-
1
-
-
0037096666
-
Micro total analysis systems. 1. Introduction, theory, and technology
-
Reyes D.R., Iossifidis D., Auroux P.A., Manz A. Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74:2002;2623-2636.
-
(2002)
Anal. Chem.
, vol.74
, pp. 2623-2636
-
-
Reyes, D.R.1
Iossifidis, D.2
Auroux, P.A.3
Manz, A.4
-
2
-
-
0034611669
-
Functional hydrogel structures for autonomous flow control inside microfluidic channels
-
Beebe D., Moore J., Bauer J., Yu Q., Liu R., Devadoss C., Jo B. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature. 404:2000;588-590.
-
(2000)
Nature
, vol.404
, pp. 588-590
-
-
Beebe, D.1
Moore, J.2
Bauer, J.3
Yu, Q.4
Liu, R.5
Devadoss, C.6
Jo, B.7
-
4
-
-
0034711410
-
From micro- to nanofabrication with soft materials
-
Quake S.R., Scherer A. From micro- to nanofabrication with soft materials. Science. 290:2000;1536-1540.
-
(2000)
Science
, vol.290
, pp. 1536-1540
-
-
Quake, S.R.1
Scherer, A.2
-
5
-
-
0034646334
-
Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems
-
Chiu D.T., Jeon N.L., Huang S., Kane R.S., Wargo C.J., Choi I.S., Ingber D.E., Whitesides G.M. Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc. Natl. Acad Sci. USA. 97:2000;2408-2413.
-
(2000)
Proc. Natl. Acad Sci. USA
, vol.97
, pp. 2408-2413
-
-
Chiu, D.T.1
Jeon, N.L.2
Huang, S.3
Kane, R.S.4
Wargo, C.J.5
Choi, I.S.6
Ingber, D.E.7
Whitesides, G.M.8
-
6
-
-
0029635378
-
Fabrication of submicrometer features on curved substrates by microcontact printing
-
Jackman R.J., Wilbur J.L., Whitesides G.M. Fabrication of submicrometer features on curved substrates by microcontact printing. Science. 269:1995;664-666.
-
(1995)
Science
, vol.269
, pp. 664-666
-
-
Jackman, R.J.1
Wilbur, J.L.2
Whitesides, G.M.3
-
7
-
-
0033531047
-
Fabrication of liquid-core waveguides by soft lithography
-
Schueller O., Zhao X., Whitesides G., Smith S., Prentiss M. Fabrication of liquid-core waveguides by soft lithography. Adv. Mater. 11:1999;37-41.
-
(1999)
Adv. Mater.
, vol.11
, pp. 37-41
-
-
Schueller, O.1
Zhao, X.2
Whitesides, G.3
Smith, S.4
Prentiss, M.5
-
8
-
-
0034695698
-
Mirrorless lasing from mesostructured waveguides patterned by soft lithography
-
Yang P., Wirnsberger G., Huang H., Cordero S., McGehee M., Scott B., Deng T., Whitesides G., Chmelka B., Buratto S.et al. Mirrorless lasing from mesostructured waveguides patterned by soft lithography. Science. 287:2000;465-467.
-
(2000)
Science
, vol.287
, pp. 465-467
-
-
Yang, P.1
Wirnsberger, G.2
Huang, H.3
Cordero, S.4
McGehee, M.5
Scott, B.6
Deng, T.7
Whitesides, G.8
Chmelka, B.9
Buratto, S.10
-
9
-
-
0033988843
-
Fabrication of microfluidic systems in poly(dimethylsiloxane)
-
McDonald J.C., Duffy D.C., Anderson J.R., Chiu D.T., Wu H.K., Schueller O.J.A., Whitesides G.M. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis. 21:2000;27-40.
-
(2000)
Electrophoresis
, vol.21
, pp. 27-40
-
-
McDonald, J.C.1
Duffy, D.C.2
Anderson, J.R.3
Chiu, D.T.4
Wu, H.K.5
Schueller, O.J.A.6
Whitesides, G.M.7
-
10
-
-
0034615958
-
Monolithic microfabricated valves and pumps by multilayer soft lithography
-
Unger M., Chou H., Thorsen T., Scherer A., Quake S. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science. 288:2000;113-116.
