-
1
-
-
47949114178
-
Soft lithography: masters on demand
-
Abdelgawad, M., et al. Soft lithography: masters on demand. Lab Chip 8:8 (2008), 1379–1385.
-
(2008)
Lab Chip
, vol.8
, Issue.8
, pp. 1379-1385
-
-
Abdelgawad, M.1
-
2
-
-
0033988843
-
Fabrication of microfluidic systems in poly (dimethylsiloxane)
-
Anderson, J.R., et al. Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21 (2000), 27–40.
-
(2000)
Electrophoresis
, vol.21
, pp. 27-40
-
-
Anderson, J.R.1
-
3
-
-
78651480837
-
Experimental and numerical investigation of acoustic streaming excited by using a surface acoustic wave device on a 128° YX-LiNbO3 substrate
-
Alghane, M., et al. Experimental and numerical investigation of acoustic streaming excited by using a surface acoustic wave device on a 128° YX-LiNbO3 substrate. J. Micromech. Microeng., 21(1), 2011, 015005.
-
(2011)
J. Micromech. Microeng.
, vol.21
, Issue.1
, pp. 015005
-
-
Alghane, M.1
-
4
-
-
58349093333
-
Parametric study on mixing of two fluids in a three-dimensional serpentine microchannel
-
Ansari, M.A., Parametric study on mixing of two fluids in a three-dimensional serpentine microchannel. Chem. Eng. J. 146:3 (2009), 439–448.
-
(2009)
Chem. Eng. J.
, vol.146
, Issue.3
, pp. 439-448
-
-
Ansari, M.A.1
-
5
-
-
84991377875
-
Toner Composition and Method of Making
-
Amering, A.R., Smith, D.E., Spence, J.M., 1990. Toner Composition and Method of Making. US Patent, US3855166 A.
-
(1990)
US Patent, US3855166 A
-
-
Amering, A.R.1
Smith, D.E.2
Spence, J.M.3
-
6
-
-
84896012366
-
Application of microfluidics in waterborne pathogen monitoring: a review
-
Bridle, H., Miller, B., Desmulliez, M.P.Y., Application of microfluidics in waterborne pathogen monitoring: a review. Water Res. 55:1 (2014), 256–271.
-
(2014)
Water Res.
, vol.55
, Issue.1
, pp. 256-271
-
-
Bridle, H.1
Miller, B.2
Desmulliez, M.P.Y.3
-
7
-
-
0037060168
-
Polymer microfluidic devices
-
Becker, H., Locascio, L.E., Polymer microfluidic devices. Talanta 56:2 (2002), 267–287.
-
(2002)
Talanta
, vol.56
, Issue.2
, pp. 267-287
-
-
Becker, H.1
Locascio, L.E.2
-
8
-
-
0043055020
-
Springer Handbook of Nanotechnology
-
Springer-Verlag, Berlin, Heidelberg Gale virtual reference library
-
Bhushan, B., Springer Handbook of Nanotechnology. 2007, Springer-Verlag, Berlin, Heidelberg Gale virtual reference library.
-
(2007)
-
-
Bhushan, B.1
-
9
-
-
0030231574
-
Electron beam lithography—resolution limits
-
Broers, A.N., Hoole, A.C.F., Ryan, J.M., Electron beam lithography—resolution limits. Microelectron. Eng. 32:1 (1996), 131–142.
-
(1996)
Microelectron. Eng.
, vol.32
, Issue.1
, pp. 131-142
-
-
Broers, A.N.1
Hoole, A.C.F.2
Ryan, J.M.3
-
10
-
-
0032050524
-
Printing patterns of proteins
-
Bernard, A., et al. Printing patterns of proteins. Langmuir 14:9 (1998), 2225–2229.
-
(1998)
Langmuir
, vol.14
, Issue.9
, pp. 2225-2229
-
-
Bernard, A.1
-
11
-
-
23044507925
-
Fabrication of poly(dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer
-
Bao, N., et al. Fabrication of poly(dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer. J. Chromatogr. A 1089:1–2 (2005), 270–275.
-
(2005)
J. Chromatogr. A
, vol.1089
, Issue.1-2
, pp. 270-275
-
-
Bao, N.1
-
12
-
-
29244476881
-
Xurography: rapid prototyping of microstructures using a cutting plotter
-
Bartholomeusz, D.A., Boutte, R.W., Andrade, J.D., Xurography: rapid prototyping of microstructures using a cutting plotter. Microelectromech. Syst. J. 14:6 (2005), 1364–1374.
-
(2005)
Microelectromech. Syst. J.
, vol.14
, Issue.6
, pp. 1364-1374
-
-
Bartholomeusz, D.A.1
Boutte, R.W.2
Andrade, J.D.3
-
13
-
-
84991353515
-
Fabrication of moulds and dies using precision laser micromachining and micromilling technologies
-
Bordatchev, E., Nikumb, S., Fabrication of moulds and dies using precision laser micromachining and micromilling technologies. J. Laser Micro/Nanoeng., 3, 2008, 3.
-
(2008)
J. Laser Micro/Nanoeng.
, vol.3
, pp. 3
-
-
Bordatchev, E.1
Nikumb, S.2
-
14
-
-
34548621494
-
Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices
-
Betancourt, T., Brannon-Peppas, L., Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices. Int. J. Nanomed. 1:4 (2006), 483–495.
-
(2006)
Int. J. Nanomed.
, vol.1
, Issue.4
, pp. 483-495
-
-
Betancourt, T.1
Brannon-Peppas, L.2
-
15
-
-
0032077411
-
Micropatterned surfaces for control of cell shape, position, and function
-
Chen, C.S., et al. Micropatterned surfaces for control of cell shape, position, and function. Biotechnol. Prog. 14:3 (1998), 356–363.
-
(1998)
Biotechnol. Prog.
, vol.14
, Issue.3
, pp. 356-363
-
-
Chen, C.S.1
-
16
-
-
0030953763
-
Geometric control of cell life and death
-
Chen, C.S., et al. Geometric control of cell life and death. Science 276:5317 (1997), 1425–1428.
-
(1997)
Science
, vol.276
, Issue.5317
, pp. 1425-1428
-
-
Chen, C.S.1
-
17
-
-
0037073161
-
Decal transfer microlithography: a new soft-lithographic patterning method
-
Childs, W.R., Nuzzo, R.G., Decal transfer microlithography: a new soft-lithographic patterning method. J. Am. Chem. Soc. 124:45 (2002), 13583–13596.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, Issue.45
, pp. 13583-13596
-
-
Childs, W.R.1
Nuzzo, R.G.2
-
18
-
-
84942373660
-
Rapid fabrication of on-demand high-resolution optical masks with a CD–DVD pickup unit
-
Cabriales, L., et al. Rapid fabrication of on-demand high-resolution optical masks with a CD–DVD pickup unit. Appl. Opt. 53:9 (2014), 1802–1807.
-
(2014)
Appl. Opt.
