메뉴 건너뛰기




Volumn 49, Issue 11, 2016, Pages 2280-2292

Biomedical microfluidic devices by using low-cost fabrication techniques: A review

Author keywords

Biomedical microdevices; Biomicrofluidics; Low cost; Nonlithographic technique; Soft lithography

Indexed keywords

ASPECT RATIO; BIOMEDICAL ENGINEERING; CLEAN ROOMS; COSTS; CUTTING EQUIPMENT; FLUIDIC DEVICES; INDUSTRIAL RESEARCH; LABORATORIES; LITHOGRAPHY; MICROFLUIDICS; MOLDS; PREFABRICATED CONSTRUCTION; PRINTED CIRCUIT BOARDS;

EID: 84959024221     PISSN: 00219290     EISSN: 18732380     Source Type: Journal    
DOI: 10.1016/j.jbiomech.2015.11.031     Document Type: Article
Times cited : (261)

References (142)
  • 1
    • 47949114178 scopus 로고    scopus 로고
    • Soft lithography: masters on demand
    • Abdelgawad, M., et al. Soft lithography: masters on demand. Lab Chip 8:8 (2008), 1379–1385.
    • (2008) Lab Chip , vol.8 , Issue.8 , pp. 1379-1385
    • Abdelgawad, M.1
  • 2
    • 0033988843 scopus 로고    scopus 로고
    • Fabrication of microfluidic systems in poly (dimethylsiloxane)
    • Anderson, J.R., et al. Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21 (2000), 27–40.
    • (2000) Electrophoresis , vol.21 , pp. 27-40
    • Anderson, J.R.1
  • 3
    • 78651480837 scopus 로고    scopus 로고
    • Experimental and numerical investigation of acoustic streaming excited by using a surface acoustic wave device on a 128° YX-LiNbO3 substrate
    • Alghane, M., et al. Experimental and numerical investigation of acoustic streaming excited by using a surface acoustic wave device on a 128° YX-LiNbO3 substrate. J. Micromech. Microeng., 21(1), 2011, 015005.
    • (2011) J. Micromech. Microeng. , vol.21 , Issue.1 , pp. 015005
    • Alghane, M.1
  • 4
    • 58349093333 scopus 로고    scopus 로고
    • Parametric study on mixing of two fluids in a three-dimensional serpentine microchannel
    • Ansari, M.A., Parametric study on mixing of two fluids in a three-dimensional serpentine microchannel. Chem. Eng. J. 146:3 (2009), 439–448.
    • (2009) Chem. Eng. J. , vol.146 , Issue.3 , pp. 439-448
    • Ansari, M.A.1
  • 6
    • 84896012366 scopus 로고    scopus 로고
    • Application of microfluidics in waterborne pathogen monitoring: a review
    • Bridle, H., Miller, B., Desmulliez, M.P.Y., Application of microfluidics in waterborne pathogen monitoring: a review. Water Res. 55:1 (2014), 256–271.
    • (2014) Water Res. , vol.55 , Issue.1 , pp. 256-271
    • Bridle, H.1    Miller, B.2    Desmulliez, M.P.Y.3
  • 7
    • 0037060168 scopus 로고    scopus 로고
    • Polymer microfluidic devices
    • Becker, H., Locascio, L.E., Polymer microfluidic devices. Talanta 56:2 (2002), 267–287.
    • (2002) Talanta , vol.56 , Issue.2 , pp. 267-287
    • Becker, H.1    Locascio, L.E.2
  • 8
    • 0043055020 scopus 로고    scopus 로고
    • Springer Handbook of Nanotechnology
    • Springer-Verlag, Berlin, Heidelberg Gale virtual reference library
    • Bhushan, B., Springer Handbook of Nanotechnology. 2007, Springer-Verlag, Berlin, Heidelberg Gale virtual reference library.
    • (2007)
    • Bhushan, B.1
  • 9
    • 0030231574 scopus 로고    scopus 로고
    • Electron beam lithography—resolution limits
    • Broers, A.N., Hoole, A.C.F., Ryan, J.M., Electron beam lithography—resolution limits. Microelectron. Eng. 32:1 (1996), 131–142.
    • (1996) Microelectron. Eng. , vol.32 , Issue.1 , pp. 131-142
    • Broers, A.N.1    Hoole, A.C.F.2    Ryan, J.M.3
  • 10
    • 0032050524 scopus 로고    scopus 로고
    • Printing patterns of proteins
    • Bernard, A., et al. Printing patterns of proteins. Langmuir 14:9 (1998), 2225–2229.
    • (1998) Langmuir , vol.14 , Issue.9 , pp. 2225-2229
    • Bernard, A.1
  • 11
    • 23044507925 scopus 로고    scopus 로고
    • Fabrication of poly(dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer
    • Bao, N., et al. Fabrication of poly(dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer. J. Chromatogr. A 1089:1–2 (2005), 270–275.
    • (2005) J. Chromatogr. A , vol.1089 , Issue.1-2 , pp. 270-275
    • Bao, N.1
  • 12
    • 29244476881 scopus 로고    scopus 로고
    • Xurography: rapid prototyping of microstructures using a cutting plotter
    • Bartholomeusz, D.A., Boutte, R.W., Andrade, J.D., Xurography: rapid prototyping of microstructures using a cutting plotter. Microelectromech. Syst. J. 14:6 (2005), 1364–1374.
    • (2005) Microelectromech. Syst. J. , vol.14 , Issue.6 , pp. 1364-1374
    • Bartholomeusz, D.A.1    Boutte, R.W.2    Andrade, J.D.3
  • 13
    • 84991353515 scopus 로고    scopus 로고
    • Fabrication of moulds and dies using precision laser micromachining and micromilling technologies
    • Bordatchev, E., Nikumb, S., Fabrication of moulds and dies using precision laser micromachining and micromilling technologies. J. Laser Micro/Nanoeng., 3, 2008, 3.
    • (2008) J. Laser Micro/Nanoeng. , vol.3 , pp. 3
    • Bordatchev, E.1    Nikumb, S.2
  • 14
    • 34548621494 scopus 로고    scopus 로고
    • Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices
    • Betancourt, T., Brannon-Peppas, L., Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices. Int. J. Nanomed. 1:4 (2006), 483–495.
    • (2006) Int. J. Nanomed. , vol.1 , Issue.4 , pp. 483-495
    • Betancourt, T.1    Brannon-Peppas, L.2
  • 15
    • 0032077411 scopus 로고    scopus 로고
    • Micropatterned surfaces for control of cell shape, position, and function
    • Chen, C.S., et al. Micropatterned surfaces for control of cell shape, position, and function. Biotechnol. Prog. 14:3 (1998), 356–363.
    • (1998) Biotechnol. Prog. , vol.14 , Issue.3 , pp. 356-363
    • Chen, C.S.1
  • 16
    • 0030953763 scopus 로고    scopus 로고
    • Geometric control of cell life and death
    • Chen, C.S., et al. Geometric control of cell life and death. Science 276:5317 (1997), 1425–1428.