-
(2000)
Science
, vol.288
, pp. 113-116
-
-
Unger, M.1
Chou, H.2
Thorsen, T.3
Scherer, A.4
Quake, S.5
-
11
-
-
0037131390
-
Microfluidic large-scale integration
-
Using MSL, the authors demonstrate the first large-scale integration of fluidic networks on a chip. Extending an analogy with microelectronic circuits, addressable fluidic networks with thousands of microfabricated valves are used for parallel cell screening assays and the implementation of a microfluidic memory array.
-
Thorsen T., Maerkl S.J., Quake S.R. Microfluidic large-scale integration. Science. 298:2002;580-584 Using MSL, the authors demonstrate the first large-scale integration of fluidic networks on a chip. Extending an analogy with microelectronic circuits, addressable fluidic networks with thousands of microfabricated valves are used for parallel cell screening assays and the implementation of a microfluidic memory array.
-
(2002)
Science
, vol.298
, pp. 580-584
-
-
Thorsen, T.1
Maerkl, S.J.2
Quake, S.R.3
-
13
-
-
0035743428
-
Miniaturization and chip technology. What can we expect?
-
Manz A., Eijkel J.C.T. Miniaturization and chip technology. What can we expect? Pure Appl. Chem. 73:2001;1555-1561.
-
(2001)
Pure Appl. Chem.
, vol.73
, pp. 1555-1561
-
-
Manz, A.1
Eijkel, J.C.T.2
-
14
-
-
0036407229
-
Physics and applications of microfluidics in biology
-
This review provides a good introduction to the essential properties of flow and mass transport that are manifested in microfluidic devices.
-
Beebe D., Mensing G., Walker G. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4:2002;261-286 This review provides a good introduction to the essential properties of flow and mass transport that are manifested in microfluidic devices.
-
(2002)
Annu. Rev. Biomed. Eng.
, vol.4
, pp. 261-286
-
-
Beebe, D.1
Mensing, G.2
Walker, G.3
-
15
-
-
0032125776
-
Solution-based analysis of multiple analytes by a sensor array: Toward the development of an "electronic tongue"
-
Lavigne J.J., Savoy S., Clevenger M.B., Ritchie J.E., McDoniel B., Yoo S.J., Anslyn E.V., McDevitt J.T., Shear J.B., Neikirk D. Solution-based analysis of multiple analytes by a sensor array: toward the development of an "electronic tongue" J. Am. Chem. Soc. 120:1998;6429-6430.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 6429-6430
-
-
Lavigne, J.J.1
Savoy, S.2
Clevenger, M.B.3
Ritchie, J.E.4
McDoniel, B.5
Yoo, S.J.6
Anslyn, E.V.7
McDevitt, J.T.8
Shear, J.B.9
Neikirk, D.10
-
16
-
-
0037108884
-
Three-dimensional microfluidic confinement for efficient sample delivery to biosensor surfaces. Application to immunoassays on planar optical waveguides
-
Hofmann O., Voirin G., Niedermann P., Manz A. Three-dimensional microfluidic confinement for efficient sample delivery to biosensor surfaces. Application to immunoassays on planar optical waveguides. Anal. Chem. 74:2002;5243-5250.
-
(2002)
Anal. Chem.
, vol.74
, pp. 5243-5250
-
-
Hofmann, O.1
Voirin, G.2
Niedermann, P.3
Manz, A.4
-
17
-
-
0035866594
-
Generation of gradients having complex shapes using microfluidic networks
-
Dertinger S.K.W., Chiu D.T., Jeon N.L., Whitesides G.M. Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 73:2001;1240-1246.
-
(2001)
Anal. Chem.
, vol.73
, pp. 1240-1246
-
-
Dertinger, S.K.W.1
Chiu, D.T.2
Jeon, N.L.3
Whitesides, G.M.4
-
18
-
-
0036022527
-
Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device
-
Laminar flow and controlled diffusion are used to produce controlled and temporally stable chemical gradients in a microfluidic channel. These gradients are used to study the chemotaxis of neutrophils in the presence of linear and nonlinear chemical gradients.
-
Jeon N.L., Baskaran H., Dertinger S.K.W., Whitesides G.M., Van de Water L., Toner M. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20:2002;826-830 Laminar flow and controlled diffusion are used to produce controlled and temporally stable chemical gradients in a microfluidic channel. These gradients are used to study the chemotaxis of neutrophils in the presence of linear and nonlinear chemical gradients.
-
(2002)
Nat. Biotechnol.