, vol.53
, Issue.9
, pp. 1802-1807
-
-
Cabriales, L.1
-
19
-
-
0001229895
-
Blood flow in small tubes
-
G.R. Eds American Physiology Society, Bethesda
-
Chien, S., Usami, S., Skalak, R., Blood flow in small tubes. Eds, G.R., (eds.) Handbook of Physiology – The Cardiovascular System, 1984, American Physiology Society, Bethesda, 217–249.
-
(1984)
Handbook of Physiology – The Cardiovascular System
, pp. 217-249
-
-
Chien, S.1
Usami, S.2
Skalak, R.3
-
20
-
-
0032403465
-
Rapid prototyping of microfluidic systems in poly (dimethylsiloxane)
-
Duffy, D.C., et al. Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal. Chem. 70:23 (1998), 4974–4984.
-
(1998)
Anal. Chem.
, vol.70
, Issue.23
, pp. 4974-4984
-
-
Duffy, D.C.1
-
21
-
-
79551609564
-
Microstructuring of SU-8 resist for MEMS and bio-applications
-
Dey, P.K., et al. Microstructuring of SU-8 resist for MEMS and bio-applications. Int. J. Smart Sens. Intell. Syst. 3 (2010), 118–129.
-
(2010)
Int. J. Smart Sens. Intell. Syst.
, vol.3
, pp. 118-129
-
-
Dey, P.K.1
-
22
-
-
0030948781
-
Patterned delivery of immunoglobulins to surfaces using microfluidic networks
-
Delamarche, E., et al. Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 276:5313 (1997), 779–781.
-
(1997)
Science
, vol.276
, Issue.5313
, pp. 779-781
-
-
Delamarche, E.1
-
23
-
-
0032573880
-
Microfluidic networks for chemical patterning of substrates: design and application to bioassays
-
Delamarche, E., et al. Microfluidic networks for chemical patterning of substrates: design and application to bioassays. J. Am. Chem. Soc. 120:3 (1998), 500–508.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, Issue.3
, pp. 500-508
-
-
Delamarche, E.1
-
24
-
-
0032403465
-
Rapid prototyping of microfluidic systems in Poly(dimethylsiloxane)
-
Duffy, D.C., et al. Rapid prototyping of microfluidic systems in Poly(dimethylsiloxane). Anal. Chem. 70:23 (1998), 4974–4984.
-
(1998)
Anal. Chem.
, vol.70
, Issue.23
, pp. 4974-4984
-
-
Duffy, D.C.1
-
25
-
-
0036643808
-
PDMS-based microfluidic devices for biomedical applications
-
Fujii, T., PDMS-based microfluidic devices for biomedical applications. Microelectron. Eng. 61–62:1 (2002), 907–914.
-
(2002)
Microelectron. Eng.
, vol.61-62
, Issue.1
, pp. 907-914
-
-
Fujii, T.1
-
26
-
-
0034193490
-
Lab-on-a-chip: a revolution in biological and medical sciences
-
Figeys, D., Pinto, D., Lab-on-a-chip: a revolution in biological and medical sciences. Anal. Chem. 72:9 (2000), 330–333.
-
(2000)
Anal. Chem.
, vol.72
, Issue.9
, pp. 330-333
-
-
Figeys, D.1
Pinto, D.2
-
27
-
-
84955678972
-
Handbook of Modern Sensors: Physics, Designs, and Applications
-
Springer New York
-
Fraden, J., Handbook of Modern Sensors: Physics, Designs, and Applications. 2010, Springer, New York.
-
(2010)
-
-
Fraden, J.1
-
28
-
-
84897095103
-
Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells
-
Faustino, V., et al. Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells. BioChip J. 8:1 (2014), 42–47.
-
(2014)
BioChip J.
, vol.8
, Issue.1
, pp. 42-47
-
-
Faustino, V.1
-
29
-
-
77955414337
-
Acoustic emission sensor with structure-enhanced sensing mechanism based on micro-embossed piezoelectric polymer
-
Feng, G.-H., Tsai, M.-Y., Acoustic emission sensor with structure-enhanced sensing mechanism based on micro-embossed piezoelectric polymer. Sens. Actuators A: Phys. 162:1 (2010), 100–106.
-
(2010)
Sens. Actuators A: Phys.
, vol.162
, Issue.1
, pp. 100-106
-
-
Feng, G.-H.1
Tsai, M.-Y.2
-
30
-
-
15244347610
-
Disposable microfluidic devices: fabrication, function, and application
-
Fiorini, G.S., Chiu, D.T., Disposable microfluidic devices: fabrication, function, and application. BioTechniques 38:3 (2005), 429–446.
-
(2005)
BioTechniques
, vol.38
, Issue.3
, pp. 429-446
-
-
Fiorini, G.S.1
Chiu, D.T.2
-
31
-
-
84991302945
-
Binder Resins for Electron Photography and the Like and Method of Productive Thereof
-
Fukuda, M., Kishi, I., Nakano, T., 1974. Binder Resins for Electron Photography and the Like and Method of Productive Thereof. US Patent, US3855166 A.
-
(1974)
US Patent, US3855166 A.
-
-
Fukuda, M.1
Kishi, I.2
Nakano, T.3
-
32
-
-
77249100175
-
A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions
-
Fiddes, L.K., et al. A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions. Biomaterials 31:13 (2010), 3459–3464.
-
(2010)
Biomaterials
, vol.31
, Issue.13
, pp. 3459-3464
-
-
Fiddes, L.K.1
-
33
-
-
0344667477
-
Replication of vertical features smaller than 2 nm by soft lithography
-
Gates, B.D., Whitesides, G.M., Replication of vertical features smaller than 2 nm by soft lithography. J. Am. Chem. Soc. 125:49 (2003), 14986–14987.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, Issue.49
, pp. 14986-14987
-
-
Gates, B.D.1
Whitesides, G.M.2
-
34
-
-
4344679349
-
Unconventional nanofabrication
-
Gates, B.D., et al. Unconventional nanofabrication. Annu. Rev. Mater. Res. 34 (2004), 339–372.
-
(2004)
Annu. Rev. Mater. Res.
, vol.34
, pp. 339-372
-
-
Gates, B.D.1
-
35
-
-
12444344720
-
Nanofabrication with molds & stamps
-
Gates, B.D., Nanofabrication with molds & stamps. Mater. Today 8:2 (2005), 44–49.
-
(2005)
Mater. Today
, vol.8
, Issue.2
, pp. 44-49
-
-
Gates, B.D.1
-
36
-
-
36949004297
-
Comparison of glass etching to xurography prototyping of microfluidic channels for DNA meltinh analysis
-
Greer, J., et al. Comparison of glass etching to xurography prototyping of microfluidic channels for DNA meltinh analysis. J. Micromech. Microeng. 17:12 (2007), 2407–2413.
-
(2007)
J. Micromech. Microeng.
, vol.17
, Issue.12
, pp. 2407-2413
-
-
Greer, J.1
-
37
-
-
0015061255
-
Deformation of human red cells in tube flow
-
Goldsmith, H.L., Deformation of human red cells in tube flow. Biorheology 7:4 (1971), 235–242.