    • (1997) Science , vol.276 , Issue.5317 , pp. 1425-1428
    • Chen, C.S.1
  • 17
    • 0037073161 scopus 로고    scopus 로고
    • Decal transfer microlithography: a new soft-lithographic patterning method
    • Childs, W.R., Nuzzo, R.G., Decal transfer microlithography: a new soft-lithographic patterning method. J. Am. Chem. Soc. 124:45 (2002), 13583–13596.
    • (2002) J. Am. Chem. Soc. , vol.124 , Issue.45 , pp. 13583-13596
    • Childs, W.R.1    Nuzzo, R.G.2
  • 18
    • 84942373660 scopus 로고    scopus 로고
    • Rapid fabrication of on-demand high-resolution optical masks with a CD–DVD pickup unit
    • Cabriales, L., et al. Rapid fabrication of on-demand high-resolution optical masks with a CD–DVD pickup unit. Appl. Opt. 53:9 (2014), 1802–1807.
    • (2014) Appl. Opt. , vol.53 , Issue.9 , pp. 1802-1807
    • Cabriales, L.1
  • 20
    • 0032403465 scopus 로고    scopus 로고
    • Rapid prototyping of microfluidic systems in poly (dimethylsiloxane)
    • Duffy, D.C., et al. Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal. Chem. 70:23 (1998), 4974–4984.
    • (1998) Anal. Chem. , vol.70 , Issue.23 , pp. 4974-4984
    • Duffy, D.C.1
  • 21
    • 79551609564 scopus 로고    scopus 로고
    • Microstructuring of SU-8 resist for MEMS and bio-applications
    • Dey, P.K., et al. Microstructuring of SU-8 resist for MEMS and bio-applications. Int. J. Smart Sens. Intell. Syst. 3 (2010), 118–129.
    • (2010) Int. J. Smart Sens. Intell. Syst. , vol.3 , pp. 118-129
    • Dey, P.K.1
  • 22
    • 0030948781 scopus 로고    scopus 로고
    • Patterned delivery of immunoglobulins to surfaces using microfluidic networks
    • Delamarche, E., et al. Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 276:5313 (1997), 779–781.
    • (1997) Science , vol.276 , Issue.5313 , pp. 779-781
    • Delamarche, E.1
  • 23
    • 0032573880 scopus 로고    scopus 로고
    • Microfluidic networks for chemical patterning of substrates: design and application to bioassays
    • Delamarche, E., et al. Microfluidic networks for chemical patterning of substrates: design and application to bioassays. J. Am. Chem. Soc. 120:3 (1998), 500–508.
    • (1998) J. Am. Chem. Soc. , vol.120 , Issue.3 , pp. 500-508
    • Delamarche, E.1
  • 24
    • 0032403465 scopus 로고    scopus 로고
    • Rapid prototyping of microfluidic systems in Poly(dimethylsiloxane)
    • Duffy, D.C., et al. Rapid prototyping of microfluidic systems in Poly(dimethylsiloxane). Anal. Chem. 70:23 (1998), 4974–4984.
    • (1998) Anal. Chem. , vol.70 , Issue.23 , pp. 4974-4984
    • Duffy, D.C.1
  • 25
    • 0036643808 scopus 로고    scopus 로고
    • PDMS-based microfluidic devices for biomedical applications
    • Fujii, T., PDMS-based microfluidic devices for biomedical applications. Microelectron. Eng. 61–62:1 (2002), 907–914.
    • (2002) Microelectron. Eng. , vol.61-62 , Issue.1 , pp. 907-914
    • Fujii, T.1
  • 26
    • 0034193490 scopus 로고    scopus 로고
    • Lab-on-a-chip: a revolution in biological and medical sciences
    • Figeys, D., Pinto, D., Lab-on-a-chip: a revolution in biological and medical sciences. Anal. Chem. 72:9 (2000), 330–333.
    • (2000) Anal. Chem. , vol.72 , Issue.9 , pp. 330-333
    • Figeys, D.1    Pinto, D.2
  • 27
    • 84955678972 scopus 로고    scopus 로고
    • Handbook of Modern Sensors: Physics, Designs, and Applications
    • Springer New York
    • Fraden, J., Handbook of Modern Sensors: Physics, Designs, and Applications. 2010, Springer, New York.
    • (2010)
    • Fraden, J.1
  • 28
    • 84897095103 scopus 로고    scopus 로고
    • Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells
    • Faustino, V., et al. Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells. BioChip J. 8:1 (2014), 42–47.
    • (2014) BioChip J. , vol.8 , Issue.1 , pp. 42-47
    • Faustino, V.1
  • 29
    • 77955414337 scopus 로고    scopus 로고
    • Acoustic emission sensor with structure-enhanced sensing mechanism based on micro-embossed piezoelectric polymer
    • Feng, G.-H., Tsai, M.-Y., Acoustic emission sensor with structure-enhanced sensing mechanism based on micro-embossed piezoelectric polymer. Sens. Actuators A: Phys. 162:1 (2010), 100–106.
    • (2010) Sens. Actuators A: Phys. , vol.162 , Issue.1 , pp. 100-106
    • Feng, G.-H.1    Tsai, M.-Y.2
  • 30
    • 15244347610 scopus 로고    scopus 로고
    • Disposable microfluidic devices: fabrication, function, and application
    • Fiorini, G.S., Chiu, D.T., Disposable microfluidic devices: fabrication, function, and application. BioTechniques 38:3 (2005), 429–446.
    • (2005) BioTechniques , vol.38 , Issue.3 , pp. 429-446
    • Fiorini, G.S.1    Chiu, D.T.2
  • 31
    • 84991302945 scopus 로고
    • Binder Resins for Electron Photography and the Like and Method of Productive Thereof
    • Fukuda, M., Kishi, I., Nakano, T., 1974. Binder Resins for Electron Photography and the Like and Method of Productive Thereof. US Patent, US3855166 A.
    • (1974) US Patent, US3855166 A.
    • Fukuda, M.1    Kishi, I.2    Nakano, T.3
  • 32
    • 77249100175 scopus 로고    scopus 로고
    • A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions
    • Fiddes, L.K., et al. A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions. Biomaterials 31:13 (2010), 3459–3464.
    • (2010) Biomaterials , vol.31 , Issue.13 , pp. 3459-3464
    • Fiddes, L.K.1
  • 33
    • 0344667477 scopus 로고    scopus 로고
    • Replication of vertical features smaller than 2 nm by soft lithography
    • Gates, B.D., Whitesides, G.M., Replication of vertical features smaller than 2 nm by soft lithography. J. Am. Chem. Soc. 125:49 (2003), 14986–14987.
    • (2003) J. Am. Chem. Soc. , vol.125 , Issue.49 , pp. 14986-14987
    • Gates, B.D.1    Whitesides, G.M.2
  • 34
    • 4344679349 scopus 로고    scopus 로고
    • Unconventional nanofabrication
    • Gates, B.D., et al. Unconventional nanofabrication. Annu. Rev. Mater. Res. 34 (2004), 339–372.
    • (2004) Annu. Rev. Mater. Res. , vol.34 , pp. 339-372
    • Gates, B.D.1
  • 35
    • 12444344720 scopus 로고    scopus 로고
    • Nanofabrication with molds & stamps
    • Gates, B.D., Nanofabrication with molds & stamps. Mater. Today 8:2 (2005), 44–49.
