isoprenoid gene network in arabidopsis thaliana. Genome Biol. 5:R92. doi: 10.1186/gb-2004-5-11-r92
    • (2004) Genome Biol , vol.5 , pp. R92
    • Wille, A.1    Zimmermann, P.2    Vranova, E.3    Furholz, A.4    Laule, O.5    Bleuler, S.6
  • 65
    • 84876806691 scopus 로고    scopus 로고
    • Dynamic regulatory network controlling th17 cell differentiation
    • Yosef, N., Shalek, A. K., Gaublomme, J. T., Jin, H., Lee, Y., Awasthi, A., et al. (2013). Dynamic regulatory network controlling th17 cell differentiation. Nature 496, 461-468. doi: 10.1038/nature11981
    • (2013) Nature , vol.496 , pp. 461-468
    • Yosef, N.1    Shalek, A.K.2    Gaublomme, J.T.3    Jin, H.4    Lee, Y.5    Awasthi, A.6
  • 67
    • 84855160951 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from gene expression data by PC-algorithm based on conditional mutual information
    • Zhang, X., Zhao, X.-M., He, K., Lu, L., Cao, Y., Liu, J., et al. (2011). Inferring gene regulatory networks from gene expression data by PC-algorithm based on conditional mutual information. Bioinformatics 28, 98-104. doi: 10.1093/bioinformatics/btr626
    • (2011) Bioinformatics , vol.28 , pp. 98-104
    • Zhang, X.1    Zhao, X.-M.2    He, K.3    Lu, L.4    Cao, Y.5    Liu, J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.