-
(1971)
Biorheology
, vol.7
, Issue.4
, pp. 235-242
-
-
Goldsmith, H.L.1
-
38
-
-
0001142668
-
Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells
-
Goldsmith, H.L., Marlow, J.C., Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells. J. Colloid Interface Sci. 71:2 (1979), 383–407.
-
(1979)
J. Colloid Interface Sci.
, vol.71
, Issue.2
, pp. 383-407
-
-
Goldsmith, H.L.1
Marlow, J.C.2
-
39
-
-
0024397828
-
Robin Fahraeus: evolution of his concepts in cardiovascular physiology
-
Goldsmith, H.L., Cokelet, G.R., Gaehtgens, P., Robin Fahraeus: evolution of his concepts in cardiovascular physiology. Am. J. Physiol. – Heart Circ. Physiol. 257:3 (1989), H1005–H1015.
-
(1989)
Am. J. Physiol. – Heart Circ. Physiol.
, vol.257
, Issue.3
, pp. H1005-H1015
-
-
Goldsmith, H.L.1
Cokelet, G.R.2
Gaehtgens, P.3
-
40
-
-
0141557513
-
Microfluidics in structural biology: smaller, faster… better
-
Hansen, C., Quake, S.R., Microfluidics in structural biology: smaller, faster… better. Curr. Opin. Struct. Biol. 13:5 (2003), 538–544.
-
(2003)
Curr. Opin. Struct. Biol.
, vol.13
, Issue.5
, pp. 538-544
-
-
Hansen, C.1
Quake, S.R.2
-
41
-
-
34548077793
-
Microfluidic platforms for lab-on-a-chip applications
-
Haeberle, S., Zengerle, R., Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:9 (2007), 1094–1110.
-
(2007)
Lab Chip
, vol.7
, Issue.9
, pp. 1094-1110
-
-
Haeberle, S.1
Zengerle, R.2
-
42
-
-
0002264421
-
X-ray lithography
-
Heuberger, A., X-ray lithography. J. Vac. Sci. Technol. B 6:1 (1988), 107–121.
-
(1988)
J. Vac. Sci. Technol. B
, vol.6
, Issue.1
, pp. 107-121
-
-
Heuberger, A.1
-
43
-
-
0442280362
-
3D microfabrication with inclined/rotated UV lithography
-
Han, M., et al. 3D microfabrication with inclined/rotated UV lithography. Sens. Actuators A: Phys. 111:1 (2004), 14–20.
-
(2004)
Sens. Actuators A: Phys.
, vol.111
, Issue.1
, pp. 14-20
-
-
Han, M.1
-
44
-
-
81255191887
-
A portable, benchtop photolithography system based on a solid-state light source
-
Huntington, M.D., Odom, T.W., A portable, benchtop photolithography system based on a solid-state light source. Small 7:22 (2011), 3144–3147.
-
(2011)
Small
, vol.7
, Issue.22
, pp. 3144-3147
-
-
Huntington, M.D.1
Odom, T.W.2
-
45
-
-
79751530627
-
Asymmetry of blood flow and cancer cell adhesion in a microchannel with symmetric bifurcation and confluence
-
Ishikawa, T., et al. Asymmetry of blood flow and cancer cell adhesion in a microchannel with symmetric bifurcation and confluence. Biomed. Microdevices 13:1 (2011), 159–167.
-
(2011)
Biomed. Microdevices
, vol.13
, Issue.1
, pp. 159-167
-
-
Ishikawa, T.1
-
46
-
-
4544383496
-
Three-dimensional nanofabrication with rubber Stamps and Conformable Photomasks
-
Jeon, S., et al. Three-dimensional nanofabrication with rubber Stamps and Conformable Photomasks. Adv. Mater. 16:15 (2004), 1369–1373.
-
(2004)
Adv. Mater.
, vol.16
, Issue.15
, pp. 1369-1373
-
-
Jeon, S.1
-
47
-
-
0000242759
-
Fabricating large arrays of microwells with arbitrary dimensions and filling them using discontinuous dewetting
-
Jackman, R.J., et al. Fabricating large arrays of microwells with arbitrary dimensions and filling them using discontinuous dewetting. Anal. Chem. 70:11 (1998), 2280–2287.
-
(1998)
Anal. Chem.
, vol.70
, Issue.11
, pp. 2280-2287
-
-
Jackman, R.J.1
-
48
-
-
57849110891
-
PDMS microchannel fabrication technique based on microwire-molding
-
Jia, Y., et al. PDMS microchannel fabrication technique based on microwire-molding. Chin. Sci. Bull. 53:24 (2008), 3928–3936.
-
(2008)
Chin. Sci. Bull.
, vol.53
, Issue.24
, pp. 3928-3936
-
-
Jia, Y.1
-
49
-
-
84958970875
-
Blood flow visualization and measurements in microfluidic devices fabricated by a micromilling technique
-
Jaron, S., et al. Blood flow visualization and measurements in microfluidic devices fabricated by a micromilling technique. Micro Nanosyst., 7(3), 2015.
-
(2015)
Micro Nanosyst.
, vol.7
, Issue.3
-
-
Jaron, S.1
-
50
-
-
0031244526
-
Developments in technology and applications of microsystems
-
Kopp, M.U., Crabtree, H.J., Manz, A., Developments in technology and applications of microsystems. Curr. Opin. Chem. Biol. 1:3 (1997), 410–419.
-
(1997)
Curr. Opin. Chem. Biol.
, vol.1
, Issue.3
, pp. 410-419
-
-
Kopp, M.U.1
Crabtree, H.J.2
Manz, A.3
-
51
-
-
57349108790
-
Soft lithography for microfluidics: a review
-
Kim, P., et al. Soft lithography for microfluidics: a review. BioChip J. 2 (2008), 1–11.
-
(2008)
BioChip J.
, vol.2
, pp. 1-11
-
-
Kim, P.1
-
52
-
-
51149210777
-
Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘‘ink’’ followed by chemical etching
-
Kumar, A., Whitesides, G.M., Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘‘ink’’ followed by chemical etching. Appl. Phys. Lett. 63:14 (1993), 2002–2004.
-
(1993)
Appl. Phys. Lett.
, vol.63
, Issue.14
, pp. 2002-2004
-
-
Kumar, A.1
Whitesides, G.M.2
-
53
-
-
0029357345
-
Polymer microstructures formed by moulding in capillaries
-
Kim, E., Xia, Y., Whitesides, G.M., Polymer microstructures formed by moulding in capillaries. Nature 376 (1995), 581–584.
-
(1995)
Nature
, vol.376
, pp. 581-584
-
-
Kim, E.1
Xia, Y.2
Whitesides, G.M.3
-
54
-
-
0031165657
-
Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers
-
King, E., et al. Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers. Adv. Mater. 9:8 (1997), 651–654.
-
(1997)
Adv. Mater.