    • (2005) Mater. Today , vol.8 , Issue.2 , pp. 44-49
    • Gates, B.D.1
  • 36
    • 36949004297 scopus 로고    scopus 로고
    • Comparison of glass etching to xurography prototyping of microfluidic channels for DNA meltinh analysis
    • Greer, J., et al. Comparison of glass etching to xurography prototyping of microfluidic channels for DNA meltinh analysis. J. Micromech. Microeng. 17:12 (2007), 2407–2413.
    • (2007) J. Micromech. Microeng. , vol.17 , Issue.12 , pp. 2407-2413
    • Greer, J.1
  • 37
    • 0015061255 scopus 로고
    • Deformation of human red cells in tube flow
    • Goldsmith, H.L., Deformation of human red cells in tube flow. Biorheology 7:4 (1971), 235–242.
    • (1971) Biorheology , vol.7 , Issue.4 , pp. 235-242
    • Goldsmith, H.L.1
  • 38
    • 0001142668 scopus 로고
    • Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells
    • Goldsmith, H.L., Marlow, J.C., Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells. J. Colloid Interface Sci. 71:2 (1979), 383–407.
    • (1979) J. Colloid Interface Sci. , vol.71 , Issue.2 , pp. 383-407
    • Goldsmith, H.L.1    Marlow, J.C.2
  • 40
    • 0141557513 scopus 로고    scopus 로고
    • Microfluidics in structural biology: smaller, faster… better
    • Hansen, C., Quake, S.R., Microfluidics in structural biology: smaller, faster… better. Curr. Opin. Struct. Biol. 13:5 (2003), 538–544.
    • (2003) Curr. Opin. Struct. Biol. , vol.13 , Issue.5 , pp. 538-544
    • Hansen, C.1    Quake, S.R.2
  • 41
    • 34548077793 scopus 로고    scopus 로고
    • Microfluidic platforms for lab-on-a-chip applications
    • Haeberle, S., Zengerle, R., Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:9 (2007), 1094–1110.
    • (2007) Lab Chip , vol.7 , Issue.9 , pp. 1094-1110
    • Haeberle, S.1    Zengerle, R.2
  • 42
  • 43
    • 0442280362 scopus 로고    scopus 로고
    • 3D microfabrication with inclined/rotated UV lithography
    • Han, M., et al. 3D microfabrication with inclined/rotated UV lithography. Sens. Actuators A: Phys. 111:1 (2004), 14–20.
    • (2004) Sens. Actuators A: Phys. , vol.111 , Issue.1 , pp. 14-20
    • Han, M.1
  • 44
    • 81255191887 scopus 로고    scopus 로고
    • A portable, benchtop photolithography system based on a solid-state light source
    • Huntington, M.D., Odom, T.W., A portable, benchtop photolithography system based on a solid-state light source. Small 7:22 (2011), 3144–3147.
    • (2011) Small , vol.7 , Issue.22 , pp. 3144-3147
    • Huntington, M.D.1    Odom, T.W.2
  • 45
    • 79751530627 scopus 로고    scopus 로고
    • Asymmetry of blood flow and cancer cell adhesion in a microchannel with symmetric bifurcation and confluence
    • Ishikawa, T., et al. Asymmetry of blood flow and cancer cell adhesion in a microchannel with symmetric bifurcation and confluence. Biomed. Microdevices 13:1 (2011), 159–167.
    • (2011) Biomed. Microdevices , vol.13 , Issue.1 , pp. 159-167
    • Ishikawa, T.1
  • 46
    • 4544383496 scopus 로고    scopus 로고
    • Three-dimensional nanofabrication with rubber Stamps and Conformable Photomasks
    • Jeon, S., et al. Three-dimensional nanofabrication with rubber Stamps and Conformable Photomasks. Adv. Mater. 16:15 (2004), 1369–1373.
    • (2004) Adv. Mater. , vol.16 , Issue.15 , pp. 1369-1373
    • Jeon, S.1
  • 47
    • 0000242759 scopus 로고    scopus 로고
    • Fabricating large arrays of microwells with arbitrary dimensions and filling them using discontinuous dewetting
    • Jackman, R.J., et al. Fabricating large arrays of microwells with arbitrary dimensions and filling them using discontinuous dewetting. Anal. Chem. 70:11 (1998), 2280–2287.
    • (1998) Anal. Chem. , vol.70 , Issue.11 , pp. 2280-2287
    • Jackman, R.J.1
  • 48
    • 57849110891 scopus 로고    scopus 로고
    • PDMS microchannel fabrication technique based on microwire-molding
    • Jia, Y., et al. PDMS microchannel fabrication technique based on microwire-molding. Chin. Sci. Bull. 53:24 (2008), 3928–3936.
    • (2008) Chin. Sci. Bull. , vol.53 , Issue.24 , pp. 3928-3936
    • Jia, Y.1
  • 49
    • 84958970875 scopus 로고    scopus 로고
    • Blood flow visualization and measurements in microfluidic devices fabricated by a micromilling technique
    • Jaron, S., et al. Blood flow visualization and measurements in microfluidic devices fabricated by a micromilling technique. Micro Nanosyst., 7(3), 2015.
    • (2015) Micro Nanosyst. , vol.7 , Issue.3
    • Jaron, S.1
  • 50
    • 0031244526 scopus 로고    scopus 로고
    • Developments in technology and applications of microsystems
    • Kopp, M.U., Crabtree, H.J., Manz, A., Developments in technology and applications of microsystems. Curr. Opin. Chem. Biol. 1:3 (1997), 410–419.
    • (1997) Curr. Opin. Chem. Biol. , vol.1 , Issue.3 , pp. 410-419
    • Kopp, M.U.1    Crabtree, H.J.2    Manz, A.3
  • 51
    • 57349108790 scopus 로고    scopus 로고
    • Soft lithography for microfluidics: a review
    • Kim, P., et al. Soft lithography for microfluidics: a review. BioChip J. 2 (2008), 1–11.
    • (2008) BioChip J. , vol.2 , pp. 1-11
    • Kim, P.1
  • 52
    • 51149210777 scopus 로고
    • Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘‘ink’’ followed by chemical etching
    • Kumar, A., Whitesides, G.M., Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘‘ink’’ followed by chemical etching. Appl. Phys. Lett. 63:14 (1993), 2002–2004.
    • (1993) Appl. Phys. Lett. , vol.63 , Issue.14 , pp. 2002-2004
    • Kumar, A.1    Whitesides, G.M.2
  • 53
    • 0029357345 scopus 로고
    • Polymer microstructures formed by moulding in capillaries
    • Kim, E., Xia, Y., Whitesides, G.M., Polymer microstructures formed by moulding in capillaries. Nature 376 (1995), 581–584.
    • (1995) Nature , vol.376 , pp. 581-584
    • Kim, E.1    Xia, Y.2    Whitesides, G.M.3
  • 54
    • 0031165657 scopus 로고    scopus 로고
    • Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers
    • King, E., et al. Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers. Adv. Mater. 9:8 (1997), 651–654.