, vol.20
, pp. 826-830
-
-
Jeon, N.L.1
Baskaran, H.2
Dertinger, S.K.W.3
Whitesides, G.M.4
Van de Water, L.5
Toner, M.6
-
19
-
-
0037965621
-
A sensitive, versatile microfluidic assay for bacterial chemotaxis
-
Mao H.B., Cremer P.S., Manson M.D. A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc. Natl. Acad Sci. USA. 100:2003;5449-5454.
-
(2003)
Proc. Natl. Acad Sci. USA
, vol.100
, pp. 5449-5454
-
-
Mao, H.B.1
Cremer, P.S.2
Manson, M.D.3
-
20
-
-
0037169046
-
Chaotic mixer for microchannels
-
Stroock A., Dertinger S., Ajdari A., Mezic I., Stone H., Whitesides G. Chaotic mixer for microchannels. Science. 295:2002;647-651.
-
(2002)
Science
, vol.295
, pp. 647-651
-
-
Stroock, A.1
Dertinger, S.2
Ajdari, A.3
Mezic, I.4
Stone, H.5
Whitesides, G.6
-
21
-
-
0000035628
-
Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds
-
Knight J.B., Vishwanath A., Brody J.P., Austin R.H. Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys. Rev. Lett. 80:1998;3863-3866.
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 3863-3866
-
-
Knight, J.B.1
Vishwanath, A.2
Brody, J.P.3
Austin, R.H.4
-
22
-
-
0035926229
-
Time resolved collapse of a folding protein observed with small angle x-ray scattering
-
Hydrodynamic focusing by laminar flow allows ultrafast mixing by reducing the required diffusion length to the micrometer scale. The authors combine this technique with small-angle X-ray scattering to make time-resolved measurements of protein folding intermediates.
-
Pollack L., Tate M.W., Finnefrock A.C., Kalidas C., Trotter S., Darnton N.C., Lurio L., Austin R.H., Batt C.A., Gruner S.M.et al. Time resolved collapse of a folding protein observed with small angle x-ray scattering. Phys. Rev. Lett. 86:2001;4962-4965 Hydrodynamic focusing by laminar flow allows ultrafast mixing by reducing the required diffusion length to the micrometer scale. The authors combine this technique with small-angle X-ray scattering to make time-resolved measurements of protein folding intermediates.
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 4962-4965
-
-
Pollack, L.1
Tate, M.W.2
Finnefrock, A.C.3
Kalidas, C.4
Trotter, S.5
Darnton, N.C.6
Lurio, L.7
Austin, R.H.8
Batt, C.A.9
Gruner, S.M.10
-
23
-
-
0031903288
-
MAD phasing grows up
-
Ogata C.M. MAD phasing grows up. Nat. Struct. Biol. 5:1998;638-640.
-
(1998)
Nat. Struct. Biol.
, vol.5
, pp. 638-640
-
-
Ogata, C.M.1
-
24
-
-
0036815756
-
New approaches to high-throughput phasing
-
Dauter Z. New approaches to high-throughput phasing. Curr. Opin. Struct. Biol. 12:2002;674-678.
-
(2002)
Curr. Opin. Struct. Biol.
, vol.12
, pp. 674-678
-
-
Dauter, Z.1
-
25
-
-
0032964481
-
Automated protein model building combined with iterative structure refinement
-
Perrakis A., Morris R., Lamzin V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6:1999;458-463.
-
(1999)
Nat. Struct. Biol.
, vol.6
, pp. 458-463
-
-
Perrakis, A.1
Morris, R.2
Lamzin, V.S.3
-
27
-
-
0035919686
-
Industrializing structural biology
-
Stevens R.C., Wilson I.A. Industrializing structural biology. Science. 293:2001;519-520.
-
(2001)
Science
, vol.293
, pp. 519-520
-
-
Stevens, R.C.1
Wilson, I.A.2
-
28
-
-
0001011919
-
High-throughput x-ray crystallography for structure-based drug design
-
Goodwill K.E., Tennant M.G., Stevens R.C. High-throughput x-ray crystallography for structure-based drug design. Drug Discov. Today. 6:2001;S113-S118.
-
(2001)
Drug Discov. Today
, vol.6
-
-
Goodwill, K.E.1
Tennant, M.G.2
Stevens, R.C.3
-
29
-
-
0036499144
-
Tackling the bottleneck of protein crystallization in the post- genomic era
-
Chayen E.N. Tackling the bottleneck of protein crystallization in the post- genomic era. Trends Biotechnol. 20:2002;98-98.