, vol.9
, Issue.8
, pp. 651-654
-
-
King, E.1
-
55
-
-
84926369165
-
Fabrication of 3D high aspect ratio PDMS microfluidic networks with a hybrid stamp
-
Kung, Y.-C., et al. Fabrication of 3D high aspect ratio PDMS microfluidic networks with a hybrid stamp. Lab Chip 15:8 (2015), 1861–1868.
-
(2015)
Lab Chip
, vol.15
, Issue.8
, pp. 1861-1868
-
-
Kung, Y.-C.1
-
56
-
-
46149110780
-
Cell research with physically modified microfluidic channels: a review
-
Kim, S.M., Lee, S.H., Suh, K.Y., Cell research with physically modified microfluidic channels: a review. Lab Chip 8:7 (2008), 1015–1023.
-
(2008)
Lab Chip
, vol.8
, Issue.7
, pp. 1015-1023
-
-
Kim, S.M.1
Lee, S.H.2
Suh, K.Y.3
-
57
-
-
0032703889
-
Patterning proteins and cells using soft lithography
-
Kane, R.S., et al. Patterning proteins and cells using soft lithography. Biomaterials 20:23 (1999), 2363–2376.
-
(1999)
Biomaterials
, vol.20
, Issue.23
, pp. 2363-2376
-
-
Kane, R.S.1
-
58
-
-
0032471714
-
Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels
-
Kim, S.S., et al. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann. Surg., 228(1), 1998, 8.
-
(1998)
Ann. Surg.
, vol.228
, Issue.1
, pp. 8
-
-
Kim, S.S.1
-
59
-
-
33847347371
-
Rapid prototyping of microfluidic devices with a wax printer
-
Kaigala, G.V., et al. Rapid prototyping of microfluidic devices with a wax printer. Lab Chip 7:3 (2007), 384–387.
-
(2007)
Lab Chip
, vol.7
, Issue.3
, pp. 384-387
-
-
Kaigala, G.V.1
-
60
-
-
68649096392
-
The cell-free layer in microvascular blood flow
-
Kim, S., et al. The cell-free layer in microvascular blood flow. Biorheology, 46(3), 2009, 181.
-
(2009)
Biorheology
, vol.46
, Issue.3
, pp. 181
-
-
Kim, S.1
-
61
-
-
65349131935
-
Femtosecond laser machining and lamination for large-area flexible organic microfluidic chips
-
Khan Malek, C., Robert, L., Salut, R., Femtosecond laser machining and lamination for large-area flexible organic microfluidic chips. Eur. Phys. J. – Appl. Phys., 46(01), 2009, 12503.
-
(2009)
Eur. Phys. J. – Appl. Phys.
, vol.46
, Issue.1
, pp. 12503
-
-
Khan Malek, C.1
Robert, L.2
Salut, R.3
-
62
-
-
34547657521
-
Fabrication of round channels using the surface tension of PDMS and its application to a 3D serpentine mixer
-
Kangsun, L., et al. Fabrication of round channels using the surface tension of PDMS and its application to a 3D serpentine mixer. J. Micromech. Microeng., 17(8), 2007, 1533.
-
(2007)
J. Micromech. Microeng.
, vol.17
, Issue.8
, pp. 1533
-
-
Kangsun, L.1
-
63
-
-
65349131935
-
Femtosecond laser machining and lamination for large-area flexible organic microfluidic chips
-
Khan Malek, C., Robert, L., Salut, R., Femtosecond laser machining and lamination for large-area flexible organic microfluidic chips. Eur. Phys. J. – Appl. Phys., 46(01), 2009, 5.
-
(2009)
Eur. Phys. J. – Appl. Phys.
, vol.46
, Issue.1
, pp. 5
-
-
Khan Malek, C.1
Robert, L.2
Salut, R.3
-
64
-
-
0000682452
-
Microfabricated biosensors and microanalytical systems for blood analysis
-
Lauks, I.R., Microfabricated biosensors and microanalytical systems for blood analysis. Acc. Chem. Res. 31:5 (1998), 317–324.
-
(1998)
Acc. Chem. Res.
, vol.31
, Issue.5
, pp. 317-324
-
-
Lauks, I.R.1
-
65
-
-
0003941908
-
Principles of Lithography
-
Society of Photo Optical, Washington Press Monographs
-
Levinson, H.J., Principles of Lithography. 2005, Society of Photo Optical, Washington Press Monographs.
-
(2005)
-
-
Levinson, H.J.1
-
66
-
-
84922337609
-
A protocol for improving fabrication yield of thin SU-8 microcantilevers for use in an aptasensor
-
Lim, Y.C., et al. A protocol for improving fabrication yield of thin SU-8 microcantilevers for use in an aptasensor. Microsyst. Technol. 21:2 (2015), 371–380.
-
(2015)
Microsyst. Technol.
, vol.21
, Issue.2
, pp. 371-380
-
-
Lim, Y.C.1
-
67
-
-
42549120545
-
Fabrication and characterization of freestanding 3D carbon microstructures using multi-exposures and resist pyrolysis
-
Lee, J.A., et al. Fabrication and characterization of freestanding 3D carbon microstructures using multi-exposures and resist pyrolysis. J. Micromech. Microeng., 18(3), 2008, 035012.
-
(2008)
J. Micromech. Microeng.
, vol.18
, Issue.3
, pp. 035012
-
-
Lee, J.A.1
-
68
-
-
0036734816
-
A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist
-
Lin, C.-H., et al. A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist. J. Micromech. Microeng., 12(5), 2002, 590.
-
(2002)
J. Micromech. Microeng.
, vol.12
, Issue.5
, pp. 590
-
-
Lin, C.-H.1
-
69
-
-
84887234860
-
Releasing high aspect ratio SU-8 microstructures using AZ photoresist as a sacrificial layer on metallized Si substrates
-
Lau, K.H., et al. Releasing high aspect ratio SU-8 microstructures using AZ photoresist as a sacrificial layer on metallized Si substrates. Microsyst. Technol. 19:11 (2013), 1863–1871.
-
(2013)
Microsyst. Technol.
, vol.19
, Issue.11
, pp. 1863-1871
-
-
Lau, K.H.1
-
70
-
-
84927935587
-
Rapid fabrication of microfluidic chips based on the simplest LED lithography
-
Li, Y., et al. Rapid fabrication of microfluidic chips based on the simplest LED lithography. J. Micromech. Microeng., 25(5), 2015, 055020.
-
(2015)
J. Micromech. Microeng.
, vol.25
, Issue.5
, pp. 055020
-
-
Li, Y.1
-
71
-
-
84991302894
-
The Study of the Effect of Microcontractions in the Separation of Blood Cells: Soft Lithography and Micromilling (Master thesis)
-
Instituto Politécnico de Bragança, Bragança, Portugal
-
Lopes, A.R., The Study of the Effect of Microcontractions in the Separation of Blood Cells: Soft Lithography and Micromilling (Master thesis). 2014, Instituto Politécnico de Bragança, Bragança, Portugal.