    • (1997) Adv. Mater. , vol.9 , Issue.8 , pp. 651-654
    • King, E.1
  • 55
    • 84926369165 scopus 로고    scopus 로고
    • Fabrication of 3D high aspect ratio PDMS microfluidic networks with a hybrid stamp
    • Kung, Y.-C., et al. Fabrication of 3D high aspect ratio PDMS microfluidic networks with a hybrid stamp. Lab Chip 15:8 (2015), 1861–1868.
    • (2015) Lab Chip , vol.15 , Issue.8 , pp. 1861-1868
    • Kung, Y.-C.1
  • 56
    • 46149110780 scopus 로고    scopus 로고
    • Cell research with physically modified microfluidic channels: a review
    • Kim, S.M., Lee, S.H., Suh, K.Y., Cell research with physically modified microfluidic channels: a review. Lab Chip 8:7 (2008), 1015–1023.
    • (2008) Lab Chip , vol.8 , Issue.7 , pp. 1015-1023
    • Kim, S.M.1    Lee, S.H.2    Suh, K.Y.3
  • 57
    • 0032703889 scopus 로고    scopus 로고
    • Patterning proteins and cells using soft lithography
    • Kane, R.S., et al. Patterning proteins and cells using soft lithography. Biomaterials 20:23 (1999), 2363–2376.
    • (1999) Biomaterials , vol.20 , Issue.23 , pp. 2363-2376
    • Kane, R.S.1
  • 58
    • 0032471714 scopus 로고    scopus 로고
    • Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels
    • Kim, S.S., et al. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann. Surg., 228(1), 1998, 8.
    • (1998) Ann. Surg. , vol.228 , Issue.1 , pp. 8
    • Kim, S.S.1
  • 59
    • 33847347371 scopus 로고    scopus 로고
    • Rapid prototyping of microfluidic devices with a wax printer
    • Kaigala, G.V., et al. Rapid prototyping of microfluidic devices with a wax printer. Lab Chip 7:3 (2007), 384–387.
    • (2007) Lab Chip , vol.7 , Issue.3 , pp. 384-387
    • Kaigala, G.V.1
  • 60
    • 68649096392 scopus 로고    scopus 로고
    • The cell-free layer in microvascular blood flow
    • Kim, S., et al. The cell-free layer in microvascular blood flow. Biorheology, 46(3), 2009, 181.
    • (2009) Biorheology , vol.46 , Issue.3 , pp. 181
    • Kim, S.1
  • 61
    • 65349131935 scopus 로고    scopus 로고
    • Femtosecond laser machining and lamination for large-area flexible organic microfluidic chips
    • Khan Malek, C., Robert, L., Salut, R., Femtosecond laser machining and lamination for large-area flexible organic microfluidic chips. Eur. Phys. J. – Appl. Phys., 46(01), 2009, 12503.
    • (2009) Eur. Phys. J. – Appl. Phys. , vol.46 , Issue.1 , pp. 12503
    • Khan Malek, C.1    Robert, L.2    Salut, R.3
  • 62
    • 34547657521 scopus 로고    scopus 로고
    • Fabrication of round channels using the surface tension of PDMS and its application to a 3D serpentine mixer
    • Kangsun, L., et al. Fabrication of round channels using the surface tension of PDMS and its application to a 3D serpentine mixer. J. Micromech. Microeng., 17(8), 2007, 1533.
    • (2007) J. Micromech. Microeng. , vol.17 , Issue.8 , pp. 1533
    • Kangsun, L.1
  • 63
    • 65349131935 scopus 로고    scopus 로고
    • Femtosecond laser machining and lamination for large-area flexible organic microfluidic chips
    • Khan Malek, C., Robert, L., Salut, R., Femtosecond laser machining and lamination for large-area flexible organic microfluidic chips. Eur. Phys. J. – Appl. Phys., 46(01), 2009, 5.
    • (2009) Eur. Phys. J. – Appl. Phys. , vol.46 , Issue.1 , pp. 5
    • Khan Malek, C.1    Robert, L.2    Salut, R.3
  • 64
    • 0000682452 scopus 로고    scopus 로고
    • Microfabricated biosensors and microanalytical systems for blood analysis
    • Lauks, I.R., Microfabricated biosensors and microanalytical systems for blood analysis. Acc. Chem. Res. 31:5 (1998), 317–324.
    • (1998) Acc. Chem. Res. , vol.31 , Issue.5 , pp. 317-324
    • Lauks, I.R.1
  • 65
    • 0003941908 scopus 로고    scopus 로고
    • Principles of Lithography
    • Society of Photo Optical, Washington Press Monographs
    • Levinson, H.J., Principles of Lithography. 2005, Society of Photo Optical, Washington Press Monographs.
    • (2005)
    • Levinson, H.J.1
  • 66
    • 84922337609 scopus 로고    scopus 로고
    • A protocol for improving fabrication yield of thin SU-8 microcantilevers for use in an aptasensor
    • Lim, Y.C., et al. A protocol for improving fabrication yield of thin SU-8 microcantilevers for use in an aptasensor. Microsyst. Technol. 21:2 (2015), 371–380.
    • (2015) Microsyst. Technol. , vol.21 , Issue.2 , pp. 371-380
    • Lim, Y.C.1
  • 67
    • 42549120545 scopus 로고    scopus 로고
    • Fabrication and characterization of freestanding 3D carbon microstructures using multi-exposures and resist pyrolysis
    • Lee, J.A., et al. Fabrication and characterization of freestanding 3D carbon microstructures using multi-exposures and resist pyrolysis. J. Micromech. Microeng., 18(3), 2008, 035012.
    • (2008) J. Micromech. Microeng. , vol.18 , Issue.3 , pp. 035012
    • Lee, J.A.1
  • 68
    • 0036734816 scopus 로고    scopus 로고
    • A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist
    • Lin, C.-H., et al. A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist. J. Micromech. Microeng., 12(5), 2002, 590.
    • (2002) J. Micromech. Microeng. , vol.12 , Issue.5 , pp. 590
    • Lin, C.-H.1
  • 69
    • 84887234860 scopus 로고    scopus 로고
    • Releasing high aspect ratio SU-8 microstructures using AZ photoresist as a sacrificial layer on metallized Si substrates
    • Lau, K.H., et al. Releasing high aspect ratio SU-8 microstructures using AZ photoresist as a sacrificial layer on metallized Si substrates. Microsyst. Technol. 19:11 (2013), 1863–1871.
    • (2013) Microsyst. Technol. , vol.19 , Issue.11 , pp. 1863-1871
    • Lau, K.H.1
  • 70
    • 84927935587 scopus 로고    scopus 로고
    • Rapid fabrication of microfluidic chips based on the simplest LED lithography
    • Li, Y., et al. Rapid fabrication of microfluidic chips based on the simplest LED lithography. J. Micromech. Microeng., 25(5), 2015, 055020.