-
(2002)
Trends Biotechnol.
, vol.20
, pp. 98-98
-
-
Chayen, E.N.1
-
30
-
-
0015386003
-
A free interface diffusion technique for the crystallization of proteins for X-ray crystallography
-
Salemme F.R. A free interface diffusion technique for the crystallization of proteins for X-ray crystallography. Arch Biochem. Biophys. 15:1972;533-539.
-
(1972)
Arch Biochem. Biophys.
, vol.15
, pp. 533-539
-
-
Salemme, F.R.1
-
32
-
-
0030298908
-
Protein crystal growth in microgravity using a liquid/liquid diffusion method
-
Wang Y.P., Han Y., Pan J.S., Wang K.Y., Bi R.C. Protein crystal growth in microgravity using a liquid/liquid diffusion method. Microgravity Sci. Tec. 9:1996;281-283.
-
(1996)
Microgravity Sci. Tec.
, vol.9
, pp. 281-283
-
-
Wang, Y.P.1
Han, Y.2
Pan, J.S.3
Wang, K.Y.4
Bi, R.C.5
-
34
-
-
0024960772
-
Protein crystal growth in microgravity
-
Delucas L., Smith C.D., Smith H., Vijaykumar S., Senadhi S., Ealick S., Carter D., Snyder R., Weber P., Salemme F.et al. Protein crystal growth in microgravity. Science. 246:1989;651-654.
-
(1989)
Science
, vol.246
, pp. 651-654
-
-
Delucas, L.1
Smith, C.D.2
Smith, H.3
Vijaykumar, S.4
Senadhi, S.5
Ealick, S.6
Carter, D.7
Snyder, R.8
Weber, P.9
Salemme, F.10
-
35
-
-
12444331438
-
Micro-crystallization
-
Edited by Babine R, Abdel-Meguid: Wiley-VCH
-
Hansen C, Sommer M, Self K, Berger J, Quake S: Micro-crystallization. In Protein Crystallography in Drug Discovery. Edited by Babine R, Abdel-Meguid: Wiley-VCH; 2003.
-
(2003)
Protein Crystallography in Drug Discovery
-
-
Hansen, C.1
Sommer, M.2
Self, K.3
Berger, J.4
Quake, S.5
-
36
-
-
0000542303
-
A simple method of measuring gaseous diffusion coefficients
-
Andrew S.P.S. A simple method of measuring gaseous diffusion coefficients. Chem. Eng. Sci. 4:1955;269-272.
-
(1955)
Chem. Eng. Sci.
, vol.4
, pp. 269-272
-
-
Andrew, S.P.S.1
-
37
-
-
0037168508
-
A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion
-
A simple and robust method for the parallel metering of solutions in microfluidic devices is described. This technique enables the simultaneous implementation of hundreds of FID crystallization assays using only 20 nL of sample per assay. The small characteristic length scale of these reactions allows the suppression of gravity-induced convection, so that a stable interface is easily maintained. The unique kinetics of purely diffusive mixing on the micrometer scale results in the detection of more crystallization conditions and faster crystal growth.
-
Hansen C.L., Skordalakes E., Berger J.M., Quake S.R. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc. Natl. Acad Sci. USA. 99:2002;16531-16536 A simple and robust method for the parallel metering of solutions in microfluidic devices is described. This technique enables the simultaneous implementation of hundreds of FID crystallization assays using only 20 nL of sample per assay. The small characteristic length scale of these reactions allows the suppression of gravity-induced convection, so that a stable interface is easily maintained. The unique kinetics of purely diffusive mixing on the micrometer scale results in the detection of more crystallization conditions and faster crystal growth.
-
(2002)
Proc. Natl. Acad Sci. USA
, vol.99
, pp. 16531-16536
-
-
Hansen, C.L.1
Skordalakes, E.2
Berger, J.M.3
Quake, S.R.4
-
38
-
-
0036842594
-
Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase
-
Glieder A., Farinas E.T., Arnold F.H. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat. Biotechnol. 20:2002;1135-1139.
-
(2002)
Nat. Biotechnol.
, vol.20
, pp. 1135-1139
-
-
Glieder, A.1
Farinas, E.T.2
Arnold, F.H.3
|