-
(2014)
-
-
Lopes, A.R.1
-
73
-
-
84882848971
-
Blood flow Behavior in microchannels: past, current and future trends
-
A.A.M. Ricardo Dias Rui Lima T.M. Mata Bentham Science, United States of America
-
Lima, R., et al. Blood flow Behavior in microchannels: past, current and future trends. Dias, A.A.M. Ricardo, Lima, Rui, Mata, T.M., (eds.) In Single and two-Phase Flows on Chemical and Biomedical Engineering, 2012, Bentham Science, United States of America, 513–547.
-
(2012)
In Single and two-Phase Flows on Chemical and Biomedical Engineering
, pp. 513-547
-
-
Lima, R.1
-
74
-
-
33645241605
-
Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel
-
Lima, R., et al. Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel. Meas. Sci. Technol., 17(4), 2006, 797.
-
(2006)
Meas. Sci. Technol.
, vol.17
, Issue.4
, pp. 797
-
-
Lima, R.1
-
75
-
-
52649122824
-
Radial dispersion of red blood cells in blood flowing through glass capillaries: the role of hematocrit and geometry
-
Lima, R., et al. Radial dispersion of red blood cells in blood flowing through glass capillaries: the role of hematocrit and geometry. J. Biomech. 41:10 (2008), 2188–2196.
-
(2008)
J. Biomech.
, vol.41
, Issue.10
, pp. 2188-2196
-
-
Lima, R.1
-
76
-
-
77957976765
-
Axisymmetric polydimethysiloxane microchannels for in vitro hemodynamic studies
-
Lima, R., et al. Axisymmetric polydimethysiloxane microchannels for in vitro hemodynamic studies. Biofabrication, 1(3), 2009, 035005.
-
(2009)
Biofabrication
, vol.1
, Issue.3
, pp. 035005
-
-
Lima, R.1
-
77
-
-
84859351413
-
A perspective on paper-based microfluidics: current status and future trends
-
Li, X., Ballerini, D.R., Shen, W., A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6:1 (2012), 011301–011313.
-
(2012)
Biomicrofluidics
, vol.6
, Issue.1
, pp. 011301-011313
-
-
Li, X.1
Ballerini, D.R.2
Shen, W.3
-
78
-
-
84855278516
-
Asymmetry of red blood cell motions in a microchannel with a diverging and converging bifurcation
-
044120-15
-
Leble, V., et al. Asymmetry of red blood cell motions in a microchannel with a diverging and converging bifurcation. Biomicrofluidics, 5(4), 2011 044120-15.
-
(2011)
Biomicrofluidics
, vol.5
, Issue.4
-
-
Leble, V.1
-
79
-
-
33646722836
-
A micromachined electrochemical sensor for free chlorine monitoring in drinking water
-
Mehta, A., et al. A micromachined electrochemical sensor for free chlorine monitoring in drinking water. Water Sci. Technol. 53:4–5 (2006), 403–410.
-
(2006)
Water Sci. Technol.
, vol.53
, Issue.4-5
, pp. 403-410
-
-
Mehta, A.1
-
80
-
-
34347256054
-
Microfluidic large-scale integration: the evolution of design rules for biological automation
-
Melin, J., Quake, S.R., Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 36 (2007), 213–231.
-
(2007)
Annu. Rev. Biophys. Biomol. Struct.
, vol.36
, pp. 213-231
-
-
Melin, J.1
Quake, S.R.2
-
81
-
-
0025207507
-
Miniaturized total chemical analysis systems: a novel concept for chemical sensing
-
Manz, A., Graber, N., Widmer, H.á, Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens. Actuators B: Chem. 1:1 (1990), 244–248.
-
(1990)
Sens. Actuators B: Chem.
, vol.1
, Issue.1
, pp. 244-248
-
-
Manz, A.1
Graber, N.2
Widmer, H.Á.3
-
82
-
-
85051153500
-
Microfluidics and Nanofluidics Handbook: Fabrication, Implementation, and Applications
-
CRC Press, Boca Raton, Florida
-
Mitra, S.K., Chakraborty, S., Microfluidics and Nanofluidics Handbook: Fabrication, Implementation, and Applications. 2011, CRC Press, Boca Raton, Florida.
-
(2011)
-
-
Mitra, S.K.1
Chakraborty, S.2
-
83
-
-
0031570953
-
Microchannel electrophoretic separations of DNA in injection-molded plastic substrates
-
McCormick, R.M., et al. Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. Anal. Chem. 69:14 (1997), 2626–2630.
-
(1997)
Anal. Chem.
, vol.69
, Issue.14
, pp. 2626-2630
-
-
McCormick, R.M.1
-
84
-
-
0035984039
-
Poly (dimethylsiloxane) as a material for fabricating microfluidic devices
-
McDonald, J.C., Whitesides, G.M., Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35:7 (2002), 491–499.
-
(2002)
Acc. Chem. Res.
, vol.35
, Issue.7
, pp. 491-499
-
-
McDonald, J.C.1
Whitesides, G.M.2
-
85
-
-
0000056859
-
Design and fabrication of polymer microfluidic platforms for biomedical applications
-
Madou, M.J. et al., 2001. Design and fabrication of polymer microfluidic platforms for biomedical applications. In: Proc. of the 59th ANTEC-SPE 3, pp. 2534–2538.
-
(2001)
Proc. of the 59th ANTEC-SPE 3
, pp. 2534-2538
-
-
Madou, M.J.1
-
86
-
-
0029873842
-
Erythrocyte rheology in microcirculation
-
Maeda, N., Erythrocyte rheology in microcirculation. Jpn. J. Physiol. 46:1 (1996), 1–14.
-
(1996)
Jpn. J. Physiol.
, vol.46
, Issue.1
, pp. 1-14
-
-
Maeda, N.1
-
87
-
-
84876099601
-
Advances in microfluidic materials, functions, integration, and applications
-
Nge, P.N., Rogers, C.I., Woolley, A.T., Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 113:4 (2013), 2550–2583.
-
(2013)
Chem. Rev.
, vol.113
, Issue.4
, pp. 2550-2583
-
-
Nge, P.N.1
Rogers, C.I.2
Woolley, A.T.3
-
88
-
-
84991389479
-
Toner for Toner-Jetting
-
Natsuhara, T., Tanino, K., Ohno, Y. 2001. Toner for Toner-Jetting. US Patent, US6171746 B1.
-
(2001)
US Patent, US6171746 B1
-
-
Natsuhara, T.1
Tanino, K.2
Ohno, Y.3
-
89
-
-
84885148200
-
Photomasks fabrication based on optical reduction for microfluidic applications
-
Orabona, E., et al. Photomasks fabrication based on optical reduction for microfluidic applications. Micromachines 4:2 (2013), 206–214.
-
(2013)
Micromachines
, vol.4
, Issue.2
, pp. 206-214
-
-
Orabona, E.1
-
90
-
-
43649087453
-
Benefits of in-situ synthesized microarrays for analysis of gene expression in understudied microorganisms
-
Postier, B., et al. Benefits of in-situ synthesized microarrays for analysis of gene expression in understudied microorganisms. J. Microbiol. Methods 74:1 (2008), 26–32.