    • (2015) J. Micromech. Microeng. , vol.25 , Issue.5 , pp. 055020
    • Li, Y.1
  • 71
    • 84991302894 scopus 로고    scopus 로고
    • The Study of the Effect of Microcontractions in the Separation of Blood Cells: Soft Lithography and Micromilling (Master thesis)
    • Instituto Politécnico de Bragança, Bragança, Portugal
    • Lopes, A.R., The Study of the Effect of Microcontractions in the Separation of Blood Cells: Soft Lithography and Micromilling (Master thesis). 2014, Instituto Politécnico de Bragança, Bragança, Portugal.
    • (2014)
    • Lopes, A.R.1
  • 73
    • 84882848971 scopus 로고    scopus 로고
    • Blood flow Behavior in microchannels: past, current and future trends
    • A.A.M. Ricardo Dias Rui Lima T.M. Mata Bentham Science, United States of America
    • Lima, R., et al. Blood flow Behavior in microchannels: past, current and future trends. Dias, A.A.M. Ricardo, Lima, Rui, Mata, T.M., (eds.) In Single and two-Phase Flows on Chemical and Biomedical Engineering, 2012, Bentham Science, United States of America, 513–547.
    • (2012) In Single and two-Phase Flows on Chemical and Biomedical Engineering , pp. 513-547
    • Lima, R.1
  • 74
    • 33645241605 scopus 로고    scopus 로고
    • Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel
    • Lima, R., et al. Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel. Meas. Sci. Technol., 17(4), 2006, 797.
    • (2006) Meas. Sci. Technol. , vol.17 , Issue.4 , pp. 797
    • Lima, R.1
  • 75
    • 52649122824 scopus 로고    scopus 로고
    • Radial dispersion of red blood cells in blood flowing through glass capillaries: the role of hematocrit and geometry
    • Lima, R., et al. Radial dispersion of red blood cells in blood flowing through glass capillaries: the role of hematocrit and geometry. J. Biomech. 41:10 (2008), 2188–2196.
    • (2008) J. Biomech. , vol.41 , Issue.10 , pp. 2188-2196
    • Lima, R.1
  • 76
    • 77957976765 scopus 로고    scopus 로고
    • Axisymmetric polydimethysiloxane microchannels for in vitro hemodynamic studies
    • Lima, R., et al. Axisymmetric polydimethysiloxane microchannels for in vitro hemodynamic studies. Biofabrication, 1(3), 2009, 035005.
    • (2009) Biofabrication , vol.1 , Issue.3 , pp. 035005
    • Lima, R.1
  • 77
    • 84859351413 scopus 로고    scopus 로고
    • A perspective on paper-based microfluidics: current status and future trends
    • Li, X., Ballerini, D.R., Shen, W., A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6:1 (2012), 011301–011313.
    • (2012) Biomicrofluidics , vol.6 , Issue.1 , pp. 011301-011313
    • Li, X.1    Ballerini, D.R.2    Shen, W.3
  • 78
    • 84855278516 scopus 로고    scopus 로고
    • Asymmetry of red blood cell motions in a microchannel with a diverging and converging bifurcation
    • 044120-15
    • Leble, V., et al. Asymmetry of red blood cell motions in a microchannel with a diverging and converging bifurcation. Biomicrofluidics, 5(4), 2011 044120-15.
    • (2011) Biomicrofluidics , vol.5 , Issue.4
    • Leble, V.1
  • 79
    • 33646722836 scopus 로고    scopus 로고
    • A micromachined electrochemical sensor for free chlorine monitoring in drinking water
    • Mehta, A., et al. A micromachined electrochemical sensor for free chlorine monitoring in drinking water. Water Sci. Technol. 53:4–5 (2006), 403–410.
    • (2006) Water Sci. Technol. , vol.53 , Issue.4-5 , pp. 403-410
    • Mehta, A.1
  • 80
    • 34347256054 scopus 로고    scopus 로고
    • Microfluidic large-scale integration: the evolution of design rules for biological automation
    • Melin, J., Quake, S.R., Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 36 (2007), 213–231.
    • (2007) Annu. Rev. Biophys. Biomol. Struct. , vol.36 , pp. 213-231
    • Melin, J.1    Quake, S.R.2
  • 81
    • 0025207507 scopus 로고
    • Miniaturized total chemical analysis systems: a novel concept for chemical sensing
    • Manz, A., Graber, N., Widmer, H.á, Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens. Actuators B: Chem. 1:1 (1990), 244–248.
    • (1990) Sens. Actuators B: Chem. , vol.1 , Issue.1 , pp. 244-248
    • Manz, A.1    Graber, N.2    Widmer, H.Á.3
  • 82
    • 85051153500 scopus 로고    scopus 로고
    • Microfluidics and Nanofluidics Handbook: Fabrication, Implementation, and Applications
    • CRC Press, Boca Raton, Florida
    • Mitra, S.K., Chakraborty, S., Microfluidics and Nanofluidics Handbook: Fabrication, Implementation, and Applications. 2011, CRC Press, Boca Raton, Florida.
    • (2011)
    • Mitra, S.K.1    Chakraborty, S.2
  • 83
    • 0031570953 scopus 로고    scopus 로고
    • Microchannel electrophoretic separations of DNA in injection-molded plastic substrates
    • McCormick, R.M., et al. Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. Anal. Chem. 69:14 (1997), 2626–2630.
    • (1997) Anal. Chem. , vol.69 , Issue.14 , pp. 2626-2630
    • McCormick, R.M.1
  • 84
    • 0035984039 scopus 로고    scopus 로고
    • Poly (dimethylsiloxane) as a material for fabricating microfluidic devices
    • McDonald, J.C., Whitesides, G.M., Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35:7 (2002), 491–499.
    • (2002) Acc. Chem. Res. , vol.35 , Issue.7 , pp. 491-499
    • McDonald, J.C.1    Whitesides, G.M.2
  • 85
    • 0000056859 scopus 로고    scopus 로고
    • Design and fabrication of polymer microfluidic platforms for biomedical applications
    • Madou, M.J. et al., 2001. Design and fabrication of polymer microfluidic platforms for biomedical applications. In: Proc. of the 59th ANTEC-SPE 3, pp. 2534–2538.
    • (2001) Proc. of the 59th ANTEC-SPE 3 , pp. 2534-2538
    • Madou, M.J.1
  • 86
    • 0029873842 scopus 로고    scopus 로고
    • Erythrocyte rheology in microcirculation
    • Maeda, N., Erythrocyte rheology in microcirculation. Jpn. J. Physiol. 46:1 (1996), 1–14.
    • (1996) Jpn. J. Physiol. , vol.46 , Issue.1 , pp. 1-14
    • Maeda, N.1
  • 87
    • 84876099601 scopus 로고    scopus 로고
    • Advances in microfluidic materials, functions, integration, and applications
    • Nge, P.N., Rogers, C.I., Woolley, A.T., Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 113:4 (2013), 2550–2583.
    • (2013) Chem. Rev. , vol.113 , Issue.4 , pp. 2550-2583
    • Nge, P.N.1    Rogers, C.I.2    Woolley, A.T.3
  • 89
    • 84885148200 scopus 로고    scopus 로고
    • Photomasks fabrication based on optical reduction for microfluidic applications
    • Orabona, E., et al. Photomasks fabrication based on optical reduction for microfluidic applications. Micromachines 4:2 (2013), 206–214.