-
(2008)
J. Microbiol. Methods
, vol.74
, Issue.1
, pp. 26-32
-
-
Postier, B.1
-
91
-
-
54749087065
-
PDMS as a sacrificial substrate for SU-8-based biomedical and microfluidic applications
-
Patel, J.N., et al. PDMS as a sacrificial substrate for SU-8-based biomedical and microfluidic applications. J. Micromech. Microeng., 18(9), 2008, 095028.
-
(2008)
J. Micromech. Microeng.
, vol.18
, Issue.9
, pp. 095028
-
-
Patel, J.N.1
-
92
-
-
84987791217
-
Optimized SU-8 processing for low-cost microstructures fabrication without cleanroom facilities
-
Pinto, V.C., et al. Optimized SU-8 processing for low-cost microstructures fabrication without cleanroom facilities. Micromachines 5:3 (2014), 738–755.
-
(2014)
Micromachines
, vol.5
, Issue.3
, pp. 738-755
-
-
Pinto, V.C.1
-
93
-
-
84891882118
-
A microfluidic device for partial cell separation and deformability assessment
-
Pinho, D., Yaginuma, T., Lima, R., A microfluidic device for partial cell separation and deformability assessment. BioChip J. 7:4 (2013), 367–374.
-
(2013)
BioChip J.
, vol.7
, Issue.4
, pp. 367-374
-
-
Pinho, D.1
Yaginuma, T.2
Lima, R.3
-
94
-
-
0031984289
-
Integration of surface modification and 3D fabrication techniques to prepare patterned poly (L-Lactide) substrates allowing regionally selective cell adhesion
-
Park, A., Wu, B., Griffith, L.G., Integration of surface modification and 3D fabrication techniques to prepare patterned poly (L-Lactide) substrates allowing regionally selective cell adhesion. J. Biomater. Sci. Polym. Ed. 9:2 (1998), 89–110.
-
(1998)
J. Biomater. Sci. Polym. Ed.
, vol.9
, Issue.2
, pp. 89-110
-
-
Park, A.1
Wu, B.2
Griffith, L.G.3
-
95
-
-
84921682141
-
A rapid and low-cost nonlithographic method to fabricate biomedical microdevices for blood flow analysis
-
Pinto, E., et al. A rapid and low-cost nonlithographic method to fabricate biomedical microdevices for blood flow analysis. Micromachines 6:1 (2014), 121–135.
-
(2014)
Micromachines
, vol.6
, Issue.1
, pp. 121-135
-
-
Pinto, E.1
-
96
-
-
0027089966
-
Blood viscosity in tube flow: dependence on diameter and hematocrit
-
Pries, A.R., Neuhaus, D., Gaehtgens, P., Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. – Heart Circ. Physiol. 263:6 (1992), H1770–H1778.
-
(1992)
Am. J. Physiol. – Heart Circ. Physiol.
, vol.263
, Issue.6
, pp. H1770-H1778
-
-
Pries, A.R.1
Neuhaus, D.2
Gaehtgens, P.3
-
97
-
-
84883654245
-
Automatic tracking of labeled red blood cells in microchannels
-
Pinho, D., et al. Automatic tracking of labeled red blood cells in microchannels. Int. J. Numer. Methods Biomed. Eng. 29:9 (2013), 977–987.
-
(2013)
Int. J. Numer. Methods Biomed. Eng.
, vol.29
, Issue.9
, pp. 977-987
-
-
Pinho, D.1
-
98
-
-
34247557739
-
Simple fabrication technique for rapid prototyping of seamless cylindrical microchannels in polymer substrates
-
Perry, H., et al. Simple fabrication technique for rapid prototyping of seamless cylindrical microchannels in polymer substrates. Rev. Sci. Instrum., 78(4), 2007, 044302.
-
(2007)
Rev. Sci. Instrum.
, vol.78
, Issue.4
, pp. 044302
-
-
Perry, H.1
-
99
-
-
79951557320
-
From cleanroom to desktop: emerging micro-nanofabrication technology for biomedical applications
-
Pan, T., Wang, W., From cleanroom to desktop: emerging micro-nanofabrication technology for biomedical applications. Ann. Biomed. Eng. 39:2 (2011), 600–620.
-
(2011)
Ann. Biomed. Eng.
, vol.39
, Issue.2
, pp. 600-620
-
-
Pan, T.1
Wang, W.2
-
100
-
-
84991296982
-
Experimental Flow Studies in Microchannels Fabricated by Xurography (Master thesis)
-
Instituto Politécnico de Bragança, Bragança, Portugal
-
Pinto, E., Experimental Flow Studies in Microchannels Fabricated by Xurography (Master thesis). 2012, Instituto Politécnico de Bragança, Bragança, Portugal.
-
(2012)
-
-
Pinto, E.1
-
101
-
-
77749333437
-
Soft lithography for micro-and nanoscale patterning
-
Qin, D., Xia, Y., Whitesides, G.M., Soft lithography for micro-and nanoscale patterning. Nat. Protoc. 5:3 (2010), 491–502.
-
(2010)
Nat. Protoc.
, vol.5
, Issue.3
, pp. 491-502
-
-
Qin, D.1
Xia, Y.2
Whitesides, G.M.3
-
102
-
-
43649095910
-
Electrochemical microsensors for cutaneous surface analysis: application to the determination of pH and the antioxidant properties of stratum corneum
-
Ruffien-Ciszak, A., et al. Electrochemical microsensors for cutaneous surface analysis: application to the determination of pH and the antioxidant properties of stratum corneum. IRBM 29:2–3 (2008), 162–170.
-
(2008)
IRBM
, vol.29
, Issue.2-3
, pp. 162-170
-
-
Ruffien-Ciszak, A.1
-
103
-
-
24944477681
-
A SU-8 fluidic microsystem for biological fluids analysis
-
Ribeiro, J.C., et al. A SU-8 fluidic microsystem for biological fluids analysis. Sens. Actuators A: Phys. 123 (2005), 77–81.
-
(2005)
Sens. Actuators A: Phys.
, vol.123
, pp. 77-81
-
-
Ribeiro, J.C.1
-
104
-
-
12344280978
-
Patterned cell culture inside microfluidic devices
-
Rhee, S.W., et al. Patterned cell culture inside microfluidic devices. Lab Chip 5:1 (2005), 102–107.
-
(2005)
Lab Chip
, vol.5
, Issue.1
, pp. 102-107
-
-
Rhee, S.W.1
-
105
-
-
84912523617
-
3D soft lithography: a fabrication process for thermocurable polymers
-
Rodrigue, H., et al. 3D soft lithography: a fabrication process for thermocurable polymers. J. Mater. Process. Technol. 217:1 (2015), 302–309.
-
(2015)
J. Mater. Process. Technol.
, vol.217
, Issue.1
, pp. 302-309
-
-
Rodrigue, H.1
-
106
-
-
12444270061
-
Recent progress in soft lithography
-
Rogers, J.A., Nuzzo, R.G., Recent progress in soft lithography. Mater. Today 8:2 (2005), 50–56.
-
(2005)
Mater. Today
, vol.8
, Issue.2
, pp. 50-56
-
-
Rogers, J.A.1
Nuzzo, R.G.2
-
107
-
-
84945191008
-
A simple microfluidic device for the deformability assessment of blood cells in a continuous flow
-
in press
-
Rodrigues, R.O., et al. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow. Biomed. Microdevices, 17(108), 2015, 10.1007/s10544-015-0014-2 in press.
-
(2015)
Biomed. Microdevices
, vol.17
, Issue.108
-
-
Rodrigues, R.O.1
-
108
-
-
0000509354
-
Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field
-
Rogers, J.A., et al. Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field. Appl. Phys. Lett. 70:20 (1997), 2658–2660.
-
(1997)
Appl. Phys. Lett.
, vol.70
, Issue.20
, pp. 2658-2660
-
-
Rogers, J.A.1
-
109
-
-
79952483906
-
One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8
-
Rammohan, A., et al. One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8. Sens. Actuators B: Chem. 153:1 (2011), 125–134.
-
(2011)
Sens. Actuators B: Chem.
, vol.153
, Issue.1
, pp. 125-134
-
-
Rammohan, A.1
-
110
-
-
84961615386
-
In vitro blood flow and cell-free layer in hyperbolic microchannels: visualizations and measurements
-
in press
-
Rodrigues, R.O., et al. In vitro blood flow and cell-free layer in hyperbolic microchannels: visualizations and measurements. Biochip J., 2015 http://dx.doi.org/10.1007/s13206-016-0102-2, in press.
-
(2015)
Biochip J.
-
-
Rodrigues, R.O.1
-
111
-
-
0023622010
-
Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation
-
Reinke, W., Gaehtgens, P., Johnson, P.C., Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation. Am. J. Physiol. – Heart Circ. Physiol. 253:3 (1987), H540–H547.
-
(1987)
Am. J. Physiol. – Heart Circ. Physiol.
, vol.253
, Issue.3
, pp. H540-H547
-
-
Reinke, W.1
Gaehtgens, P.2
Johnson, P.C.3
-
112
-
-
1642351161
-
Engineering flows in small devices
-
Stone, H.A., Stroock, A.D., Ajdari, A., Engineering flows in small devices. Annu. Rev. Fluid Mech. 36:1 (2004), 381–411.
-
(2004)
Annu. Rev. Fluid Mech.
, vol.36
, Issue.1
, pp. 381-411
-
-
Stone, H.A.1
Stroock, A.D.2
Ajdari, A.3
-
113
-
-
84896284039
-
The present and future role of microfluidics in biomedical research
-
Sackmann, E.K., Fulton, A.L., Beebe, D.J., The present and future role of microfluidics in biomedical research. Nature 507:7491 (2014), 181–189.
-
(2014)
Nature
, vol.507
, Issue.7491
, pp. 181-189
-
-
Sackmann, E.K.1
Fulton, A.L.2
Beebe, D.J.3
-
114
-
-
24944498780
-
Microfluidics: fluid physics at the nanoliter scale
-
Squires, T.M., Quake, S.R., Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys., 77(3), 2005, 977.
-
(2005)
Rev. Mod. Phys.
, vol.77
, Issue.3
, pp. 977
-
-
Squires, T.M.1
Quake, S.R.2
-
115
-
-
0028806048
-
Quantitative monitoring of gene expression patterns with a complementary DNA microarray
-
Schena, M., et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:5235 (1995), 467–470.
-
(1995)
Science
, vol.270
, Issue.5235
, pp. 467-470
-
-
Schena, M.1
-
116
-
-
77952892098
-
Fast and continuous plasma extraction from whole human blood based on expanding cell-free layer devices
-
Sollier, E., et al. Fast and continuous plasma extraction from whole human blood based on expanding cell-free layer devices. Biomed. Microdevices 12:3 (2010), 485–497.
-
(2010)
Biomed. Microdevices
, vol.12
, Issue.3
, pp. 485-497
-
-
Sollier, E.1
-
117
-
-
0030096033
-
Deformation of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformability
-
Suzuki, Y., et al. Deformation of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformability. Microcirculation 3:1 (1996), 49–57.
-
(1996)
Microcirculation
, vol.3
, Issue.1
, pp. 49-57
-
-
Suzuki, Y.1
-
118
-
-
78650001373
-
Fluid particle diffusion through high-hematocrit blood flow within a capillary tube
-
Saadatmand, M., et al. Fluid particle diffusion through high-hematocrit blood flow within a capillary tube. J. Biomech. 44:1 (2011), 170–175.
-
(2011)
J. Biomech.
, vol.44
, Issue.1
, pp. 170-175
-
-
Saadatmand, M.1
-
119
-
-
0018653907
-
A gas chromatographic air analyzer fabricated on a silicon wafer
-
Terry, S.C., Jerman, J.H., Angell, J.B., A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans. Electron Devices 26:12 (1979), 1880–1886.
-
(1979)
IEEE Trans. Electron Devices
, vol.26
, Issue.12
, pp. 1880-1886
-
-
Terry, S.C.1
Jerman, J.H.2
Angell, J.B.3
-
120
-
-
0037418472
-
Microfluidic multicompartment device for neuroscience research
-
Taylor, A.M., et al. Microfluidic multicompartment device for neuroscience research. Langmuir 19:5 (2003), 1551–1556.
-
(2003)
Langmuir
, vol.19
, Issue.5
, pp. 1551-1556
-
-
Taylor, A.M.1
-
121
-
-
74249121905
-
Print-and-Peel fabrication for microfluidics: what׳s in it for biomedical applications?
-
Thomas, M.S., et al. Print-and-Peel fabrication for microfluidics: what׳s in it for biomedical applications?. Ann. Biomed. Eng. 38:1 (2010), 21–32.
-
(2010)
Ann. Biomed. Eng.
, vol.38
, Issue.1
, pp. 21-32
-
-
Thomas, M.S.1
-
122
-
-
0041396712
-
Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopying
-
Tan, A., et al. Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopying. Lab Chip 1:1 (2001), 7–9.
-
(2001)
Lab Chip
, vol.1
, Issue.1
, pp. 7-9
-
-
Tan, A.1
-
123
-
-
84991318914
-
Monodisperse Spherical Toner Particles Containing Aliphatic Amides or Aliphatic Acids
-
Tyagi, D., et al., 2000. Monodisperse Spherical Toner Particles Containing Aliphatic Amides or Aliphatic Acids. US Patent, US6156473 A.
-
(2000)
US Patent, US6156473 A.
-
-
Tyagi, D.1
-
124
-
-
63749111006
-
Micro-and nanobiosensors—state of the art and trends
-
Urban, G.A., Micro-and nanobiosensors—state of the art and trends. Meas. Sci. Technol., 20(1), 2009, 012001.
-
(2009)
Meas. Sci. Technol.