    • (2013) Micromachines , vol.4 , Issue.2 , pp. 206-214
    • Orabona, E.1
  • 90
    • 43649087453 scopus 로고    scopus 로고
    • Benefits of in-situ synthesized microarrays for analysis of gene expression in understudied microorganisms
    • Postier, B., et al. Benefits of in-situ synthesized microarrays for analysis of gene expression in understudied microorganisms. J. Microbiol. Methods 74:1 (2008), 26–32.
    • (2008) J. Microbiol. Methods , vol.74 , Issue.1 , pp. 26-32
    • Postier, B.1
  • 91
    • 54749087065 scopus 로고    scopus 로고
    • PDMS as a sacrificial substrate for SU-8-based biomedical and microfluidic applications
    • Patel, J.N., et al. PDMS as a sacrificial substrate for SU-8-based biomedical and microfluidic applications. J. Micromech. Microeng., 18(9), 2008, 095028.
    • (2008) J. Micromech. Microeng. , vol.18 , Issue.9 , pp. 095028
    • Patel, J.N.1
  • 92
    • 84987791217 scopus 로고    scopus 로고
    • Optimized SU-8 processing for low-cost microstructures fabrication without cleanroom facilities
    • Pinto, V.C., et al. Optimized SU-8 processing for low-cost microstructures fabrication without cleanroom facilities. Micromachines 5:3 (2014), 738–755.
    • (2014) Micromachines , vol.5 , Issue.3 , pp. 738-755
    • Pinto, V.C.1
  • 93
    • 84891882118 scopus 로고    scopus 로고
    • A microfluidic device for partial cell separation and deformability assessment
    • Pinho, D., Yaginuma, T., Lima, R., A microfluidic device for partial cell separation and deformability assessment. BioChip J. 7:4 (2013), 367–374.
    • (2013) BioChip J. , vol.7 , Issue.4 , pp. 367-374
    • Pinho, D.1    Yaginuma, T.2    Lima, R.3
  • 94
    • 0031984289 scopus 로고    scopus 로고
    • Integration of surface modification and 3D fabrication techniques to prepare patterned poly (L-Lactide) substrates allowing regionally selective cell adhesion
    • Park, A., Wu, B., Griffith, L.G., Integration of surface modification and 3D fabrication techniques to prepare patterned poly (L-Lactide) substrates allowing regionally selective cell adhesion. J. Biomater. Sci. Polym. Ed. 9:2 (1998), 89–110.
    • (1998) J. Biomater. Sci. Polym. Ed. , vol.9 , Issue.2 , pp. 89-110
    • Park, A.1    Wu, B.2    Griffith, L.G.3
  • 95
    • 84921682141 scopus 로고    scopus 로고
    • A rapid and low-cost nonlithographic method to fabricate biomedical microdevices for blood flow analysis
    • Pinto, E., et al. A rapid and low-cost nonlithographic method to fabricate biomedical microdevices for blood flow analysis. Micromachines 6:1 (2014), 121–135.
    • (2014) Micromachines , vol.6 , Issue.1 , pp. 121-135
    • Pinto, E.1
  • 96
    • 0027089966 scopus 로고
    • Blood viscosity in tube flow: dependence on diameter and hematocrit
    • Pries, A.R., Neuhaus, D., Gaehtgens, P., Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. – Heart Circ. Physiol. 263:6 (1992), H1770–H1778.
    • (1992) Am. J. Physiol. – Heart Circ. Physiol. , vol.263 , Issue.6 , pp. H1770-H1778
    • Pries, A.R.1    Neuhaus, D.2    Gaehtgens, P.3
  • 97
    • 84883654245 scopus 로고    scopus 로고
    • Automatic tracking of labeled red blood cells in microchannels
    • Pinho, D., et al. Automatic tracking of labeled red blood cells in microchannels. Int. J. Numer. Methods Biomed. Eng. 29:9 (2013), 977–987.
    • (2013) Int. J. Numer. Methods Biomed. Eng. , vol.29 , Issue.9 , pp. 977-987
    • Pinho, D.1
  • 98
    • 34247557739 scopus 로고    scopus 로고
    • Simple fabrication technique for rapid prototyping of seamless cylindrical microchannels in polymer substrates
    • Perry, H., et al. Simple fabrication technique for rapid prototyping of seamless cylindrical microchannels in polymer substrates. Rev. Sci. Instrum., 78(4), 2007, 044302.
    • (2007) Rev. Sci. Instrum. , vol.78 , Issue.4 , pp. 044302
    • Perry, H.1
  • 99
    • 79951557320 scopus 로고    scopus 로고
    • From cleanroom to desktop: emerging micro-nanofabrication technology for biomedical applications
    • Pan, T., Wang, W., From cleanroom to desktop: emerging micro-nanofabrication technology for biomedical applications. Ann. Biomed. Eng. 39:2 (2011), 600–620.
    • (2011) Ann. Biomed. Eng. , vol.39 , Issue.2 , pp. 600-620
    • Pan, T.1    Wang, W.2
  • 100
    • 84991296982 scopus 로고    scopus 로고
    • Experimental Flow Studies in Microchannels Fabricated by Xurography (Master thesis)
    • Instituto Politécnico de Bragança, Bragança, Portugal
    • Pinto, E., Experimental Flow Studies in Microchannels Fabricated by Xurography (Master thesis). 2012, Instituto Politécnico de Bragança, Bragança, Portugal.
    • (2012)
    • Pinto, E.1
  • 101
    • 77749333437 scopus 로고    scopus 로고
    • Soft lithography for micro-and nanoscale patterning
    • Qin, D., Xia, Y., Whitesides, G.M., Soft lithography for micro-and nanoscale patterning. Nat. Protoc. 5:3 (2010), 491–502.
    • (2010) Nat. Protoc. , vol.5 , Issue.3 , pp. 491-502
    • Qin, D.1    Xia, Y.2    Whitesides, G.M.3
  • 102
    • 43649095910 scopus 로고    scopus 로고
    • Electrochemical microsensors for cutaneous surface analysis: application to the determination of pH and the antioxidant properties of stratum corneum
    • Ruffien-Ciszak, A., et al. Electrochemical microsensors for cutaneous surface analysis: application to the determination of pH and the antioxidant properties of stratum corneum. IRBM 29:2–3 (2008), 162–170.
    • (2008) IRBM , vol.29 , Issue.2-3 , pp. 162-170
    • Ruffien-Ciszak, A.1
  • 103
    • 24944477681 scopus 로고    scopus 로고
    • A SU-8 fluidic microsystem for biological fluids analysis
    • Ribeiro, J.C., et al. A SU-8 fluidic microsystem for biological fluids analysis. Sens. Actuators A: Phys. 123 (2005), 77–81.
    • (2005) Sens. Actuators A: Phys. , vol.123 , pp. 77-81
    • Ribeiro, J.C.1
  • 104
    • 12344280978 scopus 로고    scopus 로고
    • Patterned cell culture inside microfluidic devices
    • Rhee, S.W., et al. Patterned cell culture inside microfluidic devices. Lab Chip 5:1 (2005), 102–107.