, vol.20
, Issue.1
, pp. 012001
-
-
Urban, G.A.1
-
125
-
-
33845580027
-
Nonlithographic fabrication of microfluidic devices
-
Vullev, V.I., et al. Nonlithographic fabrication of microfluidic devices. J. Am. Chem. Soc. 128:50 (2006), 16062–16072.
-
(2006)
J. Am. Chem. Soc.
, vol.128
, Issue.50
, pp. 16062-16072
-
-
Vullev, V.I.1
-
126
-
-
33846130059
-
Embedded template-assisted fabrication of complex microchannels in PDMS and design of a microfluidic adhesive
-
Verma, M.K.S., Majumder, A., Ghatak, A., Embedded template-assisted fabrication of complex microchannels in PDMS and design of a microfluidic adhesive. Langmuir 22:24 (2006), 10291–10295.
-
(2006)
Langmuir
, vol.22
, Issue.24
, pp. 10291-10295
-
-
Verma, M.K.S.1
Majumder, A.2
Ghatak, A.3
-
127
-
-
33747117373
-
The origins and the future of microfluidics
-
Whitesides, G.M., The origins and the future of microfluidics. Nature 442:7101 (2006), 368–373.
-
(2006)
Nature
, vol.442
, Issue.7101
, pp. 368-373
-
-
Whitesides, G.M.1
-
128
-
-
0034802766
-
Soft lithography in biology and biochemistry
-
Whitesides, G.M., et al. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3:1 (2001), 335–373.
-
(2001)
Annu. Rev. Biomed. Eng.
, vol.3
, Issue.1
, pp. 335-373
-
-
Whitesides, G.M.1
-
129
-
-
0028027123
-
PCR in a silicon microstructure
-
Wilding, P., Shoffner, M.A., Kricka, L.J., PCR in a silicon microstructure. Clin. Chem. 40:9 (1994), 1815–1818.
-
(1994)
Clin. Chem.
, vol.40
, Issue.9
, pp. 1815-1818
-
-
Wilding, P.1
Shoffner, M.A.2
Kricka, L.J.3
-
130
-
-
0033951040
-
Anchored multiplex amplification on a microelectronic chip array
-
Westin, L., et al. Anchored multiplex amplification on a microelectronic chip array. Nat. Biotechnol. 18:2 (2000), 199–204.
-
(2000)
Nat. Biotechnol.
, vol.18
, Issue.2
, pp. 199-204
-
-
Westin, L.1
-
131
-
-
69249203894
-
Surface molecular property modifications for poly (dimethylsiloxane)(PDMS) based microfluidic devices
-
Wong, I., Ho, C.-M., Surface molecular property modifications for poly (dimethylsiloxane)(PDMS) based microfluidic devices. Microfluid. Nanofluid. 7:3 (2009), 291–306.
-
(2009)
Microfluid. Nanofluid.
, vol.7
, Issue.3
, pp. 291-306
-
-
Wong, I.1
Ho, C.-M.2
-
132
-
-
0037438528
-
Fabrication of complex three-dimensional microchannel systems in PDMS
-
Wu, H., et al. Fabrication of complex three-dimensional microchannel systems in PDMS. J. Am. Chem. Soc. 125:2 (2003), 554–559.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, Issue.2
, pp. 554-559
-
-
Wu, H.1
-
133
-
-
79953199826
-
Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography
-
Wilson, M.E., et al. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. Lab Chip 11:8 (2011), 1550–1555.
-
(2011)
Lab Chip
, vol.11
, Issue.8
, pp. 1550-1555
-
-
Wilson, M.E.1
-
134
-
-
84861571534
-
Prototyping chips in minutes: direct laser plotting (DLP) of functional microfluidic structures
-
Wang, L., et al. Prototyping chips in minutes: direct laser plotting (DLP) of functional microfluidic structures. Sens. Actuators B: Chem. 168:1 (2012), 214–222.
-
(2012)
Sens. Actuators B: Chem.
, vol.168
, Issue.1
, pp. 214-222
-
-
Wang, L.1
-
135
-
-
0031072203
-
Replica molding using polymeric materials: a practical step toward nanomanufacturing
-
Xia, Y., et al. Replica molding using polymeric materials: a practical step toward nanomanufacturing. Adv. Mater. 9:2 (1997), 147–149.
-
(1997)
Adv. Mater.
, vol.9
, Issue.2
, pp. 147-149
-
-
Xia, Y.1
-
136
-
-
0031632795
-
Soft lithography
-
Xia, Y., Whitesides, G.M., Soft lithography. Annu. Rev. Mater. Sci. 28:1 (1998), 153–184.
-
(1998)
Annu. Rev. Mater. Sci.
, vol.28
, Issue.1
, pp. 153-184
-
-
Xia, Y.1
Whitesides, G.M.2
-
137
-
-
58149104281
-
Nanoskiving: a new method to produce arrays of nanostructures
-
Xu, Q., et al. Nanoskiving: a new method to produce arrays of nanostructures. Acc. Chem. Res. 41:12 (2008), 1566–1577.
-
(2008)
Acc. Chem. Res.
, vol.41
, Issue.12
, pp. 1566-1577
-
-
Xu, Q.1
-
138
-
-
84946693031
-
Fabricating small-scale polymeric structures for in-vitro diagnosis via daily-use tools
-
Yang, C.-Y., et al., 2014. Fabricating small-scale polymeric structures for in-vitro diagnosis via daily-use tools. In: Proceedings of the IEEE Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), pp. 1–5.
-
(2014)
Proceedings of the IEEE Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP)
, pp. 1-5
-
-
Yang, C.-Y.1
-
139
-
-
77955618032
-
Microfluidic platforms for single-cell analysis
-
Zare, R.N., Kim, S., Microfluidic platforms for single-cell analysis. Annu. Rev. Biomed. Eng. 12:1 (2010), 187–201.
-
(2010)
Annu. Rev. Biomed. Eng.
, vol.12
, Issue.1
, pp. 187-201
-
-
Zare, R.N.1
Kim, S.2
-
140
-
-
1642452594
-
Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery
-
Ziaie, B., et al. Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv. Drug Deliv. Rev. 56:2 (2004), 145–172.
-
(2004)
Adv. Drug Deliv. Rev.
, vol.56
, Issue.2
, pp. 145-172
-
-
Ziaie, B.1
-
141
-
-
0030263409
-
Fabrication of three-dimensional micro-structures: microtransfer molding
-
Zhao, X.M., Xia, Y., Whitesides, G.M., Fabrication of three-dimensional micro-structures: microtransfer molding. Adv. Mater. 8:10 (1996), 837–840.
-
(1996)
Adv. Mater.
, vol.8
, Issue.10
, pp. 837-840
-
-
Zhao, X.M.1
Xia, Y.2
Whitesides, G.M.3
-
142
-
-
34249675900
-
SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography
-
del Campo, A., Greiner, C., SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. J. Micromech. Microeng., 17(6), 2007, R81.
-
(2007)
J. Micromech. Microeng.
, vol.17
, Issue.6
, pp. R81
-
-
del Campo, A.1
Greiner, C.2
|