    • (2005) Lab Chip , vol.5 , Issue.1 , pp. 102-107
    • Rhee, S.W.1
  • 105
    • 84912523617 scopus 로고    scopus 로고
    • 3D soft lithography: a fabrication process for thermocurable polymers
    • Rodrigue, H., et al. 3D soft lithography: a fabrication process for thermocurable polymers. J. Mater. Process. Technol. 217:1 (2015), 302–309.
    • (2015) J. Mater. Process. Technol. , vol.217 , Issue.1 , pp. 302-309
    • Rodrigue, H.1
  • 106
    • 12444270061 scopus 로고    scopus 로고
    • Recent progress in soft lithography
    • Rogers, J.A., Nuzzo, R.G., Recent progress in soft lithography. Mater. Today 8:2 (2005), 50–56.
    • (2005) Mater. Today , vol.8 , Issue.2 , pp. 50-56
    • Rogers, J.A.1    Nuzzo, R.G.2
  • 107
    • 84945191008 scopus 로고    scopus 로고
    • A simple microfluidic device for the deformability assessment of blood cells in a continuous flow
    • in press
    • Rodrigues, R.O., et al. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow. Biomed. Microdevices, 17(108), 2015, 10.1007/s10544-015-0014-2 in press.
    • (2015) Biomed. Microdevices , vol.17 , Issue.108
    • Rodrigues, R.O.1
  • 108
    • 0000509354 scopus 로고    scopus 로고
    • Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field
    • Rogers, J.A., et al. Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field. Appl. Phys. Lett. 70:20 (1997), 2658–2660.
    • (1997) Appl. Phys. Lett. , vol.70 , Issue.20 , pp. 2658-2660
    • Rogers, J.A.1
  • 109
    • 79952483906 scopus 로고    scopus 로고
    • One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8
    • Rammohan, A., et al. One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8. Sens. Actuators B: Chem. 153:1 (2011), 125–134.
    • (2011) Sens. Actuators B: Chem. , vol.153 , Issue.1 , pp. 125-134
    • Rammohan, A.1
  • 110
    • 84961615386 scopus 로고    scopus 로고
    • In vitro blood flow and cell-free layer in hyperbolic microchannels: visualizations and measurements
    • in press
    • Rodrigues, R.O., et al. In vitro blood flow and cell-free layer in hyperbolic microchannels: visualizations and measurements. Biochip J., 2015 http://dx.doi.org/10.1007/s13206-016-0102-2, in press.
    • (2015) Biochip J.
    • Rodrigues, R.O.1
  • 111
    • 0023622010 scopus 로고
    • Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation
    • Reinke, W., Gaehtgens, P., Johnson, P.C., Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation. Am. J. Physiol. – Heart Circ. Physiol. 253:3 (1987), H540–H547.
    • (1987) Am. J. Physiol. – Heart Circ. Physiol. , vol.253 , Issue.3 , pp. H540-H547
    • Reinke, W.1    Gaehtgens, P.2    Johnson, P.C.3
  • 113
    • 84896284039 scopus 로고    scopus 로고
    • The present and future role of microfluidics in biomedical research
    • Sackmann, E.K., Fulton, A.L., Beebe, D.J., The present and future role of microfluidics in biomedical research. Nature 507:7491 (2014), 181–189.
    • (2014) Nature , vol.507 , Issue.7491 , pp. 181-189
    • Sackmann, E.K.1    Fulton, A.L.2    Beebe, D.J.3
  • 114
    • 24944498780 scopus 로고    scopus 로고
    • Microfluidics: fluid physics at the nanoliter scale
    • Squires, T.M., Quake, S.R., Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys., 77(3), 2005, 977.
    • (2005) Rev. Mod. Phys. , vol.77 , Issue.3 , pp. 977
    • Squires, T.M.1    Quake, S.R.2
  • 115
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • Schena, M., et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:5235 (1995), 467–470.
    • (1995) Science , vol.270 , Issue.5235 , pp. 467-470
    • Schena, M.1
  • 116
    • 77952892098 scopus 로고    scopus 로고
    • Fast and continuous plasma extraction from whole human blood based on expanding cell-free layer devices
    • Sollier, E., et al. Fast and continuous plasma extraction from whole human blood based on expanding cell-free layer devices. Biomed. Microdevices 12:3 (2010), 485–497.
    • (2010) Biomed. Microdevices , vol.12 , Issue.3 , pp. 485-497
    • Sollier, E.1
  • 117
    • 0030096033 scopus 로고    scopus 로고
    • Deformation of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformability
    • Suzuki, Y., et al. Deformation of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformability. Microcirculation 3:1 (1996), 49–57.
    • (1996) Microcirculation , vol.3 , Issue.1 , pp. 49-57
    • Suzuki, Y.1
  • 118
    • 78650001373 scopus 로고    scopus 로고
    • Fluid particle diffusion through high-hematocrit blood flow within a capillary tube
    • Saadatmand, M., et al. Fluid particle diffusion through high-hematocrit blood flow within a capillary tube. J. Biomech. 44:1 (2011), 170–175.
    • (2011) J. Biomech. , vol.44 , Issue.1 , pp. 170-175
    • Saadatmand, M.1
  • 119
    • 0018653907 scopus 로고
    • A gas chromatographic air analyzer fabricated on a silicon wafer
    • Terry, S.C., Jerman, J.H., Angell, J.B., A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans. Electron Devices 26:12 (1979), 1880–1886.
    • (1979) IEEE Trans. Electron Devices , vol.26 , Issue.12 , pp. 1880-1886
    • Terry, S.C.1    Jerman, J.H.2    Angell, J.B.3
  • 120
    • 0037418472 scopus 로고    scopus 로고
    • Microfluidic multicompartment device for neuroscience research
    • Taylor, A.M., et al. Microfluidic multicompartment device for neuroscience research. Langmuir 19:5 (2003), 1551–1556.
    • (2003) Langmuir , vol.19 , Issue.5 , pp. 1551-1556
    • Taylor, A.M.1
  • 121
    • 74249121905 scopus 로고    scopus 로고
    • Print-and-Peel fabrication for microfluidics: what׳s in it for biomedical applications?
    • Thomas, M.S., et al. Print-and-Peel fabrication for microfluidics: what׳s in it for biomedical applications?. Ann. Biomed. Eng. 38:1 (2010), 21–32.
    • (2010) Ann. Biomed. Eng. , vol.38 , Issue.1 , pp. 21-32
    • Thomas, M.S.1
  • 122
    • 0041396712 scopus 로고    scopus 로고
    • Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopying
    • Tan, A., et al. Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopying. Lab Chip 1:1 (2001), 7–9.
    • (2001) Lab Chip , vol.1 , Issue.1 , pp. 7-9
    • Tan, A.1
  • 123
    • 84991318914 scopus 로고    scopus 로고
    • Monodisperse Spherical Toner Particles Containing Aliphatic Amides or Aliphatic Acids
    • Tyagi, D., et al., 2000. Monodisperse Spherical Toner Particles Containing Aliphatic Amides or Aliphatic Acids. US Patent, US6156473 A.
    • (2000) US Patent, US6156473 A.
    • Tyagi, D.1
  • 124
    • 63749111006 scopus 로고    scopus 로고
    • Micro-and nanobiosensors—state of the art and trends
    • Urban, G.A., Micro-and nanobiosensors—state of the art and trends. Meas. Sci. Technol., 20(1), 2009, 012001.
    • (2009) Meas. Sci. Technol. , vol.20 , Issue.1 , pp. 012001
    • Urban, G.A.1
  • 125
    • 33845580027 scopus 로고    scopus 로고
    • Nonlithographic fabrication of microfluidic devices
    • Vullev, V.I., et al. Nonlithographic fabrication of microfluidic devices. J. Am. Chem. Soc. 128:50 (2006), 16062–16072.
    • (2006) J. Am. Chem. Soc. , vol.128 , Issue.50 , pp. 16062-16072
    • Vullev, V.I.1
  • 126
    • 33846130059 scopus 로고    scopus 로고
    • Embedded template-assisted fabrication of complex microchannels in PDMS and design of a microfluidic adhesive
    • Verma, M.K.S., Majumder, A., Ghatak, A., Embedded template-assisted fabrication of complex microchannels in PDMS and design of a microfluidic adhesive. Langmuir 22:24 (2006), 10291–10295.
    • (2006) Langmuir , vol.22 , Issue.24 , pp. 10291-10295
    • Verma, M.K.S.1    Majumder, A.2    Ghatak, A.3
  • 127
    • 33747117373 scopus 로고    scopus 로고
    • The origins and the future of microfluidics
    • Whitesides, G.M., The origins and the future of microfluidics. Nature 442:7101 (2006), 368–373.
    • (2006) Nature , vol.442 , Issue.7101 , pp. 368-373
    • Whitesides, G.M.1
  • 128
    • 0034802766 scopus 로고    scopus 로고
    • Soft lithography in biology and biochemistry
    • Whitesides, G.M., et al. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3:1 (2001), 335–373.
    • (2001) Annu. Rev. Biomed. Eng. , vol.3 , Issue.1 , pp. 335-373
    • Whitesides, G.M.1
  • 129
    • 0028027123 scopus 로고
    • PCR in a silicon microstructure
    • Wilding, P., Shoffner, M.A., Kricka, L.J., PCR in a silicon microstructure. Clin. Chem. 40:9 (1994), 1815–1818.
    • (1994) Clin. Chem. , vol.40 , Issue.9 , pp. 1815-1818
    • Wilding, P.1    Shoffner, M.A.2    Kricka, L.J.3
  • 130
    • 0033951040 scopus 로고    scopus 로고
    • Anchored multiplex amplification on a microelectronic chip array
    • Westin, L., et al. Anchored multiplex amplification on a microelectronic chip array. Nat. Biotechnol. 18:2 (2000), 199–204.
    • (2000) Nat. Biotechnol. , vol.18 , Issue.2 , pp. 199-204
    • Westin, L.1
  • 131
    • 69249203894 scopus 로고    scopus 로고
    • Surface molecular property modifications for poly (dimethylsiloxane)(PDMS) based microfluidic devices
    • Wong, I., Ho, C.-M., Surface molecular property modifications for poly (dimethylsiloxane)(PDMS) based microfluidic devices. Microfluid. Nanofluid. 7:3 (2009), 291–306.
    • (2009) Microfluid. Nanofluid. , vol.7 , Issue.3 , pp. 291-306
    • Wong, I.1    Ho, C.-M.2
  • 132
    • 0037438528 scopus 로고    scopus 로고
    • Fabrication of complex three-dimensional microchannel systems in PDMS
    • Wu, H., et al. Fabrication of complex three-dimensional microchannel systems in PDMS. J. Am. Chem. Soc. 125:2 (2003), 554–559.
    • (2003) J. Am. Chem. Soc. , vol.125 , Issue.2 , pp. 554-559
    • Wu, H.1
  • 133
    • 79953199826 scopus 로고    scopus 로고
    • Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography
    • Wilson, M.E., et al. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. Lab Chip 11:8 (2011), 1550–1555.
    • (2011) Lab Chip , vol.11 , Issue.8 , pp. 1550-1555
    • Wilson, M.E.1
  • 134
    • 84861571534 scopus 로고    scopus 로고
    • Prototyping chips in minutes: direct laser plotting (DLP) of functional microfluidic structures
    • Wang, L., et al. Prototyping chips in minutes: direct laser plotting (DLP) of functional microfluidic structures. Sens. Actuators B: Chem. 168:1 (2012), 214–222.
    • (2012) Sens. Actuators B: Chem. , vol.168 , Issue.1 , pp. 214-222
    • Wang, L.1
  • 135
    • 0031072203 scopus 로고    scopus 로고
    • Replica molding using polymeric materials: a practical step toward nanomanufacturing
    • Xia, Y., et al. Replica molding using polymeric materials: a practical step toward nanomanufacturing. Adv. Mater. 9:2 (1997), 147–149.
    • (1997) Adv. Mater. , vol.9 , Issue.2 , pp. 147-149
    • Xia, Y.1
  • 137
    • 58149104281 scopus 로고    scopus 로고
    • Nanoskiving: a new method to produce arrays of nanostructures
    • Xu, Q., et al. Nanoskiving: a new method to produce arrays of nanostructures. Acc. Chem. Res. 41:12 (2008), 1566–1577.
    • (2008) Acc. Chem. Res. , vol.41 , Issue.12 , pp. 1566-1577
    • Xu, Q.1
  • 139
    • 77955618032 scopus 로고    scopus 로고
    • Microfluidic platforms for single-cell analysis
    • Zare, R.N., Kim, S., Microfluidic platforms for single-cell analysis. Annu. Rev. Biomed. Eng. 12:1 (2010), 187–201.
    • (2010) Annu. Rev. Biomed. Eng. , vol.12 , Issue.1 , pp. 187-201
    • Zare, R.N.1    Kim, S.2
  • 140
    • 1642452594 scopus 로고    scopus 로고
    • Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery
    • Ziaie, B., et al. Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv. Drug Deliv. Rev. 56:2 (2004), 145–172.
    • (2004) Adv. Drug Deliv. Rev. , vol.56 , Issue.2 , pp. 145-172
    • Ziaie, B.1
  • 141
    • 0030263409 scopus 로고    scopus 로고
    • Fabrication of three-dimensional micro-structures: microtransfer molding
    • Zhao, X.M., Xia, Y., Whitesides, G.M., Fabrication of three-dimensional micro-structures: microtransfer molding. Adv. Mater. 8:10 (1996), 837–840.
    • (1996) Adv. Mater. , vol.8 , Issue.10 , pp. 837-840
    • Zhao, X.M.1    Xia, Y.2    Whitesides, G.M.3
  • 142
    • 34249675900 scopus 로고    scopus 로고
    • SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography
    • del Campo, A., Greiner, C., SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. J. Micromech. Microeng., 17(6), 2007, R81.
    • (2007) J. Micromech. Microeng. , vol.17 , Issue.6 , pp. R81
    • del Campo, A.1    Greiner